DDA 2010, lecture 1: Introduction

- Synchronous deterministic distributed algorithms
- Two models:
 - Port-numbering model
 - Unique identifiers
Some notational conventions

• Graphs:
 • unless otherwise mentioned, graphs are undirected and simple
 • graphs are pairs: $G = (V, E)$, V set of nodes, E set of edges
 • undirected edges are unordered pairs: if there is an edge between $u \in V$ and $v \in V$, we have $\{u, v\} \in E$
 • directed edges are ordered pairs, e.g. $(u, v) \in E$
 • $\deg(v) = $ degree of $v \in V$
Some notational conventions

- Parameters:
 - $n = |V|$, number of nodes
 - Δ is an upper bound on degrees:
 $\deg(v) \leq \Delta$ for all $v \in V$

- These are often used in algorithm analysis
 - e.g., “running time $O(\Delta + \log n)$”

- Sometimes we assume that Δ is a global constant
 - “bounded-degree graphs”, $\Delta = O(1)$
DDA 2010, lecture 1a: Port-numbering model

- Synchronous deterministic distributed algorithms in the port-numbering model
- Limited model, we will study extensions later
Distributed algorithms

- Communication graph G
- Node = computer
 - e.g., Turing machine, finite state machine
- Edge = communication link
 - computers can exchange messages
Distributed algorithms

- All nodes are identical, run the **same algorithm**
- **We** can choose the algorithm
- An **adversary** chooses the structure of G
- Our algorithm must produce a correct output in any graph G
Distributed algorithms

• Usually, computational problems are related to the structure of the communication graph G
 • example: find a maximal independent set for G
 • the same graph is both the input and the system that tries to solve the problem...
Port-numbering model

- A node of degree d can refer to its neighbours by integers 1, 2, ..., d
- Port-numbering chosen by adversary
Synchronous distributed algorithms

1. Each node reads its own **local input**
 - Depends on the problem, for example:
 - node weight
 - weights of incident edges
 - May be empty
Synchronous distributed algorithms

1. Each node reads its own local input
2. Repeat synchronous communication rounds
 ...

![Diagram of a network with nodes and arrows indicating communication rounds.]
Synchronous distributed algorithms

1. Each node reads its own local input

2. Repeat synchronous communication rounds until all nodes have announced their local outputs
 - Solution of the problem
Synchronous distributed algorithms

1. Each node reads its own local input

2. Repeat synchronous communication rounds until all nodes have announced their local outputs

Example: Find a maximal independent set I
Local output of a node v indicates whether $v \in I$
Synchronous distributed algorithms

- Communication round: each node
 1. sends a message to each port
Synchronous distributed algorithms

- Communication round: each node
 1. sends a message to each port
 (message propagation...)
Synchronous distributed algorithms

- Communication round: each node
 1. sends a message to each port
 2. receives a message from each port
Synchronous distributed algorithms

- Communication round: each node
 1. sends a message to each port
 2. receives a message from each port
 3. updates its own state
Synchronous distributed algorithms

- Communication round: each node
 1. sends a message to each port
 2. receives a message from each port
 3. updates its own state
 4. possibly stops and announces its output
Synchronous distributed algorithms

- Communication rounds are repeated until all nodes have stopped and announced their outputs.
- Running time = number of rounds.
- Worst-case analysis.
Synchronous distributed algorithms: networks of state machines

- Equivalently:
 - Node = state machine (not necessarily finite)
 - All nodes update their states simultaneously
Synchronous distributed algorithms: networks of state machines

- Equivalently:
 - Node = state machine (not necessarily finite)
 - All nodes update their states simultaneously

\[
\begin{align*}
a' &= f_2(a, b, 2, c, 1) \\
b' &= f_3(b, d, 1, a, 1, c, 2) \\
c' &= f_2(c, a, 2, b, 3) \\
d' &= f_1(d, b, 1)
\end{align*}
\]

Current state + port number: we can reconstruct the outgoing message
Synchronous distributed algorithms: networks of state machines

- Equivalently:
 - Node = state machine (not necessarily finite)
 - All nodes update their states simultaneously

\[
\begin{align*}
 a' &= f_2(a, b, 2, c, 1) \\
 b' &= f_3(b, d, 1, a, 1, c, 2) \\
 c' &= f_2(c, a, 2, b, 3) \\
 d' &= f_1(d, b, 1)
\end{align*}
\]

Same function

\(f_2 = \) algorithm for degree-2 nodes
Synchronous distributed algorithms: networks of state machines

- Equivalently:
 - Node = state machine (not necessarily finite)
 - All nodes update their states simultaneously
 - Initial state = local input (incl. degree of the node)
 - Final state = local output

\[
\begin{align*}
a' &= f_2(a, b, 2, ...) \\
b' &= f_3(b, d, 1, ...) \\
c' &= f_2(c, a, 2, ...) \\
d' &= f_1(d, b, 1)
\end{align*}
\]
DDA 2010, lecture 1b:
Computability in port-numbering model

- Impossibility of symmetry breaking
- Covering maps and covering graphs: tools for proving more impossibility results
Symmetry can’t be broken

- Input may be symmetric
 - symmetric graph
 - symmetric port numbering
 - identical local inputs
Symmetry can’t be broken

- Same input
- Same algorithm
- Same initial state
Symmetry can’t be broken

- Same current state
- Messages sent to port 1 are identical to each other
- Messages sent to port 2 are identical to each other
Symmetry can’t be broken
Symmetry can’t be broken

- Messages received from port 1 are identical to each other
- Messages received from port 2 are identical to each other
Symmetry can’t be broken

- Same old state
- Same set of received messages
- Same deterministic algorithm
- **Same new state**
Symmetry can’t be broken

- Same new state
- Either none of the nodes stops — or all of them stop and produce identical outputs
- Symmetry can’t be broken!
 - let’s formalise this…
Covering maps

$G = (V, E)$

$H = (V', E')$

Covering map $f: V' \rightarrow V$

- surjection
- preserves neighbourhoods
- preserves port numbering
Covering maps

\[H = (V', E') \]

\[G = (V, E) \]

Covering map \(f: V' \to V \)

- surjection
- preserves neighbourhoods
- preserves port numbering
Covering maps

$G = (V, E)$

$H = (V', E')$

Covering map $f: V' \rightarrow V$

- surjection
- preserves neighbourhoods
- preserves port numbering
Covering maps

\[H = (V', E') \]

Covering map \(f: V' \to V \)

- surjection
- preserves neighbourhoods
- preserves port numbering

\[G = (V, E) \]
Covering maps

\[H = (V', E') \]

\[G = (V, E) \]

Covering map \(f: V' \to V \)

- surjection
- preserves neighbourhoods
- preserves port numbering
Covering maps and covering graphs

\[H = (V', E') \]

\[G = (V, E) \]

\(H \) is a covering graph of \(G \) if there is a covering map \(f: V' \to V \)

\[H = (V', E') \]

\[G = (V, E) \]

\(H \) is a covering graph of \(G \) if there is a covering map \(f: V' \to V \)
Covering maps and covering graphs

- Run the **same algorithm** in G and H
 - $v' \in V'$ and $f(v') \in V$ have the same input for all v'
- Then $v' \in V'$ and $f(v') \in V$:
 - have identical initial states
 - send and receive the same messages
 - have identical state transitions
 - produce **identical local outputs**!

\[G = (V, E) \]
\[H = (V', E') \]
Covering maps and covering graphs

$G = (V, E)$

$H = (V', E')$

Same output
Covering maps and covering graphs

\[G = (V, E) \]

\[H = (V', E') \]

Same output
Covering maps and covering graphs

\[\text{Same output} \]

\[G = (V, E) \]

\[H = (V', E') \]
Covering maps and covering graphs

- Symmetric cycles are a simple special case of covering maps

\[G = (V, E) \]

\[H = (V', E') \]

Same output
Computability in the port-numbering model

- Very limited model
 - in a cycle, we can only find a trivial solution: empty set, all nodes, ...
 - we can’t even break symmetry in a 2-node network!
- What can be solved?
Some problems *can* be solved in the port-numbering model...

- and covering graphs can be used as an algorithm design technique, too!

Example: vertex cover approximation
Symmetry breaking out of thin air: bipartite double covers

- Replace each node by **two virtual nodes**: black and white
 - original nodes simulate virtual nodes
 - each computer runs two programs in parallel: “black program” and “white program”
- Edges: **black-to-white**
Symmetry breaking out of thin air: bipartite double covers

- Virtual graph H is a covering graph of G
- It is a double cover: 2 nodes of H map to each node of G
- It is bipartite
 - and we have already coloured its two parts: black and white!
Symmetry breaking out of thin air: bipartite double covers

2-coloured graph
Symmetry breaking out of thin air: bipartite double covers

Port-numbering inherited
Symmetry breaking out of thin air: bipartite double covers

Port-numbering inherited
Symmetry breaking out of thin air: bipartite double covers

Port-numbering inherited
Symmetry breaking out of thin air: bipartite double covers

- Port-numbered graphs without colouring:
 - not possible to find a maximal matching (consider an even cycle)
- Port-numbered graphs with 2-colouring:
 - very easy to find a maximal matching!
Maximal matching in 2-coloured graphs

- Each white node sends **proposals** to its black neighbours
 - one by one, order by port numbers
Maximal matching in 2-coloured graphs

• Each white node sends proposals to its black neighbours
 • one by one, order by port numbers

• Each black node accepts the first proposal it gets
 • break ties using port numbers
Maximal matching in 2-coloured graphs

- Each white node sends **proposals** to its black neighbours
 - one by one, order by port numbers
 - until its proposal is accepted, or all neighbours have rejected
Maximal matching in 2-coloured graphs

- Each white node sends **proposals** to its black neighbours
 - one by one, order by port numbers
- Each black node **accepts** the first proposal it gets
 - break ties using port numbers
Maximal matching in 2-coloured graphs

- Accepted proposals M: matching
 - white nodes don’t propose after acceptance
 - black nodes don’t accept more than once
 - all nodes incident to at most one edge

$M \subseteq E'$
Maximal matching in 2-coloured graphs

- Accepted proposals M: maximal matching!
 - assume $\{u, v\} \in E \setminus M$
 - u unmatchted
 - then u has sent a proposal to v and v has rejected it
 - therefore v had already received another proposal, v is matched
 - can’t add $\{u, v\}$ to M
Maximal matching in bipartite double cover

\[D \subseteq E \]

At least 1 of 2 virtual edges in \(M \)

\[M \subseteq E' \]

Map back to original graph
Maximal matching in bipartite double cover

\[D \subseteq E \]

At least 1 of 2 virtual edges in \(M \)

\[M \subseteq E' \]

Different possibilities...
Maximal matching in bipartite double cover

\[D \subseteq E \]

\[M \subseteq E' \]

Different possibilities...

\[a \rightarrow c \]
\[a \rightarrow b \]
\[c \rightarrow b \]
\[b \rightarrow d \]
\[d \rightarrow c \]
Maximal matching in bipartite double cover

$$D \subseteq E$$

- However, this is not possible, because M is a matching
 - M induces a subgraph of H with max. degree 1
 - therefore:
 - D induces a subgraph of G with max. degree 2
Maximal matching in bipartite double cover

- And this is not possible, because M is maximal
 - each edge of H is in M or shares at least one endpoint with M
 - endpoints of M form a vertex cover in H
 - endpoints of D form a vertex cover in G!
Finding a vertex cover

- So we will find a set D of edges such that:
 - D induces a subgraph of maximum degree 2
 - D must consist of paths and cycles
 - endpoints of D form a vertex cover C
 - is it a small vertex cover?
Finding a vertex cover

- So we will find a set D of edges such that:
 - D induces a subgraph of maximum degree 2
 - D must consist of paths and cycles
 - endpoints of D form a vertex cover C
 - is it a small vertex cover?

An optimal vertex cover C^* needs to cover these edges, too!

Thus C^* must contain 2 of these 5 nodes.
Finding a vertex cover

- Different cases:
 - Cycle with 3 edges: 3 nodes in C, ≥ 2 in C^*
 - Cycle with 4 edges: 4 nodes in C, ≥ 2 in C^*
 - Cycle with 5 edges: 5 nodes in C, ≥ 3 in C^*
 ...

$|C| \leq 2|C^*|$
Finding a vertex cover

• Different cases:

 • Path with 1 edge: 2 nodes in \(C \), \(\geq 1 \) in \(C^* \)

 • Path with 2 edges: 3 nodes in \(C \), \(\geq 1 \) in \(C^* \)

 • Path with 3 edges: 4 nodes in \(C \), \(\geq 2 \) in \(C^* \)

 • Path with 4 edges: 5 nodes in \(C \), \(\geq 2 \) in \(C^* \)

\[|C| \leq 3 |C^*| \]
Finding a vertex cover

• In each path or cycle:
 • C has at most 3 times as many nodes as C^*

• Summing over all paths and cycles:
 • $|C| \leq 3|C^*|$

• The algorithm finds a 3-approximation of minimum vertex cover!
Finding a vertex cover: summary

- Vertex cover is a graph problem that *can* be solved reasonably well in the **port-numbering model** with a deterministic distributed algorithm
 - And the algorithm was simple and fast: $O(\Delta)$ rounds!
Finding a vertex cover: two very different worlds

- Centralised setting, polynomial-time algorithms:
 - **trivial** to find a *minimal vertex cover*: greedy algorithm
 - it requires more thought to find a good *approximation of minimum vertex cover*

- Distributed setting, port-numbering model:
 - **impossible** to find a *minimal vertex cover*: symmetry breaking issues
 - but we have seen that it is possible to find a good *approximation of minimum vertex cover*
Finding a vertex cover: symmetry breaking

• Vertex cover approximation does not require symmetry breaking
 • Proof: algorithm in the port-numbering model
• However, many interesting problems do…
• Let’s study a stronger model of distributed computing