DDA 2010, lecture 2:
Algorithms with running time $O(\log^* n)$

- Cole-Vishkin (1986):
 - colour reduction technique
 - colouring paths, cycles, trees

- Applications:
 - colouring arbitrary graphs
Unique identifiers

- Assumption: each node has a unique identifier in its local input
- Node identifiers are a subset of $1, 2, \ldots, \text{poly}(n)$
- Chosen by adversary
Algorithms for networks with unique identifiers

• With unique identifiers, “everything” can be solved in diameter(G) + 1 rounds
 • Algorithm: each node
 1. gathers full information about G (including all local inputs)
 2. solves the graph problem by brute force
 3. chooses its local output accordingly

• What can be solved much faster?
Algorithms for networks with unique identifiers

- Running time is $T \iff$ output is a function of input within distance T

$T = 2$: “Local neighbourhood”
Algorithms for networks with unique identifiers

• We have seen a simple algorithm with running time $O(\Delta)$

• We will soon see other algorithms with running times such as $O(\Delta + \log^* n)$
 • these can be much smaller than diameter(G)
 • faster than just sending information across the network!
 • these algorithms use only “local information” to produce their local outputs
 • distributed algorithms in the strongest possible sense
Richard Cole and Uzi Vishkin (1986): “Deterministic coin tossing with applications to optimal parallel list ranking”

- the original paper is about parallel algorithms and linked list data structures
- however, the same technique can be used in distributed algorithms and path graphs
Colour reduction

• Cole-Vishkin algorithm is a **colour reduction** technique:
 - given a proper k_1-colouring of the graph, find a proper k_2-colouring
 - large k_1, small k_2

• **Note**: unique identifiers form a colouring!
 - hence we often have $k_1 = \text{poly}(n)$, $k_2 = O(1)$: given unique identifiers, find an $O(1)$-colouring

• **Convention**: colours are integers $0, 1, \ldots, k - 1$
One successor

- Cole-Vishkin technique can be applied in directed graphs in which each node has **at most 1 successor**
 - directed paths
 - rooted trees
 - directed cycles
 - ... and in general, **directed pseudoforests**
Cole-Vishkin: colour reduction in pseudoforests

- Cole-Vishkin technique can be applied in directed graphs in which each node has \textbf{at most 1 successor}

- Reduces \(k \)-colouring to \(O(\log k) \)-colouring in 1 step

- Reduces \(k \)-colouring to 6-colouring if applied repeatedly
 - other techniques: 6-colouring to 3-colouring
Cole-Vishkin iteration

- Each node v in parallel:
 - receive the colour of the successor u
 - compare your colour $c(v)$ to successor’s colour $c(u)$

![Diagram](image)
Cole-Vishkin iteration

• Each node v in parallel:
 • receive the colour of the successor u
 • compare your colour $c(v)$ to successor’s colour $c(u)$ – in binary!
 • find the rightmost bit that differs
Cole-Vishkin iteration

• Each node v in parallel:
 • receive the colour of the successor u
 • compare your colour $c(v)$ to successor’s colour $c(u)$
 • new colour $c'(v)$ is a pair (index, value):
 • which bit differs
 • value of the bit

\[
c(u) = 1010100011_2
\]
\[
c(v) = 100000011_2
\]
\[
c'(v) = (5, 0)
\]
Cole-Vishkin iteration

- Each node v in parallel:
 - receive the colour of the successor u
 - compare your colour $c(v)$ to successor’s colour $c(u)$
 - new colour $c'(v)$ is a pair (index, value)
 - can be encoded in binary or in decimal

\[c(u) = 1010100011_2 \]
\[c(v) = 100000011_2 \]
\[c'(v) = (5, 0) \]
\[= 1010_2 \]
\[= 10 \]
Cole-Vishkin iteration: correctness

• After one iteration, we have much smaller colours values

• But do we still have a proper colouring?
 • yes — it is enough to show that your successor will choose a different colour

\[
\begin{align*}
 c(u) &= 1010100011_2 \\
 c(v) &= 100000011_2 \\
 c'(v) &= (5, 0) \\
 &= 1010_2 \\
 &= 10
\end{align*}
\]
Cole-Vishkin iteration: correctness

- Case 1: successor u chooses the same index
 - then u chooses a different value!
 - u and v have different new colours

$$c(t) = 1010000011_2$$
$$c(u) = 1010100011_2$$
$$c'(u) = (5, 1)$$
$$c'(v) = (5, 0)$$
$$c(v) = 100000011_2$$
$$c'(v) = 1010_2 = 10$$
Cole-Vishkin iteration: correctness

- Case 1: successor u chooses the same index
 - then u chooses a different value!
 - u and v have different new colours
- Case 2: different index
 - trivial: u and v have different new colours

\[
\begin{align*}
c(t) &= 1110100011_2 \\
c(u) &= 1010100011_2 \\
c(v) &= 100000011_2 \\
c'(v) &= (5, 0) \\
&= 1010_2 \\
&= 10
\end{align*}
\]
Cole-Vishkin iteration

- Can be used repeatedly until we have $k = 6$
 - i.e., colours 0, 1, ..., 5
 - then we may be stuck and other techniques are needed

$\begin{align*}
c(u) &= 1 = 001_2 \\
c(v) &= 5 = 101_2 \\
c'(v) &= (2, 1) \\
 &= 101_2 \\
 &= 5
\end{align*}$
Cole-Vishkin iteration

• One special case: what if you don’t have a successor?
 • just proceed as if you had a successor whose colour differs from your colour
 • e.g., pretend that the first bit differs

\[c(v) = 10000001_{12} \]
\[c'(v) = (0, 1) \]
\[= 01_{12} \]
\[= 1 \]
• The algorithm is very fast — exactly how fast?
• Let’s introduce some notation: \(\log^{(i)} x \), \(\log^* x \)
Logarithms

• Here: all logarithms are to base 2
 \[\log x = \log_2 x \]

• Shorthand notation for iterations:
 \[\log^{(0)} x = x \]
 \[\log^{(1)} x = \log x \]
 \[\log^{(2)} x = \log \log x \]
 \[\log^{(i)} x = \log^{(i-1)} \log x = \log \log \ldots \log x \]
 \[i \text{ times} \]
Logarithms: examples

\[
\begin{align*}
\log^{(0)} 1 &= 1 \\
\log^{(1)} 2 &= 1 \\
\log^{(2)} 2^2 &= 1 \\
\log^{(3)} 2^{2^2} &= 1 \\
\log^{(i)} 2^{2^{2^{\cdots^{2}}}} &= 1 \\
\end{align*}
\]

\[
\begin{align*}
\log^{(3)} 15 &\approx 0.96 \\
\log^{(3)} 16 &= 1 \\
\log^{(3)} 17 &\approx 1.02 \\
\log^{(5)} 10^{1000} &\approx 0.87
\end{align*}
\]
Iterated logarithm — \(\log^* \), “log-star”

- \(\log^* x \) = smallest integer \(i \) such that \(\log^{(i)} x \leq 1 \)
- How many times we need to take logarithms until the value is at most 1?

\[
\begin{align*}
\log^* 1 &= 0: & \log^{(0)} 1 &= 1 \\
\log^* 2 &= 1: & \log^{(1)} 2 &= 1, & \log^{(0)} 2 &= 2 \\
\log^* 3 &= 2: & \log^{(2)} 3 &\approx 0.66, & \log^{(1)} 3 &\approx 1.58 \\
\log^* 4 &= 2: & \log^{(2)} 4 &= 1, & \log^{(1)} 4 &= 2 \\
\log^* 5 &= 3: & \log^{(3)} 5 &\approx 0.28, & \log^{(2)} 5 &\approx 1.22
\end{align*}
\]
Iterated logarithm — log*, “log-star”

- \(\log^* x \) = smallest integer \(i \) such that \(\log^{(i)} x \leq 1 \)
- How many times we need to take logarithms until the value is at most 1?

\[
\begin{align*}
\log^* 65535 &= 4: & \log^{(4)} 65535 &< 1.00, & \log^{(3)} 65535 &\approx 2.00 \\
\log^* 65536 &= 4: & \log^{(4)} 65536 &= 1, & \log^{(3)} 65536 &= 2 \\
\log^* 65537 &= 5: & \log^{(5)} 65537 &\approx 0.00, & \log^{(4)} 65537 &> 1.00 \\
\log^* 10^{1000} &= 5: & \log^{(5)} 10^{1000} &\approx 0.87, & \log^{(4)} 10^{1000} &\approx 1.83 \\
\log^* 10^{10000} &= 5: & \log^{(5)} 10^{10000} &\approx 0.98, & \log^{(4)} 10^{10000} &\approx 1.97
\end{align*}
\]
Cole-Vishkin: one iteration

• One iteration of the Cole-Vishkin algorithm reduces the number of colours:

\[k \text{ colours} \rightarrow f(k) = 2\lceil \log k \rceil \text{ colours} \]

• **Proof:** There are \(f(k) \) possible (index, value) pairs

 • \(\log k \) (rounded up) possible “indexes”
 • 2 possible “values”
Cole-Vishkin: one iteration

• One iteration of the Cole-Vishkin algorithm reduces the number of colours:

\[k \text{ colours} \rightarrow f(k) = 2^{\lceil \log k \rceil} \text{ colours} \]

• **Example:** \(k = 100, \log k \approx 6.6, f(k) = 2 \times 7 = 14 \)

 • \(k \) colours 0, 1, ..., 99 can be encoded in 7 bits, therefore “index” is in \(\{0, 1, \ldots, 6\} \)

 • “value” is in \(\{0, 1\} \)
Cole-Vishkin: repeated iterations

- What about repeated iterations?

\[k \text{ colours} \rightarrow f(k) = 2\lfloor \log k \rfloor \text{ colours} \]
\[\rightarrow f(f(k)) = 2\lfloor \log 2\lfloor \log k \rfloor \rfloor \text{ colours} \]
\[\rightarrow f(f(f(k))) = \ldots \]

- Uh-oh, what does that mean in practice?

- **How many iterations until we have 6 colours?**
Cole-Vishkin: repeated iterations

• **Theorem:** Cole-Vishkin reduces the number of colours from k to 6 in at most $\log^* k$ iterations

• **Proof:**

 • Case 1: assume that $\log^* k \leq 2$

 • Then $k \leq 4$ and the claim is trivial: we already have at most 6 colours without any iterations

\[
k \text{ colours} \rightarrow f(k) = 2\lceil \log k \rceil \text{ colours}
\]
Cole-Vishkin: repeated iterations

- **Theorem**: Cole-Vishkin reduces the number of colours from k to 6 in at most $\log^* k$ iterations

- **Proof**:
 - Case 2: assume that $\log^* k = 3$
 - Then $k \leq 16$, $f(k) \leq 8$, $f(f(k)) \leq 6$
 - 2 iterations are enough, the claim holds

$$k \text{ colours} \rightarrow f(k) = 2\lceil \log k \rceil \text{ colours}$$
Cole-Vishkin: repeated iterations

- **Theorem**: Cole-Vishkin reduces the number of colours from k to 6 in at most $\log^* k$ iterations

- **Proof**:
 - Case 3: assume that $m = \log^* k \geq 4$
 - Let’s study the number of colours after 1, 2, …, $m - 3$ iterations…

\[
k \text{ colours} \rightarrow f(k) = 2\lceil \log k \rceil \text{ colours}
\]
Cole-Vishkin: repeated iterations

• Lemma: If \(m = \log^* k \geq 4 \) and \(i \leq m - 3 \), then \(i \) iterations reduce the number of colours from \(k \) to at most \(4 \log^{(i)} k \)

• Proof: by induction

 • Basis \(i = 0 \): Trivial, \(4 \log^{(0)} k = 4k \geq k \)

 • Inductive step: Assume that after \(i \leq m - 4 \) iterations we have at most \(4 \log^{(i)} k \) colours. Let’s show that after \(i + 1 \) iterations we have at most \(4 \log^{(i+1)} k \) colours...

 \[
 k \text{ colours } \rightarrow f(k) = 2\lfloor \log k \rfloor \text{ colours}
 \]
Cole-Vishkin: repeated iterations

- **Lemma:** If $m = \log^* k \geq 4$ and $i \leq m - 3$, then i iterations reduce the number of colours from k to at most $4 \log^{(i)} k$

 - after $i \leq m - 4$ iterations at most $4 \log^{(i)} k$ colours
 - after $i + 1$ iterations at most $f(4 \log^{(i)} k)$
 \[
 \leq 2(1 + \log(4 \log^{(i)} k)) \\
 \leq 2 + 2 \log 4 + 2 \log \log^{(i)} k \\
 < 2 \times 4 + 2 \log^{(i+1)} k \\
 < 4 \log^{(i+1)} k
 \]
 colours

 \[k \text{ colours} \rightarrow f(k) = 2[\log k] \text{ colours}\]
Cole-Vishkin: repeated iterations

- **Lemma**: If \(m = \log^* k \geq 4 \) and \(i \leq m - 3 \), then \(i \) iterations reduce the number of colours from \(k \) to at most \(4 \log^{(i)} k \)

- **Corollary**: After \(m - 3 \) iterations we have at most \(4 \log^{(m-3)} k \leq 4 \times 16 = 64 \) colours

- **Corollary**: After \(m \) iterations the number of colours is at most
\[
f(f(f(64))) = f(f(12)) = f(8) = 6
\]

\[
k \text{ colours} \quad \rightarrow \quad f(k) = 2^\lceil \log k \rceil \text{ colours}
\]
Cole-Vishkin: repeated iterations

- **Theorem**: Cole-Vishkin reduces the number of colours from k to 6 in at most $\log^* k$ iterations.

- Coming up next: how to get from 6 to 3 in at most 3 iterations?
DDA 2010, lecture 2c: Linear-time colour reduction

• Simple algorithm: from k-colouring to ($k - 1$)-colouring in one round
 • in paths, cycles, rooted trees, ...
 • slower progress than Cole-Vishkin
 • however, can be used until we have 3 colours
Linear-time colour reduction in pseudoforests

- First “shift” all colours:
 - new colour $c'(v)$ of node $v = \text{old colour } c(u)$ of its successor u
 - root: choose another colour
 - siblings have the same colour!
Linear-time colour reduction in pseudoforests

- First “shift” all colours
- Then each node v with colour $k - 1$ chooses a new colour from $\{0, 1, 2\}$
 - always possible: v’s neighbours have at most 2 different colours
 - shifting was needed to achieve this!
Linear-time colour reduction in pseudoforests

- First “shift” all colours
- Then each node v with colour $k - 1$ chooses a new colour from $\{0, 1, 2\}$
- Largest colour $k - 1$ eliminated
- We can repeat until we have a 3-colouring
Linear-time colour reduction in pseudoforests

- Cole-Vishkin:
 - from k to $O(\log k)$ colours in 1 step, until $k = 6$

- Simple algorithm:
 - from k to $k-1$ colours in 1 step, until $k = 3$

- Combine both:
 - from k to 3 colours in at most $3 + \log^* k$ iterations
 - in directed paths, cycles, trees, pseudoforests
 - what can we do in more general graphs?
DDA 2010, lecture 2d: Colouring in general graphs

- We know how to colour rooted trees, how does this help in general graphs?
- \((\Delta + 1)\)-colouring in \(O(\Delta^2 + \log^* n)\) rounds
 - Panconesi & Rizzi (2001): “Some simple distributed algorithms for sparse networks”
Algorithm for graph colouring

• We will show how to reduce the number of colours from \(k \) to \(\Delta + 1 \) in \(O(\Delta^2 + \log^* k) \) rounds.

• What if we don’t have a \(k \)-colouring but only unique identifiers from \(1, 2, \ldots, \text{poly}(n) \)?
 • if \(k = \text{poly}(n) \), then \(\log^* k = O(\log^* n) \) — see exercises
 • therefore given unique IDs, we can find a \((\Delta + 1) \)-colouring in \(O(\Delta^2 + \log^* n) \) rounds.
Algorithm for graph colouring

- Partition the graph into Δ directed forests
 - orientation: from smaller to larger colour
 - forest $i = $ outgoing edges from port i
Algorithm for graph colouring

• Partition the graph into Δ directed forests
• 3-colour all forests in parallel
 • Cole-Vishkin technique
Algorithm for graph colouring

- Partition the graph into Δ directed forests
- 3-colour all forests in parallel
- Merge forests and colourings one by one
Algorithm for graph colouring

- Partition the graph into Δ directed forests
- 3-colour all forests in parallel
- Merge forests and colourings one by one

Invariant: before & after merger, this graph is properly $($$\Delta+1$$)$-coloured
Algorithm for graph colouring

- Partition the graph into Δ directed forests
- 3-colour all forests in parallel
- Merge forests and colourings one by one

These pairs provide a valid $3(\Delta+1)$-colouring
Algorithm for graph colouring

- Partition the graph into Δ directed forests
- 3-colour all forests in parallel
- Merge forests and colourings one by one

Next we apply a simple linear-time colour reduction from $3(\Delta+1)$ to $\Delta+1$ colours:
- repeatedly eliminate the largest colour

$c = (c', c_1)$
$c' = (c, c_1)$
$c'' = \ldots$
Algorithm for graph colouring

- Partition the graph into Δ directed forests
- 3-colour all forests in parallel
- Merge forests and colourings one by one

Equations:

\[c'' = (c, c') \]
\[c' = (c, c_2) \]

Merge: from $\Delta+1$ to $3(\Delta+1)$
Reduce: back to $\Delta+1$
Algorithm for graph colouring

- Partition the graph into Δ directed forests
- 3-colour all forests in parallel
- Merge forests and colourings one by one

$c' = (c, c_3)$
$c'' = \ldots$

Merge: from $\Delta+1$ to $3(\Delta+1)$
Reduce: back to $\Delta+1$
Algorithm for graph colouring

- Partition the graph into Δ directed forests
- 3-colour all forests in parallel
- Merge forests and colourings one by one
 - After Δ steps, we will have a $(\Delta+1)$-colouring of the original graph
Algorithm for graph colouring

- Partition the graph into Δ directed forests
 - $O(1)$ time
- 3-colour all forests in parallel
 - $O(\log^* k)$ time
- Merge forests and colourings one by one
 - Δ steps, each takes $O(\Delta)$ time:
 - $O(1)$-time merge + $O(\Delta)$-time colour reduction
- Total running time: $O(\Delta^2 + \log^* k)$
Algorithm for graph colouring

• If we have unique identifiers, we can find a \((\Delta+1)\)-colouring in \(O(\Delta^2 + \log^* n)\) rounds
 • powerful symmetry-breaking primitive
 • allows us to find a maximal independent set, maximal matching, etc.
 • more recent algorithms: running time \(O(\Delta + \log^* n)\)

• Could we make it even faster, like \(O(\Delta)\)?
 Or is the \(O(\log^* n)\) part necessary?
 • we can use Ramsey’s theorem to answer this question…