• **Weeks 1–2:** informal introduction
 • network = path

• **Week 3:** graph theory

• **Weeks 4–7:** models of computing
 • what can be computed (efficiently)?

• **Weeks 8–11:** lower bounds
 • what cannot be computed (efficiently)?

• **Week 12:** recap
Week 12

– Conclusions
Recap:

Distributed algorithms

Algorithms for computer networks
Recap:
Distributed algorithms

Identical computers in an *unknown network*, all running the *same algorithm*
Recap: Distributed algorithms

Initially each computer only aware of its immediate neighbourhood
Recap: Distributed algorithms

Nodes can exchange messages with their neighbours to learn more...
Recap: Distributed algorithms

Finally, each computer has to stop and produce its own local output
Recap: Distributed algorithms

Focus on graph problems:
network topology = input graph
Recap: Distributed algorithms

Focus on graph problems: local outputs = solution (here: graph colouring)
Recap: Distributed algorithms

Typical research question:

“How fast can we solve graph problem X?”

Time = number of communication rounds
What have we learned?

- Dealing with *unknown systems*
- Dealing with *partial information*
- Dealing with *parallelism*
- Applications beyond distributed computing: fault tolerance, online, streaming, multicore…
Learning objectives

• Models
• Algorithms
• Lower bounds
• Graph theory
Objective 1: Models of computing

• **Precisely** what is a “distributed algorithm”

• In each of these models:
 • PN, LOCAL, CONGEST
 • deterministic, randomised
Objective 2: Algorithms

- **Colouring paths**: LOCAL, $O(\log^* n)$
- **Colouring graphs**: LOCAL, $O(\log n)$ w.h.p.
- **Gather everything**: LOCAL, $O(\text{diam}(G))$
- **Bipartite maximal matching**: PN, $O(\Delta)$
- **All-pairs shortest paths**: CONGEST, $O(n)$
Algorithm P3CBit: Fast colour reduction

\[c_0 = 123 = \textbf{01111011}_2 \] (my colour)
\[c_1 = 47 = \textbf{00101111}_2 \] (successor’s colour)
\[i = 2 \] (bits numbered 0, 1, 2, … from right)
\[b = 0 \] (in my colour bit number \(i \) was 0)
\[c = 2 \cdot 2 + 0 = 4 \] (my new colour)

\(k = 8 \), reducing from \(2^8 = 256 \) to \(2 \cdot 8 = 16 \) colours
Algorithm P3CBit:

Fast colour reduction

\[c_0 = 123 = 01111 \]
\[c_1 = 47 = 00101 \]

\(i = 2 \) (bits numbered 0, 1, 2, … from right)

\(b = 0 \) (in my colour bit number \(i \) was 0)

\[c = 2 \cdot 2 + 0 = 4 \] (my new colour)

\(k = 8 \), reducing from \(2^8 = 256 \) to \(2 \cdot 8 = 16 \) colours

Algorithm idea 3

- Colour palette: \(\{1, 2, \ldots, \Delta + 1\} \)
- Active with probability \(1/2 \)
- If active, pick a random free colour
 - not used by any neighbour that has stopped
- Try again if conflicts…

Week 7
Algorithm P3CBit:
Fast colour reduction

c₀ = 123 = 011111
 0 1 1 2
 (my colour)
c₁ = 47 = 001011
 1 1 1 2
 (successor’s colour)
i = 2 (bits numbered 0, 1, 2, … from right)
b = 0 (in my colour bit number i was 0)
c = 2·2 + 0 = 4 (my new colour)
k = 8, reducing from 2^8 = 256 to 2·8 = 16 colours

Algorithm idea 3
• Colour palette: {1, 2, …, Δ + 1}
• Active with probability 1/2
• If active, pick a random free colour
• not used by any neighbour that has stopped
• Try again if conflicts …

Gathering everything
• Given \(E(v, r) \), we can learn \(E(v, r + 1) \) in 1 round
 • send \(E(v, r) \) to all neighbours, take union

Week 5
Algorithm P3CBit:
Fast colour reduction

\[c_0 = 123 = 01111 \]
\[c_1 = 47 = 00101 \]
\[i = 2 \] (bits numbered 0, 1, 2, … from right)
\[b = 0 \] (in my colour bit number \(i \) was 0)
\[c = 2 \cdot 2 + 0 = 4 \] (my new colour)

\[k = 8, \text{ reducing from } 2^8 = 256 \text{ to } 2 \cdot 8 = 16 \text{ colours} \]

Algorithm idea 3
- Colour palette: \(\{1, 2, \ldots, \Delta + 1\} \)
- Active with probability \(1/2 \)
- If active, pick a random free colour (not used by any neighbour that has stopped)
- Try again if conflicts…

Gathering everything
- Given \(E(v, r) \), we can learn \(E(v, r+1) \) in 1 round
 - send \(E(v, r) \) to all neighbours, take union

Algorithm BMM: Maximal matching

- **Blue nodes** send proposals to their orange neighbours one by one
 - using port numbers
- **Orange nodes** accept the first proposal that they get
 - using port numbers to break ties
Algorithm P3CBit:
Fast colour reduction

$c_0 = 123 = 011110_2$
$c_1 = 47 = 0010111_2$

$i = 2$ (bits numbered 0, 1, 2, … from right)
$b = 0$ (in my colour bit number i was 0)
$c = 2 \cdot 2 + 0 = 4$

$k = 8$, reducing from $2^8 = 256$ to $2^4 = 16$ colours

Algorithm idea 3:
• Colour palette: \{1, 2, …, $\Delta + 1$\}
• Active with probability $1/2$
• If active, pick a random free colour not used by any neighbour that has stopped
• Try again if conflicts…

Gathering everything:
• Given $E(v, r)$, we can learn $E(v, r+1)$ in 1 round
 • send $E(v, r)$ to all neighbours, take union

Algorithm BMM:
Maximal matching
• Blue nodes send proposals to their orange neighbours one by one
 • using port numbers
• Orange nodes accept the first proposal that they get
 • using port numbers to break ties

Algorithm APSP

wave
token
Objective 2: Algorithms

- Reductions!
- Graph colouring is a very useful subroutine
Objective 3: Lower bounds

- **Covering maps:** what cannot be solved at all in PN model
- **Local neighbourhoods:** what cannot be solved fast in any model
- **Ramsey’s theorem:** what cannot be solved in $O(1)$ time
Objective 4: Graph theory

- Basic definitions
- Connections between graph problems
 - e.g. maximal matching → small vertex covers
- Ramsey’s theorem
 - at least for $c = 2, k = 2$
What else is studied in distributed computing?

- Fault-tolerance
- Asynchrony
- Shared memory
- Physical models
- Robot navigation
- Nondeterminism
- Complexity measures
- High-performance computing
- Practical aspects of networking …
What next?

• ICS-E4020 Programming Parallel Computers
 • 5th period, 5 credits, intensive course
 • programming modern parallel computers: multicore, GPU, memory hierarchies …
 • hands-on programming exercises
 • main goal: make it as fast as you can!
What next?

• Just ask if you want to do more!
 • master’s thesis topics?
 • summer internships?
 • doctoral studies?
Practicalities

• 2nd mid-term exam: 10 December
 • remember to register on time!

• Course feedback: deadline 17 December
 • 1 extra point in grading
What to expect in the exam?

• See the learning objectives!

• Do not think that you can safely forget what we learned during the 1st period!

• Expect both algorithm design and lower bound proofs
Examples of old exam problems

• Prove: no deterministic PN-algorithm that finds a minimum vertex cover in cycle graphs, given a minimal vertex cover
Examples of old exam problems

• Prove: no deterministic PN-algorithm that finds a 6-colouring in cycle graphs given a maximal independent set
Examples of old exam problems

• **Counting problem**: all nodes output $|V|$

• Prove: no deterministic PN-algorithm for cycle graphs

• Prove: no $o(n)$-time deterministic LOCAL-algorithm for cycle graphs
Examples of old exam problems

• Prove: no deterministic PN-algorithm for maximal matching in arbitrary graphs
Examples of old exam problems

• Prove: no deterministic $o(n)$-time PN-algorithm for weak 2-colouring in paths of length ≥ 3
Examples of old exam problems

• Give an elementary proof that any graph with 6 nodes contains a clique with 3 nodes or an independent set with 3 nodes
• **Weeks 1–2:** informal introduction
 • network = path

• **Week 3:** graph theory

• **Weeks 4–7:** models of computing
 • what can be computed (efficiently)?

• **Weeks 8–11:** lower bounds
 • what cannot be computed (efficiently)?

• **Week 12:** recap