DDA 2010, lecture 5:
Weak colouring and other tricks

- Symmetry *can* be broken very fast if nodes have odd degrees...
 - ... but we need *port numbering and orientation*
DDA 2010, lecture 5a: Port numbering and orientation

- A new model
 - stronger than the port-numbering model
 - weaker than networks with unique identifiers
Introduction

• How could we design algorithms that are faster than Cole-Vishkin? Constant-time algorithms?
 • if we try to exploit the numerical values of unique identifiers, we will usually get running times $\Omega(\log^* n)$ or worse
 • what if we just used the relative order of unique identifiers?
 • let’s have a look at a model in which each pair of neighbours is ordered, and see what kinds of problems can be solved…
Port-numbering and orientation

- A node of degree \(d \) can refer to its neighbours by integers 1, 2, ..., \(d \)
- Each edge has an orientation
 - ends labelled: head, tail
- Port-numbering and orientation chosen by adversary
Port-numbering and orientation

- If you have unique identifiers or colouring, you can easily find an orientation
 - orient from smaller to larger ID (or colour)
 - we used this trick in lecture 2 to construct directed forests
Port-numbering and orientation

- Is this model stronger than port numbering?
- Is this model weaker than unique identifiers?
Port-numbering and orientation

- Is this model stronger than port numbering?
 - Yes: colouring of 2-node paths is possible

- Is this model weaker than unique identifiers?
Port-numbering and orientation

- Is this model stronger than port numbering?
 - Yes: colouring of 2-node paths is possible

- Is this model weaker than unique identifiers?
 - Yes: colouring of 3-cycles is impossible
Port-numbering and orientation

- Can we solve anything non-trivial in this model?
- Looks bad: we can still have symmetric inputs
Port-numbering and orientation

- Can we solve anything non-trivial in this model?
- Looks bad: we can still have symmetric inputs
 - but in all these constructions $\text{indegree} = \text{outdegree}$, and therefore nodes must have even degrees!
DDA 2010, lecture 5b: Weak colouring

- Naor-Stockmeyer (1995):
 - fast symmetry breaking in graphs with indegree ≠ outdegree
Symmetry breaking in graphs with port numbering and orientation

- The simplest case: 1-regular graphs
- Consists of isolated edges, certainly we can break symmetry for each pair of nodes
 - one is “head”, the other one is “tail”
 (head has indegree 1, tail has outdegree 1)
Symmetry breaking in graphs with port numbering and orientation

- In general, we can always label nodes by their (outdegree, indegree) pairs
 - different outdegrees or different indegrees: different labels, symmetry broken
 - only $O(\Delta^2)$ possible labels; easy to reduce using C-V tricks
Symmetry breaking in graphs with port numbering and orientation

• In general, we can always label nodes by their (outdegree, indegree) pairs
• But what if a node and all of its neighbours have identical (outdegree, indegree) pairs?
Symmetry breaking in graphs with port numbering and orientation

• In general, we can always label nodes by their (outdegree, indegree) pairs

• But what if a node and all of its neighbours have identical (outdegree, indegree) pairs?

 • we already know that if outdegree = indegree for all nodes, we are in trouble

 • but what if we know that outdegree ≠ indegree?

 • for example, what if all nodes have degree = 3 and therefore necessarily outdegree ≠ indegree?
Symmetry breaking in graphs with port numbering and orientation

- Simplest case: indegree = 1, outdegree = 2
- Label = outgoing port number in predecessor

![Diagram showing symmetry breaking in a graph with port numbering and orientation](image)
Symmetry breaking in graphs with port numbering and orientation

- Simplest case: indegree = 1, outdegree = 2
- Label = outgoing port number in predecessor
Symmetry breaking in graphs with port numbering and orientation

- Simplest case: indegree = 1, outdegree = 2
- Label = outgoing port number

Can’t have $X = 2$ and $X = 3$
Symmetry broken!
Symmetry breaking in graphs with port numbering and orientation

- We can construct a weak colouring:
 - for each non-isolated node at least one neighbour has different colour
- C-V can be used to reduce the number of colours
Symmetry breaking in graphs with port numbering and orientation

- Indegree = 1, outdegree = 2: *weak colouring*
 - node takes its label from the port numbers of its parent
- Generalisation to any indegree ≠ outdegree?
 - enough to study the case indegree < outdegree
 - then we can reverse the directions and get the same result for indegree > outdegree!
 - let’s present the algorithm in the general case and prove that it finds a weak colouring...
Symmetry breaking in graphs with port numbering and orientation

- General case: indegree < outdegree
- Label = list of outgoing port numbers in all predecessors

![Diagram of graph with port numbering and orientation]
Symmetry breaking in graphs with port numbering and orientation

- General case: indegree < outdegree
- Label = list of outgoing port numbers in all predecessors
Symmetry breaking in graphs with port numbering and orientation

• General case: indegree < outdegree

• Label = list of outgoing port numbers in all predecessors
Symmetry breaking in graphs with port numbering and orientation

• **Lemma**: for each v, the successors of v have at least 2 different labels

 • Proof: pigeonhole again…
Symmetry breaking in graphs with port numbering and orientation

- E.g., outdegree = 3, indegree = 2:
 - a 2-element list can’t contain all 3 outgoing port numbers of v
 - must have at least 2 different 2-element lists!

These pairs must contain all 3 outgoing port numbers of v
Symmetry breaking in graphs with port numbering and orientation

- General case, outdegree = s, indegree = t:
 - an s-element list can’t contain all t outgoing port numbers of v if $s < t$
 - must have at least 2 different s-element lists!

These pairs must contain all 3 outgoing port numbers of v
Symmetry breaking in graphs with port numbering and orientation

• **Lemma**: for each \(v \), the successors of \(v \) have at least 2 different labels

• **Corollary**: \(v \) has a successor \(u \) such that \(v \) and \(u \) have different labels

 • i.e., we have a weak colouring

 • again, we can use C-V to reduce the number of colours

 • it is possible to construct a weak 2-colouring; running time is \(O(\log^* \Delta) \), independent of \(n \)

 • assumptions: port numbering, indegree \(\neq \) outdegree
Summary

- **Model:** port numbering and orientation

- If outdegree = indegree:
 - we may have a symmetric input
 - in the worst case all nodes will produce the same output

- If outdegree ≠ indegree:
 - symmetry can be broken
 - we can find a weak 2-colouring — very fast!
 - however, we can’t find a (non-weak) colouring