Distributed Algorithms

Algorithms for computer networks
Distributed Algorithms

Identical computers in an unknown network, all running the same algorithm
Distributed Algorithms

Initially each computer only aware of its immediate neighbourhood
Distributed Algorithms

Nodes can exchange messages with their neighbours to learn more…
Distributed Algorithms

Finally, each computer has to stop and produce its own local output
Distributed Algorithms

Focus on graph problems:
network topology = input graph
Distributed Algorithms

Focus on graph problems:
local outputs = solution (here: graph colouring)
Distributed Algorithms

Typical research question:

“How fast can we solve graph problem X?”

Time = number of communication rounds
• **Weeks 1–2**: informal introduction
 • network = path

• **Week 3**: graph theory

• **Weeks 4–7**: models of computing
 • what can be computed (efficiently)?

• **Weeks 8–11**: lower bounds
 • what cannot be computed (efficiently)?

• **Week 12**: recap
Week 1

– Warm-up: positive results
Running example: 3-colouring a path

Given a path:

```
[Image: 3-colouring a path given a path]
```

Output a proper 3-colouring, e.g.:

```
[Image: 3-colouring a path output examples]
```
Model of computing: Send, receive, update

- All nodes in parallel:
 - send messages to their neighbours
 - receive messages from neighbours
 - update their state

- Stopping state = final output
 - can send/receive, but not update any more
Challenge: Symmetry breaking

- Identical nodes, everything deterministic and synchronised: cannot break symmetry

\[a \rightarrow a \quad \text{same initial state} \]
\[b \leftarrow b \quad \text{same messages sent} \]
\[b \leftarrow b \quad \text{same messages received} \]
\[b \rightarrow b \quad \text{same new state} \]
\[1 \rightarrow 1 \quad \text{same output} \]
Challenge: Symmetry breaking

• Identical nodes, everything deterministic and synchronised: cannot break symmetry

• Solutions:
 • assume unique identifiers
 • use randomised algorithms
Algorithm P3C:

Using unique IDs

• Unique IDs = proper colouring with large number of colours

• Goal: reduce the number of colours
Algorithm P3C: Using unique IDs

- **Idea:** local maxima pick a new colour
Algorithm P3C: Using unique IDs

- Idea: **local maxima** pick a new colour
Algorithm P3C: Using unique IDs

- Idea: **local maxima** pick a new colour
Algorithm P3C: Using unique IDs

- Idea: local maxima pick a new colour

![Diagram](attachment:diagram.png)
Algorithm P3C: Using unique IDs

- Idea: local maxima pick a new colour
Algorithm P3C: Using unique IDs

• Inform neighbours of your current colour

• If your colour > colours of your neighbours:
 • pick a free colour from \{1, 2, 3\} that is not used by any neighbour

• Stopping states = \{1, 2, 3\}
Performance

• P3C: worst case $O(n)$

• We can do better!
Algorithm P3C Rand: Using randomness

- Initialise: state = unhappy, colour = 1

- While state = unhappy:
 - pick a new random colour from \{1, 2, 3\}
 - compare colours with neighbours
 - if different, set state = happy
Performance

- P3C: worst case $O(n)$
- P3CRand: $O(\log n)$ with high probability
- We can do better!
 - and we do not even need randomness
Algorithm P3CBit: Fast colour reduction

- Unique IDs = proper colouring with large number of colours
- Idea: reduce the number of colours from 2^k to $2k$ in one step
Algorithm P3CBit: Fast colour reduction

• Unique IDs = proper colouring with large number of colours

• Idea: reduce the number of colours from 2^k to $2k$ in one step

• Note: we will assume a directed path! (general case left as an exercise)
Algorithm P3CBit: Fast colour reduction

- Example: 128-bit unique IDs
 - $2^{128} \rightarrow 2 \cdot 128 = 2^8$ colours
 - $2^8 \rightarrow 2 \cdot 8 = 2^4$ colours
 - $2^4 \rightarrow 2 \cdot 4 = 2^3$ colours
 - $2^4 \rightarrow 2 \cdot 3 = 6$ colours

- From 2^{128} to 6 colours in 4 steps! How?
Algorithm P3CBit: Fast colour reduction

\(c_0 = \text{my current colour as a } k\text{-bit string}\)
\(c_1 = \text{successor’s colour as a } k\text{-bit string}\)
\(i = \text{index of a bit that differs between } c_0 \text{ and } c_1\)
\(b = \text{value of bit } i \text{ in } c_0\)

\(c = 2i + b = \text{my new colour}\)

\(i \in \{0, \ldots, k - 1\}, \quad b \in \{0, 1\}, \quad c \in \{0, \ldots, 2k - 1\}\)
Algorithm P3CBit: Fast colour reduction

$c_0 = 123 = 01111011_2$ (my colour)
$c_1 = 47 = 00101111_2$ (successor’s colour)
$i = 2$ (bits numbered 0, 1, 2, … from right)
$b = 0$ (in my colour bit number i was 0)

$c = 2 \cdot 2 + 0 = 4$ (my new colour)

$k = 8$, reducing from $2^8 = 256$ to $2 \cdot 8 = 16$ colours
Algorithm P3CBit: Fast colour reduction

$c_0 = 123 = 01111011_2$ (my colour)
$c_1 = 47 = 00101111_2$ (successor’s colour)

Successor will pick one of these colours: 14+0, 12+0, 10+1, 8+0, 6+1, 4+1, 2+1, 0+1

None of these conflict with my choice: 4+0
Algorithm P3CBit: Fast colour reduction

\[i = \text{index of a bit that differs between } c_0 \text{ and } c_1 \]
\[b = \text{value of bit } i \text{ in } c_0 \]
\[c = 2i + b = \text{my new colour} \]

Successor picks different \(i \rightarrow \text{different } c \)
Successor picks same \(i \rightarrow \text{different } b \rightarrow \text{different } c \)

My new colour \(\neq \) my successor’s new colour
Algorithm P3CBit: Fast colour reduction

$c_0 =$ my current colour as a k-bit string
$c_1 =$ successor’s colour as a k-bit string
$i =$ index of a bit that differs between c_0 and c_1
$b =$ value of bit i in c_0

c = 2i + b = my new colour

$i \in \{0, \ldots, k - 1\}, \quad b \in \{0, 1\}, \quad c \in \{0, \ldots, 2k - 1\}$
Performance

- P3C: worst case $O(n)$
 - assuming unique IDs
- P3CRand: $O(\log n)$ with high probability
- P3CBit: $O(\log^* n)$
 - assuming unique IDs are polynomial in n
Performance

- **P3CBit:** $O(\log^* n)$
 - assuming unique IDs are polynomial in n

- **Next week:** *this is optimal!*
 - no deterministic distributed algorithm can 3-colour a path in time $o(\log^* n)$