• **Weeks 1–2:** *informal introduction*
 • network = path

• **Week 3:** *graph theory*

• **Weeks 4–7:** *models of computing*
 • what can be computed (efficiently)?

• **Weeks 8–11:** *lower bounds*
 • what cannot be computed (efficiently)?

• **Week 12:** *recap*
Week 4

– PN model: port numbering
Port-numbering model
Port-numbering model

- Simple and restrictive
 - anonymous nodes, deterministic algorithms

- All other models are extensions of PN model:
 - Chapter 5: add unique identifiers
 - Chapter 6: add bandwidth restrictions
 - Chapter 7: add randomness
Port-numbered network
Port-numbered network
Underlying graph

\[G = (V, E) \]

\[V = \{a, b, c, d\} \]
\[E = \{\{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}\} \]

Port-numbered network

\[N = (V, P, p) \]

\[V = \{a, b, c, d\} \]
\[P = \{(a,1), (a,2), (b,1), (b,2), (b,3), (c,1), (c,2), (d,1)\} \]
\[p(a,1) = (c,1), \ p(a,2) = (b,1), \ ... \]
Underlying graph

\[G = (V, E) \]

\[V = \{a, b, c, d\} \]
\[E = \{\{a,b\}, \{a,c\}, \{b,c\}, \{b,d\}\} \]

Port-numbered network

\[N = (V, P, p) \]

\[V = \{a, b, c, d\} \]
\[P = \{(a,1), (a,2), (b,1), (b,2), (b,3), (c,1), (c,2), (d,1)\} \]
\[p(a,1) = (c,1), \; p(a,2) = (b,1), \; \ldots \]
Underlying graph

\[G = (V, E) \]

\[V = \{a, b, c, d\} \]
\[E = \{\{a,b\}, \{a,c\}, \{b,c\}, \{b,d\}\} \]

Port-numbered network

\[N = (V, P, p) \]

\[V = \{a, b, c, d\} \]
\[P = \{(a,1), (a,2), (b,1), (b,2), (b,3), (c,1), (c,2), (d,1)\} \]
\[p(a,1) = (c,1), \ p(a,2) = (b,1), \ldots \]
Underlying graph

\[G = (V, E) \]

\[V = \{a, b, c, d\} \]
\[E = \{\{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}\} \]

Port-numbered network

\[N = (V, P, p) \]

\[V = \{a, b, c, d\} \]
\[P = \{(a, 1), (a, 2), (b, 1), (b, 2), (b, 3), (c, 1), (c, 2), (d, 1)\} \]
\[p(a, 1) = (c, 1), \ p(a, 2) = (b, 1), \ldots \]
Distributed algorithm in PN model

- Algorithm = state machine
- Input, States, Output, Msg: sets
- init$_d$, send$_d$, receive$_d$: functions for each degree d = 0, 1, 2, …
Distributed algorithm in PN model

- **Input** = set of local inputs
- **States** = set of states
- **Output** = set of stopping states
- **Msg** = set of possible messages
Distributed algorithm in PN model

- init_d: Input \rightarrow States

 how to initialise the state machine

- send_d: States \rightarrow Msg^d

 how to construct outgoing messages

- receive_d: States \times Msg^d \rightarrow States

 how to process incoming messages
Distributed algorithm in PN model

- $\text{init}_d(x) = y$

 local state at time 0 if local input is x

- $\text{send}_d(x) = (m_1, m_2, ..., m_d)$

 what messages to send if local state is x

- $\text{receive}_d(x, m_1, m_2, ..., m_d) = y$

 new state after receiving these messages
Distributed algorithm in PN model

- **Execution** = sequence of state vectors x_0, x_1, x_2, \ldots
 - $x_t(u) =$ state of node u at time t

- $x_0(u) = \text{init}_d(f(u))$
 - $f(u)$ is the local input of u
 - $d =$ degree of u
Distributed algorithm in PN model

- Assume $p(u, i) = (v, j)$
- $m_t(u, i) =$ message received by u from port i
 = message sent by v to port j
 = component j of vector $send_d(x_{t-1}(v))$
- $x_t(u) =$ receive$_d(x_{t-1}(u), m_t(u, 1), \ldots, m_t(u, d))$
Distributed algorithm in PN model

- Current state + send \rightarrow outgoing messages
- Outgoing messages + p \rightarrow incoming messages
- Incoming messages + receive \rightarrow new state
Distributed algorithm in PN model

• For any algorithm A and any network N: execution x_0, x_1, x_2, \ldots of A in N

• **Stops in time** T if $x_T(v) \in \text{Output}$ for all v
 • $x_T(v)$ is the local output of v
“A solves problem X on graph family F”

• Take any graph G from graph family F
• Take any port-numbered network N such that G is the underlying graph of N
• If we run A in N, then A stops and outputs a valid solution of problem X
“A solves problem X on family F in time T”

- Take **any graph** G from graph family F
- Take **any port-numbered network** N
 such that G is the underlying graph of N
- If we run A in N, then A stops **in time** T and
 outputs a valid solution of problem X
“A solves X given Y on family F”

- Take any graph G from graph family F
- Take any port-numbered network N such that G is the underlying graph of N
- If we run A in N with any valid input f then A stops and outputs a valid solution of problem X
Algorithm P3C: 3-colouring paths

- **Local maxima** pick a new colour from \{1,2,3\}
Algorithm P3C: 3-colouring paths

- “Algorithm P3C solves problem X given Y on graph family F in time $O(|V|)$”

- $X = 3$-colouring
- $Y = \text{colouring}$ (with any number of colours)
- $F = \text{path graphs}$
Algorithm P3C: 3-colouring paths

- Input = \{1, 2, \ldots\}
- States = \{1, 2, \ldots\}
- Output = \{1, 2, 3\}
- Msg = \{1, 2, \ldots\}
Algorithm P3C: 3-colouring paths

- init_0(x) = x
- init_1(x) = x
- init_2(x) = x
Algorithm P3C:
3-colouring paths

- $\text{send}_0(x) = ()$
- $\text{send}_1(x) = (x)$
- $\text{send}_2(x) = (x, x)$
Algorithm P3C: 3-colouring paths

- receive_0(x) = 1 if x \notin \text{Output}
- receive_0(x) = x \text{ otherwise}
Algorithm P3C: 3-colouring paths

• \(\text{receive}_1(x, y) = \min(\{1, 2\} \setminus \{y\}) \)
 if \(x \notin \text{Output} \) and \(x > y \)

• \(\text{receive}_1(x, y) = x \) otherwise
Algorithm P3C: 3-colouring paths

- $\text{receive}_2(x, y, z) = \min(\{1, 2, 3\} \setminus \{y, z\})$
 if $x \notin \text{Output}$ and $x > y$ and $x > z$

- $\text{receive}_2(x, y, z) = x$ otherwise
Key question

• What can be solved in PN model without any additional input?
 • no colouring, unique identifiers, etc.
 • no randomness

• Example: 3-approximation of minimum vertex cover
Algorithm VC3: Small vertex covers

- Original graph G: without any colouring
- Virtual graph G': 2-coloured
- Find a maximal matching M' in G'
- Use M' to find a 3-approximation of a minimum vertex cover in G
Construct virtual graph G'
Construct virtual graph G'
Find maximal matching M' in graph G'
Map back to original graph

G'

G
Vertex cover = all nodes incident to M
Vertex cover = all nodes incident to M
Why vertex cover?
Edge not covered
$\rightarrow M'$ not maximal
Why within factor 3 of minimum vertex cover?
Virtual node: incident to at most 1 edge of M'
Original node:
incident to at most 2 edges of M

Virtual node:
incident to at most 1 edge of M'
Original node: incident to at most 2 edges of M

$M =$ paths and/or cycles

OPT has to cover these!
Algorithm outputs

3/2

4/2

5/3

2/1

3/1

4/2

Optimum
Approximation ratio

Sum over all cycles & paths of M

<table>
<thead>
<tr>
<th>Cycles</th>
<th>Paths</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 2·OPT</td>
<td>≤ 3·OPT</td>
</tr>
<tr>
<td>$\frac{3}{2}$</td>
<td>$\frac{2}{1}$</td>
</tr>
<tr>
<td>$\frac{4}{2}$</td>
<td>$\frac{3}{1}$</td>
</tr>
<tr>
<td>$\frac{5}{3}$</td>
<td>$\frac{4}{2}$</td>
</tr>
</tbody>
</table>

Optimum
Algorithm VC3: Small vertex covers

- We can find 3-approximation of a minimum vertex cover in any graph
- ... assuming that we can find a maximal matching in 2-coloured graphs!
- Easy to solve: algorithm BMM
Algorithm BMM: Maximal matching

- **Blue nodes** send proposals to their orange neighbours one by one
 - using port numbers

- **Orange nodes** accept the first proposal that they get
 - using port numbers to break ties
Algorithm BMM: Maximal matching

- Input: 2-coloured graph
Algorithm BMM: Maximal matching

- Unmatched blue nodes send proposals to port 1
Algorithm BMM: Maximal matching

- Orange nodes accept the first proposal that they get (giving priority to small ports)
Algorithm BMM: Maximal matching

- Unmatched blue nodes send proposals to port 2
Algorithm BMM: Maximal matching

- Orange nodes accept the first proposal that they get (giving priority to small ports)
Algorithm BMM: Maximal matching

- Continue until all blue nodes matched or rejected
Algorithm BMM: Maximal matching

- All nodes get ≤ 1 partners \rightarrow matching
Algorithm BMM: Maximal matching

- Maximality: blue node unmatched only if all orange neighbours reject (= already matched)
Algorithm BMM: Maximal matching

- Maximality: orange node unmatched only if no proposals (= blue neighbours are matched)
Summary

- **Algorithm BMM**: maximal matching in 2-coloured graphs

- **Algorithm VC3**: 3-approximation of minimum vertex covering in any graph

- **VC3 uses BMM as a subroutine**: virtual 2-coloured graph
Summary

• There are non-trivial problems that can be solved in the PN model
 • without unique identifiers, colouring, etc.

• However, algorithm design much easier if we assume unique IDs
 • our topic next week
• **Weeks 1–2:** informal introduction
 • network = path

• **Week 3:** graph theory

• **Weeks 4–7:** models of computing
 • what can be computed (efficiently)?

• **Weeks 8–11:** lower bounds
 • what cannot be computed (efficiently)?

• **Week 12:** recap