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Chapter 1

Introduction

Living plants are capable of taking up substances from the environment and us-

ing them for the synthesis of their cellular components. These nutrients play an

important role in the physiological and biochemical processes of forest ecosys-

tems. Owing to the relations between the environment and the foliar mineral

composition, chemical foliar analysis is a useful diagnostic and monitoring tool

in forestry and environmental studies [1].

In this study, different data analysis methods including spatial statistics, clus-

tering of the self-organizing map and time series analysis with the hidden Markov

model are used to analyze the relations between environmental changes and min-

eral composition of tree foliage. The spatial and temporal distributions of dif-

ferent nutrients are studied in order to find the possible structures in the data.

Measurements from pine and spruce forests in Finland and Austria between 1987

and 2000 are used as the data sets for the methods.

It is found that clustering of the self-organizing map is a useful tool in forest

nutrition analysis. The clustering method is able to represent the structure of

the relations of nutrient concentrations in a new informative way. The methods

of spatial statistics are able to enlighten the geographical structure of the data.

The interpretation of the results of the hidden Markov model does not provide

much insight into the temporal relations of the data.

The structure of the thesis is as follows. The nutrient data used in the exper-

iments is described in Chapter 2. The data analysis methods: spatial statistics,

clustering and time series modeling are introduced in Chapter 3. The results of
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the different methods with discussion are explained in Chapter 4. Some results

in table format are in Appendix A. Summary and conclusions of the methods

and results are in Chapter 5.
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Chapter 2

Foliar nutrient concentration data

and weather measurements

The data used in the experiments consisted of two parts: one data set from

Finland and one from Austria. The measurements were made from needle samples

collected from the conifer trees in forests of Finland and Austria. The measured

variables were different nutrient concentrations and the weight of the needles.

The measurements and analyses of the data described in this chapter were mostly

carried out by the personnel of the Finnish Forest Research Institute.

Every year between October and November, the same personnel collected the

needle samples from the trees on the stands. In each stand, a few trees were

selected and current (C) and previous (C+1) years’ twigs were pruned from the

top third of the crown. Twigs with the same needle-year class were treated as

a separate sample. The needles were dried and the needle mass (NM) of 1000

needles was weighted. To determine the foliar element concentrations, the dried

needles were ground. For each stand, the elemental composition was determined

from the needle powder using various chemical analysis methods [1].

2.1 Finland

In the data from Finland, there were 12 concentration measurements (see Ta-

ble 2.1). In addition, the needle mass was reported as the weight of 1000 needles

(g/1000). The measurements were made in 36 measurement stands scattered
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around Finland in the years 1987–2000. There was, however, some missing data:

altogether 29% of the measurements from C needles were missing (Table 2.1). In

16 stands, the main tree species was Norway spruce (Picea abies) and in the rest

Scots pine (Pinus sylvestris).

The quality of the measurements was analyzed in inter-laboratory tests. It was

found that the relative quality of the laboratories was good. The relative standard

deviation (rsd), based on repeated measurements of 11 different reference samples

ranged in the sampling period 1987–2000 for N between 0.7–1.8%, for S 1.5–5.1%

and for P 1.5–4.1% [1].

In addition to the concentrations and needle mass, the geographical positions

of the stands were known and there were some weather measurements available.

There were numerous weather stations from which measurements were available.

For each station, the average temperature of January, July and the whole year

as well as the precipitation sum of the year were known. In addition to these,

the normality of temperature and precipitation of the year in each station were

calculated. The weather data of the nearest weather station was used for the

measurement stands.

For each weather station i, the average temperature and precipitation value O

were available on a monthly base (m = 1, . . . , 12) for the years t = 1970, . . . , 2000.

The average monthly observation (temperature or precipitation) for station i in

year t for month m can be written as Oi,t,m. The observations were normally dis-

tributed for all stations and all months. This was confirmed with the Kolmogorov-

Smirnov test. The long-term (1970–2000) average µ(Oi,m) and standard deviation

σ(Oi,m) were known for all stations and months. The probability P (Oi,t,m) was

calculated that a normally distributed random variable with mean and standard

deviation equal to µ(Oi,m) and σ(Oi,m) will get a value less than the observation

Oi,t,m.

P (Oi,t,m) = P (Oi,t,m > x |X ∼ N (µ (Oi,m) , σ (Oi,m))) (2.1)

The variables describing the annual temperature and precipitation were calcu-

lated by averaging these monthly probabilities:

Pi,t(O) =
1

12

[

P (Oi,t−1,12) +

11
∑

m=1

P (Oi,t,m)

]

(2.2)
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Table 2.1: The number of missing values of the measured variables in both C and

C+1 needles from Finland and Austria. An “X” means that the measurement was

not made at all.
Finland Austria

Measurement C C+1 C C+1

Nitrogen N (mg/g) 137 137 11 629

Sulfur S (mg/g) 137 137 11 71

Phosphorus P (mg/g) 137 137 11 629

Calcium Ca (mg/g) 137 137 11 629

Magnesium Mg (mg/g) 137 137 221 629

Potassium K (mg/g) 137 137 11 629

Zinc Zn (µg/g) 137 137 221 629

Manganese Mn (µg/g) 137 137 11 629

Iron Fe (µg/g) 139 137 221 629

Copper Cu (µg/g) 138 141 X X

Aluminum Al (µg/g) 137 137 X X

Boron B (µg/g) 162 163 X X

Needle mass NM (g/1000) 216 216 653 776

Temperature 0 X

Precipitation 0 X

Altitude (m) X 0

2.2 Austria

There were needle mass and 9 concentration measurements available from Austria

(Table 2.1). The number of measurement stands was 71, and the measurements

were made for 11 years: 1989–1999. In total, 18% of the measurements from C

needles were missing. The amount of missing data from the C+1 needles was

higher (Table 2.1). The geographical positions and the altitudes of the stands

were known. There was no weather data available from Austria. In 66 stands the

main tree species was Norway spruce and in five stands Scots pine.

The quality of the measurements was analyzed between 1995–1999 with re-

peated measurements of 18 different reference samples. The relative standard
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deviation ranged between 1.1–4.2% for N, 1.0–3.2% for S and 1.5–4.1% for P.

The relative quality, compared with other laboratories was thus good. As a con-

sequence, the measurement methods can contribute only a minor part of the total

spatial and temporal variation of the data [1].
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Chapter 3

Analysis and modeling of the data

The mineral composition of the forest nutrition data was analyzed with three

different types of data analysis methods: spatial statistics, clustering and time

series modeling.

The spatial distribution of the measurement values was analyzed with spatial

statistics methods. Interpolation of the nutrient concentration values was used

to get an overview of the distribution of the data. In addition, semivariograms of

the measurement values were computed to further analyze the spatial correlations

between in the data.

A clustering algorithm was used to divide the measurements of different stands

in different years into clusters such that similar measurements belong to the same

cluster. The clusters and their meaningfulness was studied and a temporal model

was constructed that describes the switching of the stands between different clus-

ters.

A time series model was trained for the measurements in order to better

understand the possible changes in the tree stands in different years. The model

assumes that each year, a stand belongs to one of a few discrete states. Each

state describes different growing conditions. By analyzing the state sequences,

information concerning the development of the forests can be obtained.
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Figure 3.1: The semivariance is calculated as the average squared difference be-

tween all the data pairs at a given lag distance interval h from each other. The

black dots between the two solid circles are the stands whose measurement values

are compared to the stand uα in the center of the circles.

3.1 Spatial statistics

Spatial statistics is statistical study of spatial patterns and processes. Spatial

(point) patterns are simply patterns formed by some points, for example mea-

surement stands, on the map. In this work, we are more interested in finding out

how the nutrients are distributed. That way we could gain some insight on the

spatial processes affecting the nutrition status of the forests. Different methods

and models have been discussed in the literature for example in [2, 3, 4, 5].

3.1.1 Semivariogram

The experimental semivariogram γ(h) measures the average dissimilarity between

data separated by a lag distance h. It is computed as half the average squared
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difference between the components of every data pair [6]:

γ(h) =
1

2N(h)

N(h)
∑

α=1

[x(uα) − x(uα + h)]2, (3.1)

where x(uα) is the measurement value at location uα and N(h) is the number of

data pairs at a distance h from each other (see Figure 3.1). The semivariogram

value at a given lag h is called the semivariance. The semivariogram is a measure

of spatial variability over the full range of attribute values. Due to limited number

of measurements, the distances at which the semivariance is calculated for the

semivariogram are usually of form:

h =

(

n−
1

2

)

z, n ∈ N, z > 0, (3.2)

where z defines the width of the lag intervals and consequently the resolution of

the semivariogram. Thus, instead of a single lag distance h, we actually use a

lag distance interval h ± z
2
. When choosing the suitable value for z, one has to

compromise between the resolution and noise of the semivariogram.

Indicator semivariogram can be used to characterize the spatial distribution of

an indicator function i(uα) that is defined to get the value 1, if a certain condition

holds and 0 otherwise. In case of classified data, the indicator function is defined

as follows:

i(uα, C) =

{

1 if uα ∈ C

0 otherwise
(3.3)

The indicator functions simply tells if stand uα belongs to class C. Now, the

indicator semivariogram is computed as

γI(h, C) =
1

2N(h)

N(h)
∑

α=1

[i(uα, C) − i(uα + h, C)]2. (3.4)

The indicator variogram value 2γI(h, C) measures how often exactly one of two

stands separated by lag h belongs to class C [6]. In other words, 2γI(h, C)

estimates the correlation between belonging to class C and not belonging to it as

a function of h.
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3.2 Clustering using the self-organizing map

Clustering algorithms can be divided into two main categories: partitive and

hierarchical algorithms [7]. Partitive algorithms divide the data set into non-

overlapping partitions whereas hierarchical algorithms construct a hierarchy tree

of the clusters. The structure of the hierarchy is such that all the data belongs

to the top level (root) cluster and at the bottom level, each data vector forms a

separate cluster.

Many kinds of clustering algorithms have been developed for different prob-

lems. Recently, new algorithms have emerged, for example, for biotechnology

[8, 9], very large databases [10] and probabilistic models [11].

A clustering algorithm based on the self-organizing map (SOM) [12, 13] was

chosen for this problem because of its good visualization properties. The SOM

preserves neighborhood relations and presents high-dimensional datasets on a 2-

dimensional grid and is therefore an important tool in data mining with its main

applications in visualization and clustering. In forest research, the self-organizing

map has been used for example in tree mortality prediction [14].

3.2.1 The self-organizing map

The self-organizing map consists of a low-dimensional (usually 2-D) regular grid

of map units that are connected to adjacent ones by a neighborhood relation [15].

The grid can be effectively used to visualize and explore properties of the data

[16]. Each map unit i is represented by a prototype vector, mi = [mi1, . . . , mid]
T ,

where d is the dimension of the input vectors x. The training of the map consists

of the following phases:

1. Initialization. The initial values of the prototype vectors mi are chosen

either completely randomly, selecting input vectors x randomly as proto-

type vectors or initializing the prototype vectors linearly along the greatest

eigenvectors of the data.

2. Sampling. Select an input vector x with a given probability.

10



3. Similarity testing. Find the winning unit i(x) with the smallest distance:

i(x) = arg min
j

‖x − mj‖, j = 1, . . . , l (3.5)

4. Updating. The prototype vectors are adjusted using the following equation:

mj(t+ 1) = mj(t) + η(t)hj,i(x)(t)(x − mj(t)) (3.6)

where η(t) is a parameter of learning rate and hj,i(x)(t) is a neighborhood

function surrounding the winning unit i(x). Both parameters decrease

monotonically during the training. The update rule moves the prototype

vectors of the winning unit and its neighbors towards the input vector.

5. Return to phase 2 if there are any significant changes in the map.

The neighborhood function must be symmetrical around its maximum on the

winning unit. To ensure convergence, it has to decrease monotonically to zero

as the distance from the map unit increases. A commonly used function is the

Gaussian neighborhood function.

hj,i(x) = e−
d2ji

2σ2 , (3.7)

where dji is the Euclidean distance from the winning unit on the map grid. The

width of the neighborhood function should decrease during training. Usually,

parameter σ decreases linearly to 1. The learning parameter η is a decreasing

function. An exponentially decreasing function is usually used.

η(t) = η0e
− t
τ , t = 0, 1, 2, . . . , (3.8)

where τ is a time constant.

The training of the map is done in two phases. In the rough training phase, the

prototype vectors are topologically ordered. The neighborhood function should

be rather wide in the beginning of the training and get slowly narrower. In the fine

tuning phase, the prototype vectors are slightly adjusted to find a more accurate

representation of the input space. The width of the neighborhood function is

small.

11



After the training, the prototype vectors define a tessellation of the input

space into a set of Voronoi sets

Vi = {x | ‖x − mi‖ < ‖x −mj‖ ∀j 6= i}, (3.9)

where x are the data vectors and ‖ · ‖ is the Euclidean norm. In effect, each data

vector belongs to the Voronoi set of the prototype to which it is closest. The map

unit with the closest prototype vector is called the best matching unit (BMU).

In other words, SOM quantizes the training data set with a representative set of

prototype vectors. The quantization process is regularized by the neighborhood

relation such that topology of the data set is preserved. Thus, the algorithm can

be thought as a kind of nonlinear regression. Without the neighborhood relation,

the SOM algorithm reduces to the k-means algorithm [15].

There are numerous ways to measure the quality of the SOM [17, 18, 19, 20,

21, 22]. In this study, average quantization error and topographic error were used

for the task because they are both simple and intuitive measures for assessing the

quality of the SOM. The quality of quantization of the SOM can be measured

with the average quantization error, which is simply the average distance from

each data vector to the best matching unit. The preservation of the topology of

the maps can be measured with the topographic error. It is the percentage of

data vectors for which the best matching unit and the second best matching unit

are not neighboring map units [23].

3.2.2 The VS clustering algorithm

The VS clustering algorithm used in this study has been co-developed by the

author [24]. It is a two-level approach: first the SOM is trained and the data is

partitioned into a large number of Voronoi sets, each corresponding to one map

unit. Subsequently, the map units are clustered. All data vectors in a Voronoi

set belong to the same cluster as the corresponding map unit. An advantage over

traditional methods, like k-means, is that the result can be effectively visualized

on the 2-dimensional grid. Another advantage is that by clustering the SOM

rather than the data directly, significant gains in the speed of clustering can be

obtained [16].
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(b) Clustering

Figure 3.2: (a) An example of U-matrix showing the distances between neighboring

map units of SOM. (b) The corresponding clustering result with 7 clusters. The

numbers (1–7) indicate which cluster the map unit belongs to.

U-matrix is a commonly used tool to cluster the SOM visually [25]. It visu-

alizes distances between each map unit and its neighbors. Unfortunately, when

clusters are identified visually, the results obtained by different people are not

necessarily the same. Therefore, an automated clustering algorithm that follows

the results of the U-matrix (Figure 3.2a) was used. The details of the algorithm

are presented in [24]. The basic idea of the algorithm is as follows:

1. The data is quantized with SOM and a distance matrix, showing the median

distances between neighboring map units is calculated.

2. The map is divided into a set of base clusters. This is done using region

growing with local minima of the distance matrix as seed points.

3. A cluster hierarchy is constructed from the base clusters using an agglom-

erative algorithm [26] and a pruning procedure.

4. The final partitioning with suitable number of clusters is obtained from the

hierarchy (Figure 3.2b).
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Region growing

The region-growing starts with setting the local minima of the distance matrix

as seed points. These are the map units whose median distance to neighboring

units is smaller than the median distance of any of the neighboring units to their

neighbors. Next, the unassigned map unit with smallest distance to a cluster is

found and assigned to the corresponding cluster. Here, a continuity constraint is

used to ensure that the clusters form continuous areas on the map. Only those

unassigned map units are considered for merging which are neighbors of map

units that already belong to a cluster. Assigning the map units to clusters is

continued until all map units belong to some cluster.

This procedure provides a partitioning of the map into a set of base clusters,

number of which is equal to the number of local minima on the distance matrix.

A problem is that the distance matrix may have some local minima which are

products of random variations in the data rather than real local maxima of the

probability density function of the data. Such base clusters are pruned out of the

clustering in a hierarchical fashion.

Cluster hierarchy

In cluster analysis, constructing a cluster hierarchy is often beneficial [27, 28].

Apart from the need for pruning explained above, a cluster hierarchy may repre-

sent the true structure of the data better than a single-level partitioning. Some

clusters can be considered super-clusters, consisting of several sub-clusters, which

allows the data to be investigated at several levels of detail.

An agglomerative clustering algorithm was used to construct the cluster hi-

erarchy from the base clusters. This, however, produces a binary tree which may

not be representative of the true structure of the data. If in reality, a super-

cluster consists of three (or more) sub-clusters, the binary tree will have one (or

more) extra intermediate clusters. These are pruned out as follows:

1. Start from root (top level) cluster.

2. For the cluster c under investigation, generate different sub-cluster sets. A

sub-cluster set may contain either sub-clusters of cluster c or sub-clusters

of c’s sub-clusters (sub-sub-clusters).
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3. Each sub-cluster set defines a partitioning of the data in the investigated

cluster. Investigate each partitioning using a clustering validity measure,

the gap-index Igap.

4. Select the sub-cluster set with minimum Igap, and prune the corresponding

intermediate clusters.

5. Select an uninvestigated cluster (if any), and continue from step 2.

The clustering validity measure used in the pruning was a measure of the gap

between the two clusters. It compares the sizes of the clusters with the distance

between them.

Igap =
1

C

C
∑

i=1

max
j

{

Si + Sj
dij

}

, where (3.10)

Si = E{‖mk −ml‖ | mk,ml ∈ Ci, k ∈ Nl, Vk, Vl 6= ∅}, (3.11)

dij = E{a‖mk −ml‖ | mk ∈ Ci,ml ∈ Cj, k ∈ Nl} (3.12)

Above, C is the number of clusters, E is the average, Ci is the set of prototype

vectors which belong to cluster i, Nl is the set of neighboring map units of the

map unit l and

a =

{

2 iff Vk = ∅ ∨ Vl = ∅

1 otherwise.
(3.13)

The coefficient a is used to reflect the fact that an empty map unit between

two clusters does not really belong to either and thus, the distance between the

clusters is approximately twice the distance from either cluster to the empty map

unit.

This procedure gives a pruned cluster hierarchy together with validity mea-

sures of the clustering quality of the sub-cluster sets of each node in the tree. A

particular partitioning is obtained from this tree by starting from the top with

all data in a single cluster, and traversing the tree downwards by always splitting

the intermediate node with best clustering validity index, until a predetermined

number of clusters has been obtained. The selection criteria for the number of

final clusters were the following: the sub-clusters were combined into a super-

cluster if the difference between the means of the sub-clusters was smaller than

the standard deviation of the whole data or if one of the sub-clusters consisted

of very few (<5) map units.
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3.2.3 Model validation

When analyzing and interpreting a model, many different hypotheses concerning

the model are often proposed. These hypotheses should, however, be tested in

order to be able to draw conclusions about the model. In case of measurement

data and a theoretical model, empirical hypothesis testing can be done with, for

example, permutation tests [29].

Permutation tests are useful tools in hypothesis testing. In case of a clustering

problem, the possible correlation between the clusters and any measurement data

can be analyzed with permutation tests. The principle is to compare a cluster to

the rest of the data, and see if there is any difference when the cluster is replaced

by a set of randomly chosen data points. That is, the test answers to the question:

“Is there a certain difference between the data in the cluster and the rest of the

data?” In this study, the test gives an estimate of the probability

Ppt(C) = P
(

E{xC} − E{xD\C} < E{xR} −E{xD\R}
)

, (3.14)

where E is the expectation value, xC are some measurement values (for example

NM) of vectors that belong to cluster C, D is the whole data set and R is a set

of randomly selected points. In statistical significance testing, it is important to

keep in mind what the test actually tells about the data and what it does not

[30]. For example the above test (Equation 3.14) does not tell anything about

inequality to the other direction.

3.3 Time series modeling

Time series are ordered measurements, i.e. the measurements are obtained at

consecutive time steps. The data used in this study is time series data, but the

time dimension is completely lost in the clustering method. Therefore, a time

series model that preserves the temporal relations of the measurements was used

to analyze the data.

Regime switching models are useful tools in time series analysis [31]. The main

structure of the models is the following: the system generating the observations

is at all times in some discrete state and the output of the system depends on the
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Figure 3.3: The hidden Markov model. The hidden variable st changes its state in

time with P (st|st−1). The observations depend on the hidden variable as P (xt|st).

state. The early studies of switching regression are [32, 33] and more advanced

models have been studied in [34, 35, 36, 37, 38, 39]. The models have been

successfully used in, for example, economics [40, 41, 42, 43], but they have also

been criticized [44]. An introduction for nonlinear time series modeling has been

published in [45].

3.3.1 Hidden Markov model

The hidden Markov model (HMM) is a discrete-time model that belongs to the

general framework of probabilistic independent networks [46]. The properties that

make it suitable for our purpose are that it can handle missing data as well as

time series of different lengths. The model assumes sequential data and has been

successfully used, for example, in sequence processing [47], speech recognition

[48, 49, 50] and fault detection [51]. The hidden Markov model assumes a hidden

sequence of discrete states S = {s0, . . . , sT} and an observation sequence X =

{x0, . . . , xT}. At each time step t:

1. The process is assumed to be in some unobserved state st.

2. An observation xt depending on the state is acquired.

The probability of being in a particular state at time t depends only on the state

at previous time step t − 1. This is called the Markov property, i.e. given the

previous state, the current state is conditionally independent of the whole history.

P (st|st−1, st−2, . . . , s1) = P (st|st−1) (3.15)
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Also, given the current state, the current observation is conditionally independent

of the whole history [52] (see Figure 3.3).

P (xt|st, st−1, . . . , s1) = P (xt|st) (3.16)

The state changes in time stochastically according to a N × N transition

matrix, where N is the number of states

A = (aij) = P (st = j|st−1 = i), i, j = 1, . . . , N (3.17)

with the following constraints:

aij ≥ 0, i, j = 1, . . . , N (3.18)
N

∑

j=1

aij = 1, i = 1, . . . , N (3.19)

The observed variables of the data sequence can be either continuous of dis-

crete. In our experiments, the observed values were continuous. The probability

density of the observed variable depends on the state through an emission proba-

bility density function P (xt|st = j; θ), parameterized by θ. The joint probability

density parameterized by A and θ can be expressed as follows [47, 52]

P (X,S) = P (x0, s0)
T

∏

t=1

P (st|st−1;A)
T

∏

t=1

P (xt|st; θ), (3.20)

where P (x0, s0) is the prior of the state and data at t = 0.

In this work, the hidden state is the unknown combined effect of the environ-

ment (for example soil condition, weather, pollution, fungi, insect pests and tree

history) on the foliar nutrient concentrations and needle mass. The observation

sequence of each measurement stand i contains the observed nutrient concentra-

tions of N, S and P and the needle mass for each year.

Xi =













ci,1(N) ci,2(N) . . . ci,t(N) . . . ci,T (N)

ci,1(S) ci,2(S) . . . ci,t(S) . . . ci,T (S)

ci,1(P ) ci,2(P ) . . . ci,t(P ) . . . ci,T (P )

NMi,1 NMi,2 . . . NMi,t . . . NMi,T













(3.21)
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There are many variants of the traditional hidden Markov model. For exam-

ple, a constrained HMM assumes a transition matrix constrained by neighborhood

relations of the states [53], an idea rather closely related to the self-organizing

map. For modeling data that involves different types of data, an HMM for metric

and event-based data [54] can be used. For a comprehensive tutorial on hidden

Markov models, see [55, 56] and for a review, see [50].

3.3.2 Learning with the EM-algorithm

There are three basic problems for hidden Markov models that must be solved

for the model to be useful in real-world applications [48]:

1. Given the observation sequence X and the model θ, how to efficiently com-

pute the probability of the observation sequence given the model P (X|θ)?

2. Given the observation sequence X and the model θ, how to choose a state

sequence S which is optimal in some meaningful sense?

3. How to adjust the model parameters to maximize P (X, θ)?

The problem is to train the model, to learn the maximum likelihood estimates

(MLE) for the parameters of the model. The MLE’s are the parameters that

maximize the probability of the observed data. Because in the HMM, the state

sequence is not directly observed, the problem of obtaining the MLE’s is not

completely straightforward. The EM-algorithm (Expectation-Maximization) [47,

57] can be used to estimate the parameters of the hidden Markov model from a

data set available.

The EM-algorithm is an iterative algorithm that finds the MLE’s for the

parameters in incomplete data problems. Here, incomplete data means that there

is a many-one mapping from the unobserved state to the observed measurements,

i.e. the same observation can be measured in many different states [57]. Because

the density functions of the states are overlapping each other, it is only possible to

tell the probability of a set of measurements (here the concentrations and needle

mass) to belong to a certain state. The expected log-likelihood of the complete

data is

Q(θ|θp) = E(logP (X,S|θ)|X, θp), (3.22)
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where the log-likelihood of the complete data is parameterized by θ and the

expectation is taken with respect to the second distribution parameterized by

the current parameters θp. The algorithm consists of two steps: the E-step

(expectation) and the M-step (maximization). The value of Q is calculated in

the E-step. In the M-step, the parameter values θp+1 are updated such that the

value of Q(θ|θp) is maximized. The EM-algorithm converges monotonically to a

local maximum of the likelihood function of the data [57, 58].

Inference is the procedure for obtaining the probabilities P (st|X) for t =

1, . . . , T given the observation sequence X. To be able to calculate the maximum

likelihood estimates of the parameters, the state probability sequence must be

inferred for the time series. The inference is done in two parts: filtering and

smoothing [31]. The filtering starts from the beginning of the time series and

proceeds forward in time. At each time step t, the predicted state st is calculated

given the observation sequence up to t− 1:

Xt−1 = {x1, . . . , xt−1} (3.23)

and the probability density of st−1.

P (st = j|Xt−1) =

N
∑

i=1

aijP (st−1 = i|Xt−1) (3.24)

After the filtered probabilities P (st = j|Xt−1) have been estimated for t =

1, . . . , T , the smoothed probabilities can be computed. Smoothing is done back-

wards in time for t = T − 1, . . . , 1. The procedure consists of two equations that

are evaluated alternately.

P (st = j, st+1 = i|XT ) = P (st = j|Xt)
P (st+1 = i|XT )

P (st+1 = i|Xt)
aji (3.25)

P (st = j|XT ) =

N
∑

i=1

P (st = j, st+1 = i|XT ), (3.26)

where

XT = {x1, . . . , xt, . . . , xT} (3.27)

The filtering is done starting from the beginning of the sequence and smoothing

backwards in time. Therefore, the inference algorithm is sometimes referred to

as the “forward-backward” algorithm [59].
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The probability density function of the observed variable is assumed to be a

Gaussian probability density function with mean and covariance depending on

the state. The parameters of the model for each state are the following: the mean

values µ of the variables, the variances σ2 of the variables and the probabilities

to switch to another state aij, i, j = 1, . . . , N , i.e. the transition matrix. The

variance of all the variables is assumed to be the same to decrease the number of

free parameters. By decreasing the number of parameters, learning from limited

amount of data becomes more stable and less dependent on random variations of

the data.

The model parameters are updated using the following system of equations

[31]. For a more detailed description of the EM-algorithm, see [60].

µ̂i =

∑S

k=1

∑T

t=1 xt,kP (st,k = i|XT,k)
∑S

k=1

∑T

t=1 P (st,k = i|XT,k)
, i = 1, 2, . . . , N (3.28)

σ̂2
i =

∑S

k=1

∑T

t=1(xt,k − µ̂i)
2P (st,k = i|XT,k)

∑S

k=1

∑T

t=1 P (st,k = i|XT,k)
, i = 1, 2, . . . , N (3.29)

âij =

∑S

k=1

∑T

t=2 P (st,k = j, st−1,k = i|XT,k)
∑S

k=1

∑T

t=2 P (st−1,k = i|XT,k)
, i, j = 1, 2, . . . , N (3.30)

In above, µ̂i and σ̂2
i are the estimates of the mean and variance of state i. The

Equations 3.29–3.30 are used in the case that there are more than one time series

that are assumed to be generated by the same process (Finland 36, Austria 71).

The model is trained as follows: First, one filtering and smoothing step is carried

out for each of the time series k = 1, ..., S. Then, the parameters are updated

using the inferred state probabilities. Next, the filtering and smoothing steps

are carried out again separately for all the time series and the parameters are

updated. These inference and updating steps are continued until the parameters

have reached some stationary values. Learning the model parameters this way

assumes independence between the time series.

3.3.3 Analysis of the model

The quality of the model

The quality of learning can be tested with cross-validation [61]. The data is

divided randomly into two equally sized parts: a training set, and a test set.
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The training set is used to train the model, and the log-likelihood values Q of

both sets are computed. Then, the sets are switched such that the original test

set is used as the training set and the original training set as the test set. The

model is trained with the new training set and the log-likelihood values of both

data sets are computed. This is repeated several times in order to reduce the

effects of a specific division. This kind of procedure is called two-fold cross-

validation because the data set is divided into two parts. There are also other

possibilities. For example, in ten-fold cross-validation, the data set is divided

into ten parts, nine of which are used as the training set at a time and one as

the test set and each choice of nine sets is tried. For a review and comparison of

the accuracy estimation methods cross-validation and bootstrap, see [62]. The

difference between the likelihoods of the test and training sets reflects the quality

of the model. The smaller the difference, the better the model fits to the real

distribution of the data, i.e. corresponds to the true structure of the data. Big

difference in the likelihoods can be a sign of overfitting, i.e. the model being

unable to generalize.

Comparison of the state sequences

Using the HMM, we can calculate a probability sequence for each stand that

indicates the probability of belonging to a state. Using these sequences, different

measures between the stands can be calculated. The Kullback-Leibler divergence

(KL), Hellinger (H) and Pearson’s φ2 (PHI) dissimilarity measures and L1 dis-

tance are defined, respectively, as

KL(ϕ, ψ) =

T
∑

t=1

ϕ(t) log
ϕ(t)

ψ(t)
+ ψ(t) − ϕ(t) (3.31)

H(ϕ, ψ) =
T

∑

t=1

∣

∣

∣

√

ϕ(t) −
√

ψ(t)
∣

∣

∣

2

(3.32)

PHI(ϕ, ψ) =

T
∑

t=1

|ϕ(t) − ψ(t)|2

ψ(t)
(3.33)

L1(ϕ, ψ) =
T

∑

t=1

|ϕ(t) − ψ(t)|, (3.34)
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where ϕ and ψ denote the state probabilities of the two time series [63] that are

compared to each other. From the four measures, only H and L1 are symmetric.

One drawback of the L1 distance is that it largely ignores the differences in the

tails of the probability density functions. In case of missing measurements, the

measures can be scaled with a parameter T
mϕ,ψ

, where mϕ,ψ is the number of time

steps, in which there were measurements from both time series.

In addition to these, a distance measure for Markov-sources was used [64]:

J(θ0, θ) =
1

2
[D(θ0, θ) +D(θ, θ0)], (3.35)

where

D(θ0, θ) = lim
T→∞

1

T
[log q(X|θ0) − log q(X|θ)] (3.36)

and q(X|θ) is the likelihood value of observation sequence X of length T with

model parameters θ. The observation sequences can be randomly generated using

parameters θ and the inferred state probabilities. The distance between two state

probability sequences can be calculated by generating many (in the experiments

20) observation sequences from the inferred state probabilities and taking the

average over their J-distances.

Using these measures, it is possible to compare the state probability sequences

of the time series with each other instead of only single probabilities. These mea-

sures can also be compared with the geographical distances. The possible corre-

lations between the geographical and the above mentioned measures can be in-

vestigated using permutation testing similarly as explained in Section 3.2.3. The

tested hypothesis was that stands that are close to each other also have smaller

values of the above mentioned distance (and other) measures (Equations 3.31–

3.35). The stand pairs that are closer to each other than some threshold distance

are compared to the rest of the stand pairs. The result of the test is the proba-

bility that the difference between the mean dissimilarity (KL,H, PHI, L1, J) of

the stands that are close to each other and the mean dissimilarity of the rest of

the stands is smaller than the difference between the mean dissimilarities of two

randomly generated groups of stands.
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3.3.4 From the cluster model to a transition graph

There are some significant differences between the solution of the clustering and

the hidden Markov model:

1. The probability densities of the HMM states overlap each other and there-

fore, only the probability can be calculated for a measurement to belong

to a certain state. The clusters do not overlap each other. A measurement

can belong only to a single cluster.

2. In the training, time affects the probabilities of the HMM states. The

probability of the state depends on the state at the previous time step

through the transition matrix. The clusters do not have any temporal

relations.

3. The shape of the distributions of the HMM states is always Gaussian. The

shape of the clusters is not restricted.

Even though the time dimension is not taken into account when training

the cluster model, it can be used in the analysis of the model by, for example

constructing transition graphs that show the probabilities of switching from one

cluster to another. The transition graphs can simply be constructed as follows.

First, the number of data vectors belonging to a cluster Zi is calculated for each of

the clusters i = 1, . . . , C. The number of measurement pairs that are consecutive

in time and the former measurement belongs to cluster i and the latter to cluster

j is denoted by Zij. Then, the maximum likelihood estimates of the transition

probabilities for the whole data set can be calculated as follows.

âij =
Zij
Zi
, i, j = 1, . . . , C (3.37)

Using the acquired transition matrix, it is easy to construct visualizations that

show the typical cluster switches.
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Chapter 4

Results of the analyses of nutrient

concentration data

4.1 Foliage of Finland

4.1.1 Spatial statistics

Interpolation of the measurement values was done using a triangle based cubic

method. It is based on a Delaunay triangulation of the data [2]. The interpolated

smooth surface always goes through the data points and has no discontinuities

in the first derivative.

The results of interpolation are shown in Figure 4.1. It can be seen that the

values of N and S are quite similar every year. In south-eastern Lapland there

is a constant deficiency of N and S. Otherwise, the spatial variations of the two

nutrients are quite small. In the years 1995, 1996 and 1999, the N concentrations

were low in most of the country and in 2000 they were high. The S concentrations

have decreased over the years. In the 1980’s there was clearly more S than in the

90’s, the concentrations were particularly low in 1999. The values of P are less

stable. The two clear properties of P concentration are that it is high in southern

Finland and low in middle Finland. In eastern Finland, there is a turnover from

low to high concentrations between years 1995–1997. The P concentrations were

higher in 1987 and 1988 and slightly lower in 1992 and 1999. The needle masses

of spruce change rather much from one year to another. The needles were heavy
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1987

N

S

P

Spruce NM

Pine NM

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 Mean

Figure 4.1: The interpolated values of the nutrients N, S and P and needle mass

in Finland for all years. In the two bottom rows are the needle masses of spruce

and pine separately. Darker color indicates smaller value. The mean values over

all years are in the rightmost column.

in the years 1987, 1988 and 1994 and light in 1989, 1992 and 1998. The needle

mass of pine is usually (not surprisingly) low in northern and high in southern

Finland. In 1988 and 1997, the pine needles were quite heavy whereas in 1987 and

1992, they were light. In these years, the temperatures of June were lower than

normally. After the latter year the weight of the needles have had an increasing

trend.

The semivariograms of measurements from Finland were calculated for N,

S, P and NM measurements. They are shown in Figure 4.2. It can be seen

that there is quite a lot variation in the shapes of the semivariograms between

different years. This means that the source and processes which affect the nutrient
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Figure 4.2: The semivariograms of the N, S, P and NM measurements from

Finland based on the annual data. The rows correspond to the years 1987–2000.

concentrations change from one year to another. The least amount of variation

is in the semivariograms of P. This suggests that the processes controlling the

concentration of P change slower.

The mean semivariogram of all years were calculated with different lag dis-

tances (110–550km). The mean semivariograms were also calculated for the tree

species separately. The results are combined in Figure 4.3. The mean semivar-

iograms of N and NM have peaks at distances around 600–700km and around

900km with S and P. Thus, there seems to be some spatial correlation in the

data. The results, however, get much clearer when the tree species are handled

separately.

When considering only spruce stands, the values of N and NM have rather

clearly such structure that stands that are close to each other have smaller mutual

distances. This can also be seen in S but less clearly. Similar structure is also

visible in pine stands with N and S, but for pine, there is no structure in NM. The

reason for the NM semivariogram of the complete data getting lower values with
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Figure 4.3: The mean semivariograms of N, S, P and NM measurements from

Finland with lag distances 110–550km for all years. In the first row are the

semivariograms for the complete data, in the second row for spruce and in the

third row for pine.

lag distances longer than 600km is most likely that 600km is the maximum dis-

tance between spruce stands. There are spruce stands only in southern Finland.

With longer lag distances, only pine stands can be compared to each other and

the differences in NM between the same species are smaller than the differences

between different species. The results of the mean semivariograms suggest that

similar N, S and NM measurements are often made at stands that are close to

each other. Therefore, there could be some kind of a connection between the clus-

ters and their locations. This can be studied with the indicator semivariogram

(see Section 4.1.2).
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4.1.2 Finding the nutrition profiles

Because there was only a little a priori information about the structure of the

data, a clustering method was used to analyze the relationships between the nu-

trients at the stand level. The nitrogen, sulphur and phosphorus concentrations

(c) in the needles and needle mass (NM) of the current year’s needles were used

with the clustering method. These elements were chosen because of their impor-

tance to the growth of the tree, their dynamic temporal behavior and because

the number of measurements was not particularly high and therefore, we wanted

to keep the dimensionality of the data limited. Needle mass was used because

it enabled us to interpret the clusters based on nutrient concentration as well as

nutrient content. The 4-dimensional data vector x used in the clustering method

for measurement stand i and year t was:

xi,t = [ci,t(N), ci,t(S), ci,t(P ), NMi,t]
T . (4.1)

Before the actual clustering, the data was normalized so that the mean of each

variable was 0 and variance 1 to ensure that all variables have equal weights in

the training.

The data was clustered using the algorithm explained in Section 3.2. The

linearly initialized map was trained with SOM Toolbox1 [65] using the batch

algorithm [15] in two rough training epochs and five fine tuning epochs. The

final neighborhood width was 1 in order to ensure good quality of quantization.

For the Finnish data, a map consisting of a regular hexagonal grid with 6 × 9

map units was used.

The average quantization error of the map was 0.82. The error was calcu-

lated using the normalized variable values. Increasing the map size could have

decreased the error but could also have led to overfitting. The topographic error

was 5.5%. The topographic error was typical for this data; map size didn’t affect

it much. According to the topographic error, the topology of the data set was

preserved rather well in the quantization process. Therefore, clustering the SOM

can be assumed to give reliable results.

The U-matrix of the SOM of Finnish data is shown in Figure 4.4a and the

final clustering result in Figure 4.4b. The clustering result is similar to the U-

1http://www.cis.hut.fi/projects/somtoolbox
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Figure 4.4: (a) U-matrix for the SOM of Finnish data. Darker color indicates

smaller value. (b) The clustering result. The numbers (2–8) indicate which cluster

the map unit belongs to. Some numbers are not present, because those clusters

were not chosen from the hierarchy to the final clustering.

matrix. The hierarchical structure of the clustering can be seen in Figure 4.5.

One cluster (9) was pruned out of the hierarchy and bottom level clusters 1 and

3 were combined into cluster 8 in the final clustering. Clusters 2 and 7 are the

most different from all other clusters. These two clusters have the highest mean

values of the concentration variables.

The mean values and standard deviations of all the measurements for the

clusters are shown in Table A.2. The component planes of the SOM of Finnish

data are shown in Figure 4.6. Using the component planes and the mean values,

the six clusters of the data from Finland can be described qualitatively as:

2: High N and S, average P, high NM.

4: Average N and S, low P and NM.

5: Low N, S, P, and NM.

6: Average N, S and P, low NM.
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Figure 4.5: Cluster hierarchy of the SOM of Finnish data. Black circles are the

final clusters.

7: High N, S and P, low NM.

8: Average N, low S and P, high NM.

Needle mass is the variable that had the most missing measurements in Fin-

land. Despite of that, needle mass contributed quite much to the clustering result.

It can be seen that clusters 4–7 have rather low and clusters 2 and 8 rather high

mean needle mass values. These two groups of clusters do not overlap each other

much with respect to needle mass, i.e. their standard deviations are fairly small.

The reason for this is that according to histograms (not shown), needle mass

has a clearly bimodal probability density function, whereas all the concentration

variables have more or less unimodal probability density functions. The bimodal-

ity of needle mass is caused by the two different tree species having needles of

different size. Now, the two cluster groups approximately correspond to the two

different peaks of the probability density function of needle mass.

The clusters have slightly different meanings for different tree species. The

nutrition profiles, i.e. the mean values and standard deviations of the clusters for
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Figure 4.6: The component planes of the SOM of Finnish data. The values of the

component planes correspond to the values of the normalized data.

the two species are in Tables A.3 and A.4. For pine, the clusters can be explained

as follows [66]. Cluster 5 represents trees with multiple-nutrient deficiency. All

the concentrations and needle mass are low. Clusters 4 and 6 represent a sub-

optimal nutrient status. Cluster 4 is characterized by a deficiency of P and cluster

6 may have P-excess. Clusters 2 and 7 have high S and P concentrations. Both

clusters have excess of these nutrients but only cluster 2 has high needle mass.

Cluster 8, which is the most common one, has favorable S and P concentrations

but N is probably a limiting factor of the growth.

When considering spruce, there were no expert’s interpretations available for

the clusters. According to Tables A.3 and A.4, there are no significant differences

in the concentrations of N, S and P, but the NM of the clusters are differently

related to each other. Clusters 4, 5, 6 and 7 have very similar NM and clusters 2

and 8 only contain measurements without NM information. Because the clusters

have so similar needle masses, it is hard to say, which clusters, if any, could
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Table 4.1: The cluster switch probability matrix of Finland. The rows show the

conditional probabilities of switching from a certain cluster to another.

Previous\Current 2 4 5 6 7 8

2 0.40 0.15 0.00 0.00 0.03 0.42

4 0.09 0.49 0.06 0.12 0.05 0.19

5 0.04 0.32 0.52 0.04 0.00 0.08

6 0.05 0.16 0.05 0.55 0.11 0.09

7 0.23 0.08 0.00 0.23 0.38 0.08

8 0.10 0.09 0.00 0.01 0.00 0.79

possibly represent the optimal environment for spruce growth.

The switching of the cluster of a stand was analyzed to find out if there is

any structure in the development of nutrient concentrations. The most common

switches were 8–2, 8–4, 2–8, 4–8 and 6–4. When considering two consecutive

switches, the most common series were 8–2–8, 2–8–2, 8–4–8, 4–5–4, 4–6–4 and

4–8–2. These results are not very surprising since the most common clusters are

8, 4 and 2. Usually the swithces happen between the most common clusters.

Because the absolute numbers of switches did not reveal much information

about the data, the conditional probabilities of switching the cluster were calcu-

lated. They are shown in Table 4.1. The high probabilities tell something about

the most typical switches. The process seems to have some tendency to converge

to clusters 4 and especially 8. Also, switches 7–2 and 7–6 have above average

probabilities.

More information about the switches can be extracted by analyzing the tree

species separately. Graphs showing the structure of switching the cluster for

both species separately are shown in Figure 4.7. Spruce stands usually belong

to clusters 4–7, cluster 4 being the most common one and 6 the second most

common. Also, switches that happen with high probability are 5–4 and 8–4.

In pine stands, the process is most of the time in cluster 8. As time goes on,

more stands switch to cluster 8 than from cluster 8. Clusters 5, 6 and 7 are less

common than 2 and 4. Switches that happen with high probability are 2–8, 4–8,

6–8 and 7–2.

In the years 1987, 1988, 1991 and 1993, the high needle mass cluster 8 was less
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Figure 4.7: Graphs showing the typical cluster switches in Finland. Solid line

denotes a probability higher than 0.4 and dashed line a probability between 0.1

and 0.4. The smaller number under the cluster number is the number of years

a stand has belonged to that cluster. Switch probabilities for spruce (a) and pine

(b) are shown separately.

usual than otherwise. In 1987 and 1988, the high sulfur concentration clusters 2

and 7 were more usual than normally. The reason for high number of low needle

mass clusters in 1991 might be that there were a lot of measurements missing

from everywhere else but southern Finland, where the low needle mass clusters

are normally more probable than elsewhere. This is caused by the fact that there

are no spruce stands in northern Finland. What reduces the significance of this

result is that in 1991, there were needle mass measurements only from two stands.

In 1993, the low needle mass cluster 4 was the most common one. Starting from

1995, the number of stands in cluster 4 has decreased.

The indicator semivariograms (Equation 3.4) for the clusters of Finland are

shown in Figure 4.8. They suggest that there may be some kind of structure in the

geographical locations of clusters 2, 5 and 7. For cluster 5 this seems reasonable,

because according to Figure 4.9 it is found almost only in the N and S poor area

in south-eastern Lapland. The problem is that the graphs have so much noise
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Figure 4.8: The mean indicator semivariograms of the clusters of Finland for all

years.

that it is hard to say whether this impression reflects any true properties of the

data or not. However, it seems clear that there is not much, if any, correlation

between the locations of clusters 4, 6 and 8.

The clustering result of Finland on a geographical map for each year can be

seen in Figure 4.9. The probability of a stand to be in cluster 8 does not seem to

be very much connected to the geographical position of the stand. In southern

Finland, other clusters are a little more common than cluster 8. Stands in the

other clusters are spread more unevenly on the map. A stand in cluster 2 is

most likely in northern or south-western Finland. Clusters 4 and 7 can usually

be found in southern Finland and cluster 4 also in middle Finland. Cluster 5

exists most often in south-eastern Lapland and cluster 6 in southern and western

Finland.

The possible connections between weather and the clustering were analyzed

with permutation testing. The tested measurements were six weather variables:
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Figure 4.9: Clustering of the measurement stands of Finland for each year. Color

coding: dark blue = cluster 2, green = cluster 4, red = cluster 5, light blue =

cluster 6, black = cluster 7, yellow = cluster 8.

the average temperature of the year, temperatures in January, and July, precip-

itation and the probabilities that a random observation gets a lower value than

the observation of temperature and precipitation for each year. The results with

10000 repetitions are shown in Table A.5.

It can be seen that clusters 2 and 8 have very small probabilities that the dif-

ference between the mean probability of temperature in the cluster and outside

the cluster is smaller than the difference between the mean probability of tem-

perature in a random cluster and outside the random cluster. The opposite holds

for clusters 4, 5, 6, and 7. Thus, the temperature in those clusters is more likely

low than in clusters 2 and 8. The permutation test probabilities for precipitation

are low for clusters 7 and 8 and high for clusters 4, 5 and 6. Low precipitation is

less likely in clusters 7 and 8 than in clusters 4, 5 and 6.

Since there seems to be a connection between weather and the clustering,
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Figure 4.10: The weather data. The values of the axes are the normalized tem-

perature and precipitation values.

the effect of the weather on the clustering was analyzed further. The weather

probabilities were mapped back to the input space with the inverse of the normal

cumulative distribution function with µ = 0 and σ = 1. The obtained normal-

ized weather data was divided into 4 clusters using the k-means algorithm. The

structure and the clusters of the weather data are shown in Figure 4.10. For clar-

ity, the weather clusters are from now on called weather states. Weather state

one corresponds to cold temperature and slightly lower precipitation. States two

and three correspond to normal temperature, state two has higher precipitation

than state three. State four corresponds to high temperature and slightly above

average precipitation.

A transition matrix (as in Table 4.1) for the clusters can be constructed for
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each weather state separately. The transition matrices were calculated and it

was found that they are different from each other. It seems that in weather state

two, there is a higher probability to switch to cluster 7 and a lower probability

to switch to clusters 8 and 4. Also, the probability of not switching the cluster

at all is higher. In weather state three, the switch does not often happen to

cluster 7, but from 7 to 2 or 4. In weather state 4, there is a high tendency to

switch from all the clusters to cluster 8. Thus, warm temperature seems to be

connected to cluster 8. The transition matrix for weather state one could not be

calculated because all the measurements in that state were from the year 1987

and there was no information about the clusters in the previous year. As can be

seen in Figure 4.10, the temperatures in 1987 were highly exceptional. In state

one, the number of stands in clusters 4, 5 and 7 was higher than otherwise and

lower in clusters 2 and 8. It seems reasonable that when the temperature is low,

the needles grow slower and the number of stands in clusters with high needle

mass decreases.

4.1.3 Temporal modeling of foliar nutrient concentrations

In the experiments, the N, S and P concentrations of the needles and needle mass

were used in the time series. The data was normalized so that the mean of each

variable was 0 and variance 1 to ensure that all variables have equal weights in

the training. So, the data consisted of 36 four-dimensional time series with length

of 14 years.

The parameters of the model were trained using the EM-algorithm with 150

iterations. The initial values of the parameters were the following: the mean

values were spread around 0 with a gaps of size 0.2 between them, all the variances

were 0.5 and the probability of staying in each state was 2/3. The number of

states varied in the experiments from 2 to 5.

The convergence of the mean values µ during training is shown in Figure 4.11

for two and three state models. The models with more states behave identically

to the three state model. With any number of states, one state converges to

high mean values and the rest to low values. All the parameters of the low mean

value states are exactly the same including the means, variances and transition
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Figure 4.11: The convergence of the states’ mean values in Finland during train-

ing. In the top row is the two-state model and in the bottom row the three-state

model. The scale on y-axis is normalized.

probabilities. Apparently, there are no more than two HMM-states to be found

in the data. The probability of staying in the high concentration state is about

0.5 and the probability of switching from any of the low concentration states to

the high concentration state is 0.2–0.4, the more states the lower the probability.

This is interesting, because the low concentration states are essentially the same.

The mean values of the high concentration state, however, are higher in the

multi-state models.

The mean values and standard deviations of the states for the two-state models

of both countries are shown in Table 4.3. It can be seen that the states have quite

a lot of overlap, especially in P concentration and needle mass. The states are

so similar, that accounting for the precision of the chemical analysis methods it

would be impossible to distinguish them.

Two-fold cross-validation was used to test the quality of the learning, the

results were as follows. With 20 iterations, the mean Q-value for the training set
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Figure 4.12: The state probabilities for the 36 measurement stands of Finland

during the 14 year sampling period. The curves illustrate the probability of the

low concentration state 1.

was –280 and the standard deviation 30. For the test set, the values were –330

and 50. The quality of the model can be considered good, because the difference

between the log-likelihood of the training and test set is rather small. A few

times the log-likelihood of the test set was even higher than the log-likelihood of

the training set. The model seems to fit well to the data.

The probability sequences of the low concentration state 1 are shown for all

stands in Figure 4.12. In many stands, the probability of state 1 is low in 1988,

high in about 1993–1999 and drops significantly in 2000. Both in 1988 and 2000,

in many stands the concentration of N was higher than normally.

Using the measures explained in Section 3.3.3, similarity of the state prob-
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Table 4.2: The permutation test results for the dissimilarity measures using dif-

ferent threshold distances for Finland. The values are the probabilities that the

difference between the mean dissimilarity (KL,H, PHI, L1, J) of the stands that

are closer to each other than a threshold distance and the mean dissimilarity of the

rest of the stands is smaller than the difference between the mean dissimilarities

of two randomly generated groups of stands.

Distance (km) 100 200 300 400 500 600 700 800 900 1000

KL 0.06 0.95 1.00 1.00 1.00 1.00 0.90 0.94 0.60 0.15

H 0.05 0.94 1.00 1.00 1.00 0.98 0.82 0.94 0.35 0.11

PHI 0.20 0.43 0.82 0.88 0.98 0.80 0.74 0.88 0.93 0.34

L1 0.08 0.92 1.00 1.00 1.00 0.98 0.77 0.94 0.29 0.07

J 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92 0.91

ability sequences of the measurement stands can be studied. All the different

measures between stands were compared to the geographical distance, but there

did not seem to be any strong correlation between the geographical position of

the stand and its state probability sequence. Only in the case of J-distance, there

seemed to be some faint structure.

The results of the permutation test are shown in Table 4.2. They are related to

the P -values of the test as 1−P . These results also suggest that only J-distance

has a connection with the geographical distance. With the other measures, there

seems to be a correlation with the geographical distance at distances around

500km, but not, for example, under 100km, which suggests that geographical

distances are not very closely connected to the probability sequences.

4.2 Foliage of Austria

4.2.1 Spatial statistics

The results of the triangle based cubic interpolation of the nutrient concentrations

and needle mass are shown in Figure 4.13. The distribution of the nutrients on

the map is more random than in Finland. There are some small areas that
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Table 4.3: The means and standard deviations of both countries’ two-state models.

Finland Austria

State 1 State 2 State 1 State 2

µ σ µ σ µ σ µ σ

N (mg/g) 11.7 1.0 12.6 1.4 12.8 1.1 13.1 1.4

S (mg/g) 0.89 0.09 0.99 0.12 0.97 0.10 0.99 0.12

P (mg/g) 1.48 0.19 1.62 0.27 1.48 0.29 1.50 0.35

NM (g/1000) 7.7 3.0 8.5 4.1 4.80 0.89 4.87 1.06

constantly have less N than others, but they are spread quite randomly on the

map. The average N concentration was particularly low in the years 1991, 1992

and 1994. The concentration of S decreases with time and towards west. In

1994 and from 1997 on, the concentrations were somewhat lower than otherwise.

The distribution of P is quite uneven: some stands have higher and some lower

concentrations. On average, the values are lower in northern Austria. The trend

is that P concentrations decrease in time. Not much can be said about the

distribution of NM of spruce, because there were measurements only from two

years and they are completely different from each other. In 1996, the needles

were significantly heavier than in 1995.

The semivariograms of measurements of Austria (Figure 4.14) show that there

are less differences between different year’s measurements than in Finland. The

mean semivariogram (Figure 4.15) of NM has a peak around 400km, whereas the

concentration measurements do not have any significant peaks. The trend of NM

cannot really be interpreted much due to the limited amount of data and the fact

that the semivariograms of the years 1995 and 1996 look completely different. If

the trend is real, it means that there is structure in the short distance, but it is

lost in the long distances. There is no clear spatial structure to be found in the

semivariograms of the measurements of Austria.

4.2.2 Finding the nutrition profiles

The preprocessing of the data, training of the SOM and clustering were done

similarly as with the data of Finland (see Section 4.1.2). For the Austrian data,
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Figure 4.13: The interpolated values of the nutrients N, S and P and needle mass

in Austria for all years. In the top row are the N values for years 1989–1994,

in the second row the N values for years 1995–1999 and the mean value over all

years, etc. Darker color indicates smaller value. Needle masses are only from

spruce.

a larger map of size 8 × 12 was used due to the larger size of the data set.

The average quantization error of the map was 0.54. The lower average quan-

tization error for Austrian data is a result of bigger map size. As with the map

of Finland, the topographic error was not alarminglyhigh: 4.3%.

The U-matrix and clustering result for the Austrian data are shown in Fig-

ure 4.16 and the hierarchical structure of the clustering in Figure 4.17. Three

clusters (11, 12 and 16) were pruned out of the clustering and bottom level clus-

ters 2, 3, 5, 6 and 8 were combined into cluster 14. In the hierarchy, cluster 9 is the

most dissimilar to other clusters. Its mean sulfur and phosphorus concentration

values are the highest.

The mean values and standard deviations of all the measurements of the

clusters (nutrition profiles) are shown in Table A.1. Using it and the component

planes of the SOM (Figure 4.18) the six clusters of Austria can be qualitatively

described as follows:
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Figure 4.14: The semivariograms of N, S, P and NM measurements from Austria

based on the annual data. The rows correspond to the years 1989–1999.

1: High N, average S and P, low NM.

4: Low N, S, P and NM.

7: Low N, S and P, average NM.

9: Average N, high S and P, low NM.

10: Low N, average S, high P, low NM.

14: Average N and S, low P, average NM.

In Austria, cluster 7 is the one with the highest needle mass. The concentra-

tions of N, S and P are low. In the other clusters, the needle masses are lower.

However, due to the high number of missing needle mass measurements, this

should not be emphasized too much. In cluster 4, all the concentrations are very

low. Clsuter 14 is the average cluster with respect to the nutrient concentrations.
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Figure 4.15: The mean semivariograms of N, S, P and NM measurements from

Austria with lag distances 50–250km for all years.

The main difference between clusters 14 and 10 is that in cluster 10 the concen-

tration of P is much higher. In cluster 9, the concentrations of S and P are the

highest and in cluster 1 the concentration of N is the highest.

There was very much missing needle mass data from Austria; there were

measurements only from the years 1995 and 1996, i.e. the concentration variables

contributed more to the clustering result than needle mass. Therefore, needle

mass was not taken into account when selecting the number of clusters. Unlike

in Finland, the probability density function of needle mass is not bimodal and the

clustering result of Austria was not divided with the tree species as in Finland.

This is caused by the fact that there were no needle mass measurements from

pine trees. With respect to the other measurements, pine and spruce are a lot

harder to distinguish. Due to the very small weight of needle mass in the learning

process, one should be careful when drawing conclusions regarding the clusters’

mean needle masses.
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Figure 4.16: (a) U-matrix for the SOM of Austrian data. Darker color indicates

smaller value. (b) The clustering result. The numbers indicate which cluster the

map unit belongs to. Some numbers are not present, because those clusters were

not chosen from the hierarchy to the final clustering.

The switching of the clusters was also analyzed. The most common switches

were 14–7, 7–14, 1–14 and 14–1. When considering two consecutive switches,

the most usual combinations are 14–7–14, 7–14–7, 14–1–14, 1–14–1. It can be

concluded that most switches happen between the biggest clusters with the excep-

tion of cluster 10. The switching probabilities of the clusters were also computed.

The transition matrix is shown in Table 4.4. The system is shown graphically in

Figure 4.19. Because only a small minority of the stands were pine stands, there

was no need to separate the tree species here.

According to Figure 4.19, there seems to be a flow from clusters 1, 4, 9 and

10 to clusters 7 and 14. It should be kept in mind, however, that the values in

Table 4.4 are probabilities and they do not necessarily tell the whole truth about

the transitions. For example the probability of switching from 4 to 14 is 0.25 and

from 14 to 4 0.04, but still the number of switches from 14 to 4 is higher than from

4 to 14, because the total number of years a stand belonged to cluster 14 is so

much higher. There were only 5 pine stands in the data set, but a difference can
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Figure 4.17: Cluster hierarchy of the SOM of Austrian data. Black circles are

the final clusters.

be seen between the different species. Pine stands belong less often to clusters 4,

7, 9 and 10 than spruce stands.

In the years 1994 and 1996–1999, more stands were in cluster 7 than usually.

The amount of S in the needles was lower than normally in those years. Between

1993 and 1994, the amount of N and S decreased quite much and many stands

switched from cluster 14 to 7. In 1993 and from year 1996 on, there were fewer

stands in clusters 10 than earlier. In 1989, 1995 and 1998, the number of stands in

cluster 1 was slightly higher. In these years, the amount of N was above average.

In 1992, there was a peak in the number of stands in cluster 4 and a drop in the

amount of N.

The mean indicator semivariogram of the Austrian clusters for all years is

shown in Figure 4.20. There could be some weak spatial correlation between

the stands in cluster 7 but no clear structure can be seen in the locations of the

clusters.

The clustering result of Austria on a geographical map for each year can be

seen in Figure 4.21. It tells a lot more about the spatial distribution of the clusters
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Figure 4.18: The component planes of the SOM of Austrian data. The values of

the component planes correspond to the values of the normalized data.

than the indicator semivariogram. Stands in the most common clusters 14 and 7

are spread quite evenly on the map. High phosphorus and sulfur concentration

cluster 9 is most likely to be found in a few stands little south of the middle of

Austria. Stands in cluster 10 are usually in southern Austria. In that area, there

are mountains and that explains the clearly higher mean altitude value of that

cluster. Cluster 1 exists most often in the plains of north-eastern Austria and

cluster 4 in eastern and middle Austria.

4.2.3 Temporal modeling of foliar nutrient concentrations

The convergence of the mean values during training is shown in Figure 4.22 for

two and three state models. The convergence of the parameters is similar to

the model of Finland. One state has high mean value of all concentrations and

all the rest have the exact same low values as well as the same variances and

transition probabilities. The probability of switching to the high concentration
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Table 4.4: The cluster switch probability matrix of Austria. The rows show the

conditional probabilities of switching from a certain cluster to another.

Previous\Current 1 4 7 9 10 14

1 0.38 0.00 0.12 0.00 0.06 0.44

4 0.00 0.22 0.50 0.00 0.03 0.25

7 0.06 0.11 0.42 0.00 0.04 0.38

9 0.07 0.00 0.00 0.66 0.17 0.10

10 0.04 0.01 0.12 0.02 0.57 0.23

14 0.10 0.04 0.19 0.01 0.06 0.60

state is approximately 0.3–0.5 from any other state. As in Finland, high number

of states decreases the probability of switching to the high concentration state.

It should be noted that the number of needle mass measurements is much lower

than the number of the other measurements and thus, its weight in the learning

was rather small.

As can be seen from Table 4.3, the states of the model of Austria overlap each

other even more than the states of the model of Finland. Due to the accuracy of

the chemical analysis methods, the states are practically indistinguishable.

The cross-validation results for Austria were as good as for Finland. The

mean and standard deviation of Q of the training set were –560 and 70. For the

test set the values were –610 and 60. Again, a few times the log-likelihood of

the test set was higher than the log-likelihood of the training set. It seems that

the model fits well to the data, but not that well that it could be considered

overfitting.

The state probability sequences of the stands for low mean concentration

state 1 are shown in Figure 4.23. The dissimilarities between the sequences using

different measures (see Section 3.3.3) suggest that there is no correlation between

the geographical position of the stand and its state probability sequence.

The different measures of the state sequences were compared with the ge-

ographical distances using permutation testing. The results are in Table 4.5.

They are related to the P -values of the test as 1 − P . According to the results,

there is no clear connection between the the geographical distance and the state

sequences. Only J-distance may have some relation with the geographical dis-
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Figure 4.19: Graphs showing the typical cluster switches in Austria. Solid line

denotes a probability higher than 0.4 and dashed line a probability between 0.1

and 0.4. The smaller number under the cluster number is the number of years a

stand has belonged to that cluster.

tances, but the probabilities are significant only with threshold distances 50 and

200km.

4.3 Discussion

4.3.1 Spatial statistics

The analysis of the measurements using methods of spatial statistics was found

to be useful. In Finland, according to the interpolated measurement values,

there is some spatial structure in the data. Also, the semivariograms suggest

that the measurements are spatially correlated. The result that the shape of the

semivariograms of P does not change much supports the idea that P comes to

the tree mainly from the soil. The other nutrients may be affected more by a

combination of local and transboundary sources.

In Austria, there is no clear spatial structure in the data. The existence of the

short-distance structure in NM is dubious. Some stands have constantly smaller
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Figure 4.20: The mean indicator semivariograms of the clusters of Austria for all

years.

and some higher concentrations, but they seem to be spread rather randomly

throughout the country.

4.3.2 Clustering using the self-organizing map

Clustering the data with the SOM-based algorithm revealed some rather inter-

esting properties of the data sets, especially from Finland.

In Finland, a quite clear structure of the data was found. The data was di-

vided into two groups of clusters: one for the high and one for the low needle

masses. This way, the algorithm approximately divided the tree species to their

own clusters. Experts were able to give all the clusters some meaningful inter-

pretations about the state of the forest and thus, the clustering method can be

considered successful. In addition, a connection between the clusters and weather

was found.

The clustering result of the Austrian data was less clear than for the data of
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Figure 4.21: Clustering of the measurement stands of Austria for each year. Color

coding: dark blue = cluster 1, green = cluster 4, red = cluster 7, light blue =

cluster 9, black = cluster 10, yellow = cluster 14.

Finland. Similar clusters to those in Finland were found, but the very limited

amount of needle mass measurements made interpretation of the results much

more difficult. Also, the lack of weather data reduced the possibilities of validation

of the result. There are, however, no reasons to doubt the quality of the clustering

other than the lack of needle mass measurements. The connection between the

clusters and the altitude of the measurement stands suggests that the clustering

result of Austria is meaningful, as well as that the same method gave meaningful

results for similar data from Finland.

The results of the clustering method were validated by forest experts and they

were found to be meaningful. Also, the switching of the cluster of the stands

seemed reasonable. The results of this method gave the reason to introduce the

concept of nutrition profile in forest research. The concept is a powerful method

for describing the elemental variation of the data and a significant improvement
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Figure 4.22: The convergence of the states’ mean values in Austria during train-

ing. The rows correspond to the number of states of the model: top 2, bottom 3.

The scale of y-axis is normalized.

compared to the traditional use of single nutrient concentrations or ratios between

two concentrations to describe the state of a tree [66].

4.3.3 Time series modeling

The results of the Hidden Markov model contained less information than the

results of the clustering. In both countries, the number of states was two. The

states correspond simply to high and low measurement values. The main problem

with the states is that the differences between the mean values of the states are

usually smaller than the accuracy of the chemical analysis methods. Thus, it is

impossible to actually distinguish the states from each other. In addition, there

is plenty of data that does not fit too well into either state. This means that the

generalization property of the model is not satisfactory. Also, the inability of the

model to find more than two states from the data reduced the usability of the

model.
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Table 4.5: The permutation test results for the dissimilarity measures using dif-

ferent threshold distances for Austria. The values are the probabilities that the

difference between the mean dissimilarity (KL,H, PHI, L1, J) of the stands that

are closer to each other than a threshold distance and the mean dissimilarity of the

rest of the stands is smaller than the difference between the mean dissimilarities

of two randomly generated groups of stands.

Distance (km) 50 100 150 200 250 300 350 400 450

KL 0.84 0.01 0.00 0.04 0.04 0.11 0.12 0.04 0.00

H 0.91 0.03 0.02 0.14 0.12 0.09 0.10 0.04 0.01

PHI 0.59 0.00 0.00 0.07 0.03 0.18 0.24 0.27 0.00

L1 0.88 0.00 0.01 0.01 0.01 0.00 0.01 0.03 0.01

J 0.99 0.67 0.81 0.99 0.91 0.69 0.57 0.05 0.00
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Chapter 5

Summary and conclusions

In this study, the nutrient concentrations of pine and spruce needles were analyzed

using different data analysis methods. The data was collected from Finland and

Austria in 1987–2000. The tested analysis methods included a few spatial statis-

tics methods: semivariograms and interpolation, clustering of the self-organizing

map with some simple temporal analysis of the clusters and actual time series

modeling with the hidden Markov model. The aim of the study was to analyze

the spatial and temporal distribution of the nutrient concentrations and simply

try to find out what kind of internal structure there is in the data and how the

different data analysis methods perform with this kind of data.

It was found that semivariance, a spatial statistic, is a reasonably usable

measure for analyzing the factors that affect the nutrient concentrations on a

local scale. With the data used in this study, the semivariograms showed some

trends in the similarity of nearby stands. The problem with the graphs was that

they were rather noisy and therefore not very easy to interpret. It was also noted

that interpolation of the measurements makes it possible to draw figures that are

both visually appealing and help understand the geographical structure of the

data.

The hidden Markov model used in the time series analysis did not yield much

information about the temporal structure of the data. When compared to the

clustering method, the results of time series modeling were clearly inferior. The

classification of the data into two groups did not give any especially interesting

information about the connections between the measurements. The two states
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were simply so similar to each other that no remarkable conclusions could be

drawn considering the possible source that could have generated the measure-

ments. Apparently, the basic hidden Markov model was not the optimal time

series model to be used with this kind of data.

The VS clustering algorithm based on the self-organizing map provided new

information about the relations of the nutrients between different years and lo-

cations. With the clustering method, it was possible to divide the measurements

into six groups. In each group, the growth of the needles and the amounts of

the nutrients were different, i.e. different groups represented different types of

growing conditions. Forest experts were able to construct a model that charac-

terizes the development of the condition of forests in Finland using the result of

the clustering method.

5.1 Future work

The results of the tested methods, especially the clustering method were promis-

ing, but not that excellent that there would not be any need for improvements.

There are some adjustments that might be worth trying to the models in the

future.

First, a model should be constructed that effectively uses both the spatial

and temporal dimensions of the data. One possibility to achieve this would be to

construct different time series models for different parts of the country. It would

probably also be worth trying to use separate models for different tree species and

perhaps even different weather conditions. The weather data could be included

as a more internal part to the models. In this study, only the current year’s

needles were analyzed. Using both the current and previous year’s needles, more

information about the growth and development of the needles could be extracted.

In the future, the clustering model could be enhanced by using probability

distributions instead of the crisp clusters. This way, only the probability could

be given that a measurement belongs to a certain cluster. This kind of fuzzy

clustering can be obtained by using for example Gaussian mixture models or

building the Gaussian distributions on top of the self-organizing map as in [67].

In addition to the SOM, simple and perhaps useful visualizations of the data
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could be achieved using other projection methods like Sammon’s mapping and

principal component analysis.

Also, the use of more complex time series models could be beneficial. So far,

we have tested some autoregressive switching models [31], but due to numerical

problems in training, no results can be shown here yet. The complexity of the

models should not, however, be too high, because of the limited amount of mea-

surements. In time series analysis, instead of the actual measurement data, the

change of the measurements between two consecutive time steps could be used

to train the model as for example in [40].
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Appendix A

Tables

Table A.1: The means and standard deviations of the concentration and needle

mass measurements, weather probabilities and the geographical positions of the

clusters in Austria.
Cluster 1 4 7 9 10 14

N (mg/g) 15.5±1.0 10.8±0.6 12.2±0.6 13.4±1.1 12.4±0.7 13.1±1.2

S (mg/g) 1.10±0.08 0.80±0.06 0.86±0.05 1.30±0.14 0.98±0.06 1.01±0.08

P (mg/g) 1.57±0.33 1.16±0.17 1.27±0.24 2.12±0.23 2.02±0.26 1.42±0.26

Ca (mg/g) 4.05±1.29 5.84±1.81 4.62±1.72 4.87±1.29 3.12±1.10 4.44±1.50

Mg (mg/g) 1.24±0.26 1.26±0.42 1.26±0.36 1.43±0.31 1.41±0.25 1.26±0.29

K (mg/g) 6.06±1.15 5.84±1.50 5.65±1.18 7.83±1.57 5.70±1.60 6.24±1.32

Zn (µg/g) 36±10 42±12 36±10 62±77 30±9 36±11

Mn (µg/g) 932±581 365±462 395±426 765±343 727±399 573±509

Fe (µg/g) 61±31 38±15 37±18 57±15 39±14 46±21

NM (g/1000) 4.16±0.76 3.32±0.38 5.87±1.09 4.53±0.47 4.18±0.39 4.89±1.00

Latitude ( ◦) 47.9±0.6 47.6±0.4 47.6±0.5 47.7±0.7 47.4±0.4 47.6±0.5

Longitude ( ◦) 15.1±0.9 14.7±1.5 14.0±1.6 15.0±0.4 14.2±0.9 14.8±1.2

Altitude (m) 721±348 828±286 963±349 964±311 1328±285 907±353
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Table A.2: The means and standard deviations of the concentration and needle

mass measurements, geographical positions of the clusters in Finland and the

weather variables.
Cluster 2 4 5 6 7 8

N (mg/g) 13.7±1.1 12.3±0.9 9.9±0.6 11.6±0.7 13.6±0.9 11.8±1.0

S (mg/g) 1.04±0.09 0.96±0.11 0.85±0.08 0.91±0.07 1.14±0.10 0.88±0.08

P (mg/g) 1.76±0.16 1.38±0.20 1.54±0.17 1.72±0.17 2.05±0.21 1.43±0.13

Ca (mg/g) 2.63±0.93 3.95±1.54 3.12±0.96 4.77±1.48 4.24±1.60 2.25±1.08

Mg (mg/g) 1.14±0.15 1.14±0.15 1.12±0.12 1.21±0.16 1.27±0.14 1.07±0.13

K (mg/g) 5.77±0.65 6.03±0.97 6.40±0.76 6.37±1.11 6.30±0.98 5.24±0.72

Zn (µg/g) 45±8 34±8 33±8 37±9 40±11 40±6

Mn (µg/g) 472±190 621±241 572±176 788±335 769±354 445±170

Fe (µg/g) 40±11 34±14 26±11 30±8 43±13 31±8

Cu (µg/g) 3.14±0.69 2.28±0.61 1.71±0.43 2.26±0.61 2.97±1.02 2.72±0.60

Al (µg/g) 313±128 94±99 68±71 61±56 146±143 218±90

B (µg/g) 12±5 13±5 12±3 12±5 14±6 12±4

NM (g/1000) 12.6±2.8 5.4±2.3 4.9±1.3 4.6±1.2 6.1±2.7 11.1±2.6

Latitude ( ◦) 64.6±3.2 62.7±1.7 65.0±1.5 62.4±1.8 62.9±3.1 64.4±2.6

Longitude ( ◦) 25.5±2.8 25.8±2.0 27.8±1.8 25.2±1.9 25.9±1.9 26.0±2.1

Avg. temp. ( ◦C) 2.4±2.8 3.0±1.6 1.0±1.7 3.2±1.7 2.6±2.6 2.2±2.1

Jan. temp. ( ◦C) -7.6±5.2 -7.8±5.8 -11.6±5.0 -7.1±5.1 -8.9±6.8 -8.7±4.3

July temp. ( ◦C) 15.3±2.0 15.8±1.8 14.6±1.8 15.6±1.7 16.3±2.5 15.3±1.7

Prob. of temp. 0.56±0.09 0.51±0.13 0.50±0.13 0.51±0.11 0.48±0.15 0.56±0.10

Precip. (mm) 591±120 641±102 601±131 634±111 611±120 613±112

Prob. of precip. 0.53±0.09 0.51±0.08 0.50±0.10 0.50±0.08 0.55±0.08 0.54±0.09
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Table A.3: The means and standard deviations of the concentration and needle

mass measurements, geographical positions of the clusters in Finland and the

weather variables for spruce.
Cluster 2 4 5 6 7 8

N (mg/g) 14.9±1.8 12.2±0.9 10.1±0.5 11.6±0.7 13.6±0.9 12.4±1.6

S (mg/g) 0.95±0.07 0.95±0.12 0.84±0.07 0.91±0.07 1.11±0.10 0.82±0.06

P (mg/g) 1.79±0.12 1.32±0.19 1.50±0.21 1.71±0.17 2.05±0.24 1.36±0.17

Ca (mg/g) 4.84±1.31 4.61±1.26 3.29±0.90 4.98±1.30 5.07±1.16 5.23±1.43

Mg (mg/g) 1.15±0.16 1.16±0.16 1.12±0.08 1.22±0.16 1.28±0.12 1.16±0.19

K (mg/g) 7.12±0.53 6.38±0.86 6.34±0.91 6.42±1.10 6.49±1.10 6.82±0.51

Zn (µg/g) 31±12 31±6 31±7 36±9 37±11 36±8

Mn (µg/g) 811±400 687±245 656±172 821±319 932±300 734±290

Fe (µg/g) 30±5 29±9 23±4 29±6 39±10 23±3

Cu (µg/g) 2.06±0.34 2.03±0.42 1.72±0.29 2.20±0.59 2.51±0.55 2.08±0.33

Al (µg/g) 48±22 41±21 33±16 47±17 62±29 34±13

B (µg/g) 17±9 14±5 11±3 12±5 13±6 12±6

NM (g/1000) - 4.2±0.8 4.4±0.9 4.3±0.8 4.5±0.7 -

Latitude ( ◦) 61.5±0.5 62.3±0.8 63.8±1.2 62.0±1.2 61.3±0.4 62.0±0.8

Longitude ( ◦) 25.3±1.0 25.9±1.9 27.2±2.2 25.0±1.8 25.3±1.1 25.0±1.9

Avg. temp. ( ◦C) 4.9±1.1 3.1±1.2 2.3±1.3 3.6±1.1 3.8±1.6 4.4±0.8

Jan. temp. ( ◦C) -5.8±1.9 -7.0±4.8 -9.8±4.7 -6.1±3.6 -7.5±7.4 -7.2±2.5

July temp. ( ◦C) 16.2±0.3 16.0±1.7 15.5±1.6 15.8±1.6 16.9±2.0 16.3±0.6

Prob. of temp. 0.63±0.03 0.52±0.12 0.51±0.12 0.52±0.10 0.50±0.16 0.64±0.04

Precip. (mm) 663±43 653±94 577±102 646±100 639±87 661±63

Prob. of precip. 0.54±0.08 0.50±0.08 0.49±0.07 0.52±0.08 0.55±0.06 0.52±0.08
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Table A.4: The means and standard deviations of the concentration and needle

mass measurements, geographical positions of the clusters in Finland and the

weather variables for pine.

Cluster 2 4 5 6 7 8

N (mg/g) 13.6±0.9 12.5±0.7 9.7±0.7 11.4±1.1 13.6±0.7 11.8±1.0

S (mg/g) 1.05±0.09 0.97±0.08 0.86±0.09 0.94±0.10 1.18±0.10 0.89±0.08

P (mg/g) 1.76±0.16 1.51±0.14 1.58±0.12 1.75±0.17 2.04±0.13 1.43±0.12

Ca (mg/g) 2.38±0.40 2.20±0.40 2.96±1.02 1.80±0.31 2.36±0.30 1.97±0.40

Mg (mg/g) 1.14±0.15 1.06±0.09 1.12±0.15 1.05±0.15 1.24±0.19 1.06±0.13

K (mg/g) 5.61±0.45 5.10±0.56 6.45±0.62 5.58±1.02 5.87±0.45 5.09±0.53

Zn (µg/g) 47±6 43±5 36±8 42±4 48±5 40±6

Mn (µg/g) 432±100 447±104 495±147 310±112 403±84 417±124

Fe (µg/g) 41±11 45±20 28±14 43±21 50±16 32±8

Cu (µg/g) 3.27±0.61 2.92±0.57 1.70±0.54 3.11±0.15 4.02±1.07 2.78±0.58

Al (µg/g) 345±95 235±84 101±86 258±45 333±114 235±72

B (µg/g) 12±4 13±3 12±2 10±5 15±4 12±3

NM (g/1000) 12.6±2.8 8.9±1.5 5.2±1.4 8.6±1.7 9.6±1.7 11.1±2.6

Latitude ( ◦) 65.0±3.2 63.6±2.7 66.2±0.4 67.3±1.3 66.4±3.7 64.7±2.6

Longitude ( ◦) 25.5±2.9 25.4±2.4 28.2±1.3 27.6±0.8 27.2±2.8 26.1±2.1

Avg. temp. ( ◦C) 2.1±2.8 2.5±2.4 -0.3±0.9 -1.7±1.4 0.0±2.5 2.0±2.1

Jan. temp. ( ◦C) -7.8±5.4 -10.0±7.5 -13.3±4.8 -21.0±2.7 -12.0±4.0 -8.9±4.4

July temp. ( ◦C) 15.2±2.1 15.5±2.1 13.8±1.6 13.0±1.5 15.0±3.2 15.2±1.7

Prob. of temp. 0.55±0.09 0.51±0.15 0.48±0.13 0.40±0.14 0.46±0.13 0.55±0.11

Precip. (mm) 582±123 607±116 622±153 460±133 548±163 608±114

Prob. of precip. 0.53±0.09 0.52±0.08 0.51±0.12 0.41±0.09 0.52±0.11 0.54±0.10
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Table A.5: The permutation test results Ppt for the clusters of Finland using

temperature and precipitation measurements and their probabilities as the tested

measurements.
Cluster

2 4 5 6 7 8

Complete data

Average temperature 0.96 0.05 1.00 0 0.67 1.00

Temperature in January 0.08 0.16 1.00 0 0.92 0.91

Temperature in July 0.89 0.02 1.00 0.35 0 0.98

Precipitation 1.00 0.03 0.98 0.12 0.85 0.86

Prob. of temperature 0 0.98 1.00 0.98 1.00 0

Prob. of precipitation 0.23 0.96 0.95 1.00 0.01 0.01

Spruce

Average temperature 0 0.01 0.12 0 0.05 0

Temperature in January 0.97 0.33 0.39 0.86 0.11 0.86

Temperature in July 1.00 1.00 0.97 0.84 1.00 0.99

Prob. of temperature 0.17 0.02 0.80 0.75 0.29 0.20

Precipitation 0.03 0.69 0 0.98 0.53 0

Prob. of precipitation 0 0.50 0.03 0 0.06 0.16

Pine

Average temperature 0.56 0.02 0.44 0.12 0.96 0.61

Temperature in January 0.09 0.93 0.11 0.98 0.51 0.77

Temperature in July 1.00 1.00 1.00 1.00 0.18 0.93

Prob. of temperature 1.00 1.00 1.00 1.00 1.00 1.00

Precipitation 1.00 1.00 0.80 1.00 1.00 0.62

Prob. of precipitation 0.72 0.34 0.64 0.05 0.47 0.05
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