• **Weeks 1–2:** informal introduction
 • network = path

• **Week 3:** graph theory

• **Weeks 4–7:** models of computing
 • what can be computed (efficiently)?

• **Weeks 8–11:** lower bounds
 • what cannot be computed (efficiently)?

• **Week 12:** recap
Recap: Covering map

• Networks $N = (V, P, p)$ and $N' = (V', P', p')$

• Surjection $\phi: V \rightarrow V'$ that preserves inputs, degrees, connections, port numbers

• Theorem: preserves outputs for any PN-algorithm
Covering map $\varphi: V \to V'$
Week 9

– Local neighbourhoods
Recap: Locality

- State at time T only depends on initial information within distance T
Recap: Locality

- After T communication rounds, node x can only know about other nodes that are within distance T from it.
 - distance = “number of hops”
Recap: Locality

- Typical application:
 - two possible worlds, need to produce *different local outputs*
 - isomorphic local neighbourhoods
 - fast algorithm → *same local output*
Example: Detecting forests

- **Problem:**
 - if G is a forest: all nodes output “yes”
 - otherwise: at least one node outputs “no”
Example:
Detecting forests

![Graphs with nodes labeled 0 and 1](image-url)
Example: DETECTING FORESTS

Problem:

- if G is a forest: all nodes output “yes”
- otherwise: at least one node outputs “no”

Can we solve this in PN model?

How fast we can solve this in LOCAL model?
Example: Detecting forests

- **PN model:**
 - cannot be solved at all if we do not know n
 - can be solved in $O(n)$ rounds if we know n
 - cannot be solved in $o(n)$ rounds, even if we know n
Example: Detecting forests

- **LOCAL model:**
 - can be solved in $O(n)$ rounds even if we do not know n
 - cannot be solved in $o(n)$ rounds even if we know n
Example: Detecting forests

- **LOCAL model:**
 - what is the exact running time if we know n?
 - can we solve it in $n/2 + 2$ rounds?
 - can we solve it in $n/2 - 2$ rounds?
Example: Detecting forests

• LOCAL model:
 • what is the exact running time if we know n?
 • can we solve it in $n/2 + 2$ rounds?
 • can we solve it in $n/2 - 2$ rounds?
 • what if we do not know n?
Summary

• Two powerful lower-bound techniques:
 • covering maps → PN, computability
 • locality → LOCAL, computational complexity

• Sometimes we need to use both techniques together to argue about the PN model
• **Weeks 1–2:** informal introduction
 • network = path

• **Week 3:** graph theory

• **Weeks 4–7:** models of computing
 • what can be computed (efficiently)?

• **Weeks 8–11:** lower bounds
 • what cannot be computed (efficiently)?

• **Week 12:** recap