Definitions. A \(k \)-colouring of a graph \(G = (V, E) \) is a labelling \(f : V \to \{1, 2, \ldots, k\} \) of the nodes such that for each edge \(\{u, v\} \in E \) we have \(f(u) \neq f(v) \). A weak \(k \)-colouring of a graph \(G = (V, E) \) is a labelling \(f : V \to \{1, 2, \ldots, k\} \) of the nodes such that each non-isolated node \(u \) has a neighbour \(v \) with \(f(u) \neq f(v) \). As usual, \(n \) denotes the number of nodes.

Question 1: Covering maps. Prove that the following problem cannot be solved at all with deterministic PN-algorithms:

- Graph family: cycle graphs.
- Local inputs: a weak 2-colouring.
- Local outputs: a 3-colouring.

You can use the following textbook result (without proving it): covering maps preserve local outputs.

Question 2: Local neighbourhoods. Prove that the following problem cannot be solved in time \(o(n) \) with deterministic PN-algorithms:

- Graph family: path graphs with at least 3 nodes.
- Local inputs: nothing.
- Local outputs: a weak 2-colouring.

You can use the following textbook result (without proving it): isomorphic radius-\(T \) neighbourhoods imply identical local outputs for time-\(T \) deterministic algorithms.

Question 3: Randomised algorithms. Here is a randomised PN-algorithm that finds a weak 2-colouring in cycle graphs. Each node maintains a colour \(c \in \{1, 2\} \) and a state \(s \in \{0, 1\} \). Initially \(s \leftarrow 0 \) and \(c \) is chosen uniformly at random from \(\{1, 2\} \). When \(s = 0 \), the node is still running. When \(s = 1 \), the node stops and outputs \(c \). In each round, the algorithm proceeds as follows:

- All nodes (both running and stopped) send the current colour \(c \) to their neighbours.
- If \(s = 0 \) (the node is still running):
 - If the current value of \(c \) is different from the current colour of at least one neighbour, set \(s \leftarrow 1 \) and stop and output \(c \).
 - Otherwise, pick a new colour \(c \) uniformly at random from \(\{1, 2\} \).

(a) Prove that if the algorithm stops, it outputs a weak 2-colouring. (b) Prove that there is a constant \(p > 0 \) such that for any round \(t \), any node that is still running during round \(t \) will stop in round \(t \) with probability at least \(p \).

Question 4: Hardness of colouring. Prove: it is not possible to find a weak 2-colouring of a path graph in time \(O(1) \) with deterministic LOCAL-algorithms.

You can use the following textbook result (without proving it): it is not possible to find a 3-colouring of a cycle graph in time \(O(1) \) with deterministic LOCAL-algorithms.

Alternatively, you can also use Ramsey’s theorem (without proving it).