DDA 2010, lecture 7: Local news

• Some recent work in our research group
 • algorithm for vertex covers
 • application of Cole-Vishkin technique in port-numbering model
Research problem

• Goal: finding a 2-approximation of \textit{minimum vertex cover}
 - fast: time independent of n
 - port-numbering model

• From lecture 4:
 - even if we had unique identifiers, it’s not possible to find $(2 - \varepsilon)$-approximation in constant time
 - hence approximation factor 2 is the best possible
DDA 2010, lecture 7a:
Vertex covers and edge packings
Vertex cover in the port-numbering model

• Convenient to study a more general problem: minimum-weight vertex cover

 • More general problems are sometimes easier to solve?

Notation:

\[w(v) = \text{weight of } v \]
Edge packings and vertex covers

- **Edge packing**: weight $y(e) \geq 0$ for each edge e
 - Packing constraint: $y[v] \leq w(v)$ for each node v, where $y[v] =$ total weight of edges incident to v
Edge packings and vertex covers

- **Edge packing**: weight $y(e) \geq 0$ for each edge e
 - Packing constraint: $y[v] \leq w(v)$ for each node v, where $y[v] = \text{total weight of edges incident to } v$

![Graph example](image)
Edge packings and vertex covers

- **Edge packing**: weight $y(e) \geq 0$ for each edge e
- Packing constraint: $y[v] \leq w(v)$ for each node v, where $y[v] =$ total weight of edges incident to v

$y[v] = 3 + 0 + 4 + 0 + 0 + 2 = 9$

$w(v) = 9$
Edge packings and vertex covers

• Node v is **saturated** if $y[v] = w(v)$

 • Total weight of edges incident to v is **equal** to $w(v)$, i.e., the packing constraint holds with equality.

![Graph with nodes and weights]

- $y[v] = w(v)$
- $y[v] < w(v)$
Edge packings and vertex covers

- Edge e is **saturated** if at least one endpoint of e is saturated
 - Equivalently: edge weight $y(e)$ can’t be increased

2 + ε would violate a packing constraint
Edge packings and vertex covers

- **Maximal edge packing**: all edges saturated
 - none of the edge weights $y(e)$ can be increased
 - saturated nodes form a vertex cover!
Edge packings and vertex covers

- **Minimum-weight vertex cover** C^* difficult to find:
 - Centralised setting: NP-hard
 - Distributed setting: integer problem (choose 0 or 1), symmetry-breaking issues

- **Maximal edge packing** y easy to find:
 - Centralised setting: trivial greedy algorithm
 - Distributed setting: linear problem, no symmetry-breaking issues (?)
Edge packings and vertex covers

- Minimum-weight vertex cover C^* difficult to find
- Maximal edge packing y easy to find?
- Saturated nodes $C(y)$ in y: 2-approximation of C^*
 - Textbook proof: LP-duality, relaxed complementary slackness
 - Minimum-weight fractional vertex cover and maximum-weight edge packing are dual problems
 - But there’s a simple and more elementary proof...
Edge packings and vertex covers

\[\sum_{v \in C(y)} w(v) \] \hspace{1cm} \text{Total weight of saturated nodes}

\[= \sum_{v \in C(y)} y[v] \] \hspace{1cm} \text{Saturated nodes have } y[v] = w(v)

\[= \sum_{e \in E} y(e) \mid e \cap C(y) \mid \] \hspace{1cm} \text{Interchange the order of summation}

\[\leq 2 \sum_{e \in E} y(e) \mid e \cap C^* \mid \] \hspace{1cm} \text{Each edge is covered at least \textit{once} by } C^* \text{ and at most \textit{twice} by } C(y)

\[= 2 \sum_{v \in C^*} y[v] \] \hspace{1cm} \text{Interchange the order of summation}

\[\leq 2 \sum_{v \in C^*} w(v) \] \hspace{1cm} \text{All nodes have } y[v] \leq w(v)
Edge packings and vertex covers

\[\sum_{v \in C(y)} w(v) \]

\[= \sum_{v \in C(y)} y[v] \]

\[= \sum_{e \in E} y(e) \mid e \cap C(y) \mid \]

Interchange the order of summation

\[\leq 2 \sum_{e \in E} y(e) \mid e \cap C^* \mid \]

Each edge is covered at least \textit{once} by \(C^* \) and at most \textit{twice} by \(C(y) \)

\[= 2 \sum_{v \in C^*} y[v] \]

Interchange the order of summation

\[\leq 2 \sum_{v \in C^*} w(v) \]

All nodes have \(y[v] \leq w(v) \)
Summary

- **Goal:**
 - Find a 2-approximation of minimum-weight *vertex cover*
 - Deterministic algorithm in the *port-numbering* model

- **Idea:**
 - Find a *maximal edge packing*, take saturated nodes

- **Coming up next:**
 - Begin with a “greedy but safe” algorithm
 - We will see later how the Cole-Vishkin technique helps
DDA 2010, lecture 7b: Finding a maximal edge packing
Finding a maximal edge packing: phase I

- $y[v] = \text{total weight of edges incident to node } v$
- **Residual capacity** of node v: $r(v) = w(v) - y[v]$
- Saturated node: $r(v) = 0$

![Graph diagram with labels and values for $r(v)$ and $w(v)$]
Finding a maximal edge packing: phase I

Start with a trivial edge packing $y(e) = 0$
Finding a maximal edge packing: phase I

Each node v offers $r(v)/\text{deg}(v)$ units to each incident edge.

![Graph diagram]

- $r(v): 9$
- $w(v): 9$
- Offer: 9
Finding a maximal edge packing: basic idea

Each edge accepts the smallest of the 2 offers it received

Increase $y(e)$ by this amount

- Safe, can’t violate packing constraints
Finding a maximal edge packing: phase I

Update residuals...
Finding a maximal edge packing: phase I

Update residuals, discard saturated nodes and edges...
Finding a maximal edge packing: phase I

Update residuals, discard saturated nodes and edges, repeat...

Offers...
Finding a maximal edge packing: phase I

Update residuals, discard saturated nodes and edges, repeat...

Offers...

Increase weights...
Finding a maximal edge packing: phase I

Update residuals, discard saturated nodes and edges, repeat...

Offers...

Increase weights...

Update residuals...
Finding a maximal edge packing: phase I

Update residuals, discard saturated nodes and edges, repeat...

Offers...

Increase weights...

Update residuals and graph, etc.
Finding a maximal edge packing: phase I

This is a simple deterministic distributed algorithm

We are making some progress towards finding a maximal edge packing — but...
Finding a maximal edge packing: phase I

This is a simple deterministic distributed algorithm.

We are making some progress towards finding a maximal edge packing — but this is too slow!
Finding a maximal edge packing: colouring trick

• Offer is a local minimum:
 • Node will be saturated
 • And all edges incident to it will be saturated as well

Residual capacity was 8, will be 0
Finding a maximal edge packing: colouring trick

- Offer is a local minimum:
 - Node will be saturated
- Otherwise there is a neighbour with a different offer:
 - Interpret the offer sequences as “colours”
 - Nodes u and v have different colours: \{u, v\} is multicoloured

\[\begin{align*}
4 & \quad 2 \\
5 & \quad 2 \\
1 & \quad 2 \\
2 & \quad 2 \\
3 & \quad 2
\end{align*}\]
Finding a maximal edge packing: colouring trick

• Some progress guaranteed:
 • On each iteration, for each node, at least one incident edge becomes saturated or multicoloured
 • Such edges are be discarded in phase I: node degrees decrease by at least one on each iteration
 • Hence in Δ iterations all edges are saturated or multicoloured

$\Delta = \text{maximum degree}$
Finding a maximal edge packing: colouring trick

- Phase I: in Δ rounds all edges are saturated or multicoloured
 - Saturated edges are good — we’re trying to construct a maximal edge packing
 - Why are the multicoloured edges useful?
Finding a maximal edge packing: colouring trick

- Phase I: in Δ rounds all edges are **saturated** or **multicoloured**
 - Saturated edges are good — we’re trying to construct a maximal edge packing
 - Why are the multicoloured edges useful?
 - Let’s focus on unsaturated nodes and edges
Finding a maximal edge packing: colouring trick

- Colours are sequences of Δ offers, which are rational numbers.
- Assume that node weights are integers 1, 2, ..., \(W \).
- Let’s analyse the offers more carefully in that case...

\((2, 2/3, 1/6, 1/12)\)

\((2, 2/3, 1/6, 1/24)\)
Finding a maximal edge packing: colouring trick

• Offers are rationals of the form \(q/(\Delta!)^\Delta \)
 • Proof idea: multiply weights by \((\Delta!)^\Delta\)
 • Then \(r(v) \) is a multiple of \((\Delta!)^\Delta\) before iteration 1
 • Offer \(r(v)/\deg(v) \) is a multiple of \((\Delta!)^{\Delta-1}\) on iteration 1
 • \(r(v) \) is a multiple of \((\Delta!)^{\Delta-1}\) after iteration 1
 … (more formally: proof by induction)
• \(r(v) \) is a multiple of \(\Delta! \) before iteration \(\Delta \)
• Offers are integers on iteration \(\Delta \)
Finding a maximal edge packing: colouring trick

• Offers are rationals of the form $q/(\Delta!)^\Delta$
 * Proof idea: if we multiplied weights by $(\Delta!)^\Delta$, then the offers would integers throughout the algorithm
 * Without scaling, we get in the worst case $q/(\Delta!)^\Delta$

• If node weights are integers 1, 2, ..., W, then offers are rationals between 0 and W
 * Offer of v is at most $r(v) \leq w(v) \leq W$

• There are at most $W(\Delta!)^\Delta$ possible offers!
Finding a maximal edge packing: colouring trick

• Colours are sequences of Δ offers, which are rational numbers

• Assume that node weights are integers 1, 2, ..., W

• Then there are at most $W(\Delta!)^\Delta$ possible offers

• And hence only $k = (W(\Delta!)^\Delta)^\Delta$ possible colours
Finding a maximal edge packing: colouring trick

- Only \(k = (W(\Delta!)^\Delta)^\Delta \) possible colours
- Replace “inconvenient” colours (sequences of rationals) with “convenient” colours (integers 1, 2, ..., \(k \))

(2, 2/3, 1/6, 1/12)

1378

(2, 2/3, 1/6, 1/24)

2789
Finding a maximal edge packing: phase II

- We have a proper k-colouring of the unsaturated subgraph
- Orient from lower to higher colour (acyclic directed graph)
Finding a maximal edge packing: phase II

- We have a proper k-colouring of the unsaturated subgraph
- Orient from lower to higher colour (acyclic directed graph)
- Partition in Δ forests
 - Each node assigns its outgoing edges to different forests
Finding a maximal edge packing: phase II

- For each forest in parallel…
Finding a maximal edge packing: phase II

• For each forest in parallel:
 • Use Cole-Vishkin style colour reduction algorithm
 • Given a k-colouring, finds a 3-colouring in time $O(\log^* k)$
Finding a maximal edge packing: phase II

• For each forest and each colour $j = 1, 2, 3$ in sequence:
 • Consider all outgoing edges of colour-j nodes
Finding a maximal edge packing: phase II

• For each forest and each colour \(j = 1, 2, 3\) in sequence:

 • Consider all outgoing edges of colour-\(j\) nodes

 • Node-disjoint stars: easy to saturate all such edges in parallel

 • Two simple cases:
 • saturate centre
 • saturate all leaves
Finding a maximal edge packing: phase II

- This way we can saturate all multicoloured edges:
 - Each edge belongs to one forest, and its tail has colour 1, 2, or 3
 - We simply go through all forests and all colours and therefore saturate everything
Finding a maximal edge packing: algorithm overview

- **Phase I:**
 - All edges become saturated or multicoloured

- **Phase II:**
 - Multicoloured edges are partitioned in Δ forests
 - Forests are 3-coloured
 - 3-coloured forests are saturated
Finding a maximal edge packing: running time analysis

- Total running time:
 - All edges become saturated or multicoloured: $O(\Delta)$
 - Multicoloured forests are 3-coloured: $O(\log^* k)$
 - 3-coloured forests are saturated: $O(\Delta)$

- $O(\Delta + \log^* k) = O(\Delta + \log^* W)$
 - k is huge, but \log^* grows slowly
Finding a maximal edge packing: summary

- Maximal edge packing and 2-approximation of vertex cover in time $O(\Delta + \log^* W)$
 - $W = \text{maximum node weight}$
- Unweighted graphs: running time simply $O(\Delta)$, independent of n
- Everything can be implemented in the port-numbering model
Finding a maximal edge packing: recap

Phase I:

- **Residuals**
 \[r(v) = w(v) - y[v] \]

- **Offer** \(r(v)/\text{deg}(v) \)

- **Accept minimum**, increase weights

- **Progress**: edges become **saturated** or **multicoloured** (different offers)
Finding a maximal edge packing: recap

Phase II:

- Saturated edges are already ok, we focus on multicoloured edges
- Colours are sequences of offers, re-colour with integers 1, 2, ..., k
- Partition in \(\Delta \) forests
- Cole-Vishkin: 3-colouring
 - Use colours to saturate all edges
Finding a maximal edge packing: some intuition

- Regular graph with uniform weights:
 - Symmetry-breaking (e.g., graph colouring) is not possible in the port-numbering model
 - But it is trivial to find a maximal edge packing directly

- “Irregular” graph:
 - We have symmetry-breaking information, which can be used to find a graph colouring, which can be used to find a maximal edge packing

- Handling these two cases turns out to be enough!
Take-home messages

• Non-trivial problems can be solved in very restrictive models of distributed computing

• Generalise!
 • More difficult problems may be easier to solve: vertex cover \rightarrow weighted vertex cover \rightarrow weighted set cover...

• Cole-Vishkin technique is a powerful tool
 • Wide range of applications far beyond the textbook examples of colouring cycles with numerical IDs
 • \log^* of almost everything is something reasonable