• **Weeks 1–2:** informal introduction
 • network = path

• **Week 3:** graph theory

• **Weeks 4–7:** models of computing
 • what can be computed (efficiently)?

• **Weeks 8–11:** lower bounds
 • what cannot be computed (efficiently)?

• **Week 12:** recap
Week 8

– Covering maps
Covering map

- Networks $N = (V, P, p)$ and $N' = (V', P', p')$

- Surjection $\varphi: V \rightarrow V'$ that preserves inputs, degrees, connections, port numbers

- “Fools” any deterministic PN-algorithm: cannot distinguish between N and N'
Networks N and N'
Covering map $\varphi: V \to V'$
Preserves degrees

N: 1 2 3

φ

N':
Preserves degrees

N: 1 2 3

φ

N': 1 2 3
Preserves connections & port numbers

N:

φ

N':
Preserves connections & port numbers

N:

φ

N':
Preserves connections & port numbers

N:

φ

N':
Theorem: preserves outputs!
Covering map

- φ covering map from N to N',
 A deterministic PN-algorithm

- Run A on N and N'

- Theorem: ν and $\varphi(\nu)$ always in the same state
Covering map

• Theorem: \(\nu \) and \(\varphi(\nu) \) always in the same state

• Proof: by induction
 • before round 1: map \(\varphi \) preserves local states
 • during round 1: map \(\varphi \) preserves messages
 • after round 1: map \(\varphi \) preserves local states
Covering map

• Theorem: \(\nu \) and \(\varphi(\nu) \) always in the same state

• Proof: by induction
 • before round 2: map \(\varphi \) preserves local states
 • during round 2: map \(\varphi \) preserves messages
 • after round 2: map \(\varphi \) preserves local states
Covering map

- **Theorem:** v and $\varphi(v)$ always in the same state
- **Proof:** by induction
 - before round t: map φ preserves local states
 - during round t: map φ preserves messages
 - after round t: map φ preserves local states
Before round t: local states agree
During round t: outgoing messages agree
During round t: incoming messages agree
After round t: local states agree
Covering map

- \(\varphi \) covering map from \(N \) to \(N' \),
 A deterministic PN-algorithm

- Run \(A \) on \(N \) and \(N' \)

- Theorem: \(v \) and \(\varphi(v) \) always in the same state

- Corollary: \(v \) and \(\varphi(v) \) have the same output
Application:
Path graphs

\[G: \quad \circ \quad \cdash \quad \circ \]
Application: Path graphs

\[G: \quad \text{N:} \quad 1 \quad 1 \quad N': \quad 1 \]

Diagram:

- Graph \(G \):
- Node labels: 1, 1
-

- Node labels: 1
- Connections:
 - From 1 to 1
 - From 1 to 1

Diagram:

- Graph \(G \):
- Node labels: 1, 1
- Connections:
 - From 1 to 1

Diagram:

- Graph \(G \):
- Node labels: 1, 1
- Connections:
 - From 1 to 1

Diagram:

- Graph \(G \):
- Node labels: 1, 1
- Connections:
 - From 1 to 1

Diagram:

- Graph \(G \):
- Node labels: 1, 1
- Connections:
 - From 1 to 1
Application: Path graphs

G:

\[
\begin{array}{c}
\text{\includegraphics[width=0.5\textwidth]{path_graph.png}}
\end{array}
\]
Application: Path graphs

G:

N:

N':
Application: Cycle graphs

\[G: \]
Application: Cycle graphs

$G:$

$N:$

$N':$
Application: Cycle graphs

- Cannot break symmetry in cycles

- Deterministic PN algorithms cannot find:
 - vertex colouring, edge colouring
 - maximal independent set, maximal matching
 - 1.99-approximation of minimum vertex cover
...
Covering maps and symmetry

G:

N:

N':
Summary

• Covering map: preserves inputs, degrees, connections, port numbers

• Fools any deterministic PN-algorithm

• Can be used to prove that many problems cannot be solved at all in the PN model
• **Weeks 1–2:** informal introduction
 • network = path

• **Week 3:** graph theory

• **Weeks 4–7:** models of computing
 • what can be computed (efficiently)?

• **Weeks 8–11:** lower bounds
 • what cannot be computed (efficiently)?

• **Week 12:** recap