• **Weeks 1–2:** informal introduction
 • network = path

• **Week 3:** graph theory

• **Weeks 4–7:** models of computing
 • what can be computed (efficiently)?

• **Weeks 8–11:** lower bounds
 • what cannot be computed (efficiently)?

• **Week 12:** recap
Week 11

– Applications of Ramsey’s theorem
Ramsey’s theorem

• For all c, k, n there are numbers $R_c(n; k)$ s.t.: if we have $N \geq R_c(n; k)$ elements and we label each k-subset with one of c colours, there is a monochromatic subset of size n.
\(R_c(n; 1) \)\
\(R_c(n; 1) \leq c \cdot (n-1)+1 \)

\(R_c(n; 2) \)\
\(R_c(n; 2) \leq \tilde{R}_c(M; 2) \)

\(R_c(n; 3) \)\
\(R_c(n; 3) \leq \tilde{R}_c(M; 3) \)

\(\tilde{R}_c(n; 2) \)\
\(\tilde{R}_c(2; 2) = 2 \)

\(\tilde{R}_c(n; 2) \leq 1 + R_c(M; 1) \)

\(\tilde{R}_c(n; 3) \)\
\(\tilde{R}_c(3; 3) = 3 \)

\(\tilde{R}_c(n; 3) \leq 1 + R_c(M; 2) \)

\(M = \tilde{R}_c(2; 2) \)

\(M = \tilde{R}_c(3; 2) \leq 1 + R_c(M; 1) \)

\(M = \tilde{R}_c(3; 3) \)

\(M = \tilde{R}_c(4; 3) \leq 1 + R_c(M; 2) \)

\(\ldots \)
Applications of Ramsey’s theorem

- Application for $k = 2$, $c = 2$: any graph with N nodes contains an independent set or a clique of size n
Applications of Ramsey’s theorem

• Application: negative results for the LOCAL model

• For any constant-time algorithm A, we can construct a bad input G such that there is a large region of nodes with the same output
Applications of Ramsey’s theorem

• For any constant-time algorithm \(A \), we can construct a bad input \(G \) such that there is a large region of nodes with the same output
 • some technical assumptions, see exercises for details…
Applications of Ramsey’s theorem

- For any constant-time algorithm A, we can construct a bad input G such that there is a large region of nodes with the same output
 - no constant-time algorithms for vertex colouring, edge colouring, maximal independent sets, ...
Applications of Ramsey’s theorem

- We already know all (?) this from week 2
- However, Ramsey’s theorem has further applications!
Applications of Ramsey’s theorem

• For any constant-time algorithm A, we can construct a bad input G such that there are lots of regions of nodes with the same output

 • no constant-time algorithms for large independent sets, large matchings, ...
Applications of Ramsey’s theorem

- Generalisations in exercises...

- We will now just prove a simple special case: vertex colouring not possible in the LOCAL model with constant-time algorithms
Vertex colouring and Ramsey’s theorem

• **Assume:** algorithm A runs in time $T = O(1)$ and outputs values 1, 2, 3

• **Claim:** there is a cycle G with unique identifiers such that A does not find a vertex colouring
Vertex colouring and Ramsey’s theorem

• Assume: algorithm A runs in time $T = O(1)$ and outputs values 1, 2, 3

• Let: $n = 2T + 2$, $k = 2T + 1$, $c = 3$, $N = R_c(n; k)$

• Use A to label k-subsets of $\{1, 2, \ldots, N\}$

• Monochromatic subset \rightarrow bad output
Applications of Ramsey’s theorem

- $O(1)$-time algorithms cannot do much
 - even if we have unique identifiers

- $O(\log^* n)$-time algorithms much more powerful:
 - can find colourings, break symmetry, find large independent sets, …
• **Weeks 1–2:** informal introduction
 • network = path

• **Week 3:** graph theory

• **Weeks 4–7:** models of computing
 • what can be computed (efficiently)?

• **Weeks 8–11:** lower bounds
 • what cannot be computed (efficiently)?

• **Week 12:** recap