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Abstract

We show that the usual score function for conditional Markov networks can be
written as the expectation over the scores of their spanning trees. We also show
that a small random sample of these output trees can attain a significant fraction
of the margin obtained by the complete graph and we provide conditions under
which we can perform tractable inference. The experimental results confirm that
practical learning is scalable to realistic datasets using this approach.

1 Introduction

Finding an hyperplane that minimizes the number of misclassifications isNP-hard. But the support
vector machine (SVM) substitutes the hinge for the discrete loss and, modulo a margin assumption,
can nonetheless efficiently find a hyperplane with a guarantee of good generalization. This paper
investigates whether the problem of inference over a complete graph in structured output prediction
can be avoided in an analogous way based on a margin assumption.

We first show that the score function for the complete output graph can be expressed as the expec-
tation over the scores of random spanning trees. A sampling result then shows that a small random
sample of these output trees can attain a significant fraction of the margin obtained by the complete
graph. Together with a generalization bound for the sample of trees, this shows that we can obtain
good generalization using the average scores of a sample of trees in place of the complete graph.
We have thus reduced the intractable inference problem to a convex optimization not dissimilar to
a SVM. The key inference problem to enable learning with this ensemble now becomes finding the
maximum violator for the (finite sample) average tree score. We then provide the conditions under
which the inference problem is tractable. Experimental results confirm this prediction and show that
practical learning is scalable to realistic datasets using this approach with the resulting classification
accuracy enhanced over more naive ways of training the individual tree score functions.

The paper aims at exploring the potential ramifications of the random spanning tree observation
both theoretically and practically. As such, we think that we have laid the foundations for a fruitful
approach to tackle the intractability of inference in a number of scenarios. Other attractive features
are that we do not require knowledge of the output graph’s structure, that the optimization is convex,
and that the accuracy of the optimization can be traded against computation. Our approach is firmly
∗Most of the work of this paper was carried out while E. Morvant was affiliated with IST Austria,

Klosterneurburg.
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rooted in the maximum margin Markov network analysis [1]. Other ways to address the intractability
of loopy graph inference have included using approximate MAP inference with tree-based and LP
relaxations [2], semi-definite programming convex relaxations [3], special cases of graph classes for
which inference is efficient [4], use of random tree score functions in heuristic combinations [5].
Our work is not based on any of these approaches, despite superficial resemblances to, e.g., the
trees in tree-based relaxations and the use of random trees in [5]. We believe it represents a distinct
approach to a fundamental problem of learning and, as such, is worthy of further investigation.

2 Definitions and Assumptions

We consider supervised learning problems where the input space X is arbitrary and the output space
Y consists of the set of all `-dimensional multilabel vectors (y1, . . . , y`)

def
= y where each yi ∈

{1, . . . , ri} for some finite positive integer ri. Each example (x,y) ∈ X ×Y is mapped to a joint
feature vector φφφ(x,y). Given a weight vector w in the space of joint feature vectors, the predicted
output yw(x) at input x ∈ X , is given by the output y maximizing the score F (w, x,y), i.e.,

yw(x)
def
= argmax

y∈Y
F (w, x,y) ; where F (w, x,y)

def
= 〈w,φφφ(x,y)〉 , (1)

and where 〈·, ·〉 denotes the inner product in the joint feature space. Hence, yw(x) is obtained by
solving the so-called inference problem, which is known to be NP-hard for many output feature
maps [6, 7]. Consequently, we aim at using an output feature map for which the inference prob-
lem can be solved by a polynomial time algorithm such as dynamic programming. The margin
Γ(w, x,y) achieved by predictor w at example (x,y) is defined as,

Γ(w, x,y)
def
= min

y′ 6=y
[F (w, x,y)− F (w, x,y′)] .

We consider the case where the feature map φφφ is a potential function for a Markov network defined
by a complete graph G with ` nodes and `(`− 1)/2 undirected edges. Each node i of G represents
an output variable yi and there exists an edge (i, j) of G for each pair (yi, yj) of output variables.
For any example (x,y) ∈ X × Y , its joint feature vector is given by

φφφ(x,y) =
(
φφφi,j(x, yi, yj)

)
(i,j)∈G =

(
ϕϕϕ(x)⊗ψψψi,j(yi, yj)

)
(i,j)∈G ,

where ⊗ is the Kronecker product. Hence, any predictor w can be written as w = (wi,j)(i,j)∈G
where wi,j is w’s weight on φφφi,j(x, yi, yj). Therefore, for any w and any (x,y), we have

F (w, x,y) = 〈w,φφφ(x,y)〉 =
∑

(i,j)∈G

〈wi,j ,φφφi,j(x, yi, yj)〉 =
∑

(i,j)∈G

Fi,j(wi,j , x, yi, yj) ,

where we denote by Fi,j(wi,j , x, yi, yj) = 〈wi,j ,φφφi,j(x, yi, yj) the score of labeling the edge (i, j)
by (yi, yj) given input x.

For any vector a, let ‖a‖ denote its L2 norm. Throughout the paper, we make the assumption that
we have a normalized joint feature space such that ‖φφφ(x,y)‖ = 1 for all (x,y) ∈ X × Y and
‖φφφi,j(x, yi, yj)‖ is the same for all (i, j) ∈ G. Since the complete graph G has

(
`
2

)
edges, it follows

that ‖φφφi,j(x, yi, yj)‖2 =
(
`
2

)−1
for all (i, j) ∈ G.

We also have a training set S def
= {(x1,y1), . . . , (xm,ym)} where each example is generated in-

dependently according to some unknown distribution D. Mathematically, we do not assume the
existence of a predictor w achieving some positive margin Γ(w, x,y) on each (x,y) ∈ S. Indeed,
for some S, there might not exist any w where Γ(w, x,y) > 0 for all (x,y) ∈ S. However, the
generalization guarantee will be best when w achieves a large margin on most training points.

Given any γ > 0, and any (x,y) ∈ X ×Y , the hinge loss (at scale γ) incurred on (x,y) by a unit L2

norm predictor w that achieves a (possibly negative) margin Γ(w, x,y) is given by Lγ(Γ(w, x,y)),
where the so-called hinge loss function Lγ is defined as Lγ(s)

def
= max (0, 1− s/γ) ∀s ∈ R . We

will also make used of the ramp loss function Aγ defined by Aγ(s)
def
= min(1,Lγ(s)) ∀s ∈ R .

The proofs of all the rigorous results of this paper are provided in the supplementary material.

2



3 Superposition of Random Spanning Trees

Given a complete graph G of ` nodes (representing the Markov network), let S(G) denote the set of
all ``−2 spanning trees of G. Recall that each spanning tree of G has ` − 1 edges. Hence, for any
edge (i, j) ∈ G, the number of trees in S(G) covering that edge (i, j) is given by ``−2(`−1)/

(
`
2

)
=

(2/`)``−2. Therefore, for any function f of the edges of G we have∑
T∈S(G)

∑
(i,j)∈T

f ((i, j)) = ``−2 2

`

∑
(i,j)∈G

f((i, j)) .

Given any spanning tree T ofG and given any predictor w, let wT denote the projection of w on the
edges of T . Namely, (wT )i,j = wi,j if (i, j) ∈ T , and (wT )i,j = 0 otherwise. Let us also denote
by φφφT (x,y), the projection of φφφ(x,y) on the edges of T . Namely, (φφφT (x,y))i,j = φφφi,j(x, yi, yj)

if (i, j) ∈ T , and (φφφT (x,y))i,j = 0 otherwise. Recall that ‖φφφi,j(x, yi, yj)‖2 =
(
`
2

)−1 ∀(i, j) ∈ G.
Thus, for all (x,y) ∈ X × Y and for all T ∈ S(G), we have

‖φφφT (x,y)‖2 =
∑

(i,j)∈T

‖φφφi,j(x, yi, yj)‖2 =
`− 1(
`
2

) =
2

`
.

We now establish how F (w, x,y) can be written as an expectation over all the spanning trees of G.

Lemma 1. Let ŵT
def
= wT /‖wT ‖, φ̂φφT

def
= φφφT /‖φφφT ‖. Let U(G) denote the uniform distribution on

S(G). Then, we have

F (w, x,y) = E
T∼U(G)

aT 〈ŵT , φ̂φφT (x,y)〉, where aT
def
=

√
`

2
‖wT ‖ .

Moreover, for any w such that ‖w‖ = 1, we have: E
T∼U(G)

a2
T = 1, and E

T∼U(G)
aT ≤ 1 .

Let T def
= {T1, . . . , Tn} be a sample of n spanning trees ofGwhere each Ti is sampled independently

according to U(G). Given any unit L2 norm predictor w on the complete graph G, our task is to
investigate how the margins Γ(w, x,y), for each (x,y) ∈ X×Y , will be modified if we approximate
the (true) expectation over all spanning trees by an average over the sample T .

For this task, we consider any (x,y) and any w of unit L2 norm. Let FT (w, x,y) denote the
estimation of F (w, x,y) on the tree sample T ,

FT (w, x,y)
def
=

1

n

n∑
i=1

aTi〈ŵTi , φ̂φφTi(x,y)〉 ,

and let ΓT (w, x,y) denote the estimation of Γ(w, x,y) on the tree sample T ,

ΓT (w, x,y)
def
= min

y′ 6=y
[FT (w, x,y)− FT (w, x,y′)] .

The following lemma states how ΓT relates to Γ.
Lemma 2. Consider any unit L2 norm predictor w on the complete graphG that achieves a margin
of Γ(w, x,y) for each (x,y) ∈ X × Y , then we have

ΓT (w, x,y) ≥ Γ(w, x,y)− 2ε ∀(x,y) ∈ X × Y ,
whenever we have |FT (w, x,y)− F (w, x,y)| ≤ ε for all (x,y) ∈ X × Y .

Lemma 2 has important consequences whenever |FT (w, x,y)− F (w, x,y)| ≤ ε for all (x,y) ∈
X × Y . Indeed, if w achieves a hard margin Γ(w, x,y) ≥ γ > 0 for all (x,y) ∈ S, then we have
that w also achieves a hard margin of ΓT (w, x,y) ≥ γ−2ε on each (x,y) ∈ S when using the tree
sample T instead of the full graph G. More generally, if w achieves a ramp loss of Aγ(Γ(w, x,y))
for each (x,y) ∈ X ×Y , then w achieves a ramp loss ofAγ(ΓT (w, x,y)) ≤ Aγ (Γ(w, x,y)− 2ε)
for all (x,y) ∈ X × Y when using the tree sample T instead of the full graph G. This last property
follows directly from the fact that Aγ(s) is a non-increasing function of s.
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The next lemma tells us that, apart from a slow ln2(
√
n) dependence, a sample of n ∈ Θ(`2/ε2)

spanning trees is sufficient to assure that the condition of Lemma 2 holds with high probability for all
(x,y) ∈ X × Y . Such a fast convergence rate was made possible by using PAC-Bayesian methods
which, in our case, prevented us of using the union bound over all possible y ∈ Y .
Lemma 3. Consider any ε > 0 and any unit L2 norm predictor w for the complete graph G acting
on a normalized joint feature space. For any δ ∈ (0, 1), let

n ≥ `2

ε2

(
1

16
+

1

2
ln

8
√
n

δ

)2

. (2)

Then with probability of at least 1 − δ/2 over all samples T generated according to U(G)n, we
have, simultaneously for all (x,y) ∈ X × Y , that |FT (w, x,y)− F (w, x,y)| ≤ ε.

Given a sample T of n spanning trees ofG, we now consider an arbitrary setW def
= {ŵT1 , . . . , ŵTn}

of unit L2 norm weight vectors where each ŵTi operates on a unit L2 norm feature vector φ̂φφTi(x,y).
For any T and any such setW , we consider an arbitrary unit L2 norm conical combination of each
weight inW realized by a n-dimensional weight vector q def

= (q1, . . . , qn), where
∑n
i=1 q

2
i = 1 and

each qi ≥ 0. Given any (x,y) and any T , we define the score FT (W,q, x,y) achieved on (x,y)
by the conical combination (W,q) on T as

FT (W,q, x,y)
def
=

1√
n

n∑
i=1

qi〈ŵTi , φ̂φφTi(x,y)〉 , (3)

where the
√
n denominator ensures that we always have FT (W,q, x,y) ≤ 1 in view of the fact

that
∑n
i=1 qi can be as large as

√
n. Note also that FT (W,q, x,y) is the score of the feature vector

obtained by the concatenation of all the weight vectors inW (and weighted by q) acting on a feature
vector obtained by concatenating each φφφTi multiplied by 1/

√
n. Hence, given T , we define the

margin ΓT (W,q, x,y) achieved on (x,y) by the conical combination (W,q) on T as

ΓT (W,q, x,y)
def
= min

y′ 6=y
[FT (W,q, x,y)− FT (W,q, x,y′)] . (4)

For any unit L2 norm predictor w that achieves a margin of Γ(w, x,y) for all (x,y) ∈ X × Y , we
now show that there exists, with high probability, a unit L2 norm conical combination (W,q) on T
achieving margins that are not much smaller than Γ(w, x,y).
Theorem 4. Consider any unit L2 norm predictor w for the complete graphG, acting on a normal-
ized joint feature space, achieving a margin of Γ(w, x,y) for each (x,y) ∈ X × Y . Then for any
ε > 0, and any n satisfying Lemma 3, for any δ ∈ (0, 1], with probability of at least 1 − δ over all
samples T generated according to U(G)n, there exists a unit L2 norm conical combination (W,q)
on T such that, simultaneously for all (x,y) ∈ X × Y , we have

ΓT (W,q, x,y) ≥ 1√
1 + ε

[Γ(w, x,y)− 2ε] .

From Theorem 4, and since Aγ(s) is a non-increasing function of s, it follows that, with proba-
bility at least 1 − δ over the random draws of T ∼ U(G)n, there exists (W,q) on T such that,
simultaneously for all ∀(x,y) ∈ X × Y , for any n satisfying Lemma 3 we have

Aγ(ΓT (W,q, x,y)) ≤ Aγ
(

[Γ(w, x,y)− 2ε] (1 + ε)−1/2
)
.

Hence, instead of searching for a predictor w for the complete graph G that achieves a small ex-
pected ramp loss E(x,y)∼DAγ(Γ(w, x,y), Theorem 4 tells us that we can settle the search for a
unit L2 norm conical combination (W,q) on a sample T of randomly-generated spanning trees of
G that achieves small E(x,y)∼DAγ(ΓT (W,q, x,y)). But recall that ΓT (W,q, x,y)) is the margin
of a weight vector obtained by the concatenation of all the weight vectors inW (weighted by q) on
a feature vector obtained by the concatenation of the n feature vectors (1/

√
n)φ̂φφTi . It thus follows

that any standard risk bound for the SVM applies directly to E(x,y)∼DAγ(ΓT (W,q, x,y)). Hence,
by adapting the SVM risk bound of [8], we have the following result.
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Theorem 5. Consider any sample T of n spanning trees of the complete graph G. For any γ > 0
and any 0 < δ ≤ 1, with probability of at least 1 − δ over the random draws of S ∼ Dm,
simultaneously for all unit L2 norm conical combinations (W,q) on T , we have

E
(x,y)∼D

Aγ(ΓT (W,q, x,y)) ≤ 1

m

m∑
i=1

Aγ(ΓT (W,q, xi,yi)) +
2

γ
√
m

+ 3

√
ln(2/δ)

2m
.

Hence, according to this theorem, the conical combination (W,q) having the best generalization
guarantee is the one which minimizes the sum of the first two terms on the right hand side of
the inequality. Note that the theorem is still valid if we replace, in the empirical risk term, the
non-convex ramp loss Aγ by the convex hinge loss Lγ . This provides the theoretical basis of the
proposed optimization problem for learning (W,q) on the sample T .

4 A L2-Norm Random Spanning Tree Approximation Approach

If we introduce the usual slack variables ξk
def
= γ · Lγ(ΓT (W,q, xk,yk), Theorem 5 suggests that

we should minimize 1
γ

∑m
k=1 ξk for some fixed margin value γ > 0. Rather than performing this

task for several values of γ, we show in the supplementary material that we can, equivalently, solve
the following optimization problem for several values of C > 0.

Definition 6. Primal L2-norm Random Tree Approximation.

min
wTi ,ξk

1

2

n∑
i=1

||wTi ||
2
2 + C

m∑
k=1

ξk

s.t.
n∑
i=1

〈wTi , φ̂φφTi(xk,yk)〉 −max
y 6=yk

n∑
i=1

〈wTi , φ̂φφTi(xk,y)〉 ≥ 1− ξk,

ξk ≥ 0 ,∀ k ∈ {1, . . . ,m},

where {wTi |Ti ∈ T } are the feature weights to be learned on each tree, ξk is the margin slack
allocated for each xk, and C is the slack parameter that controls the amount of regularization.

This primal form has the interpretation of maximizing the joint margins from individual trees be-
tween (correct) training examples and all the other (incorrect) examples.

The key for the efficient optimization is solving the ’argmax’ problem efficiently. In particular, we
note that the space of all multilabels is exponential in size, thus forbidding exhaustive enumeration
over it. In the following, we show how exact inference over a collection T of trees can be imple-
mented in Θ(Kn`) time per data point, where K is the smallest number such that the average score
of the K’th best multilabel for each tree of T is at most FT (x,y)

def
= 1

n

∑n
i=1〈wTi , φ̂φφTi(x,y)〉.

Whenever K is polynomial in the number of labels, this gives us exact polynomial-time inference
over the ensemble of trees.

4.1 Fast inference over a collection of trees

It is well known that the exact solution to the inference problem

ŷTi(x) = argmax
y∈Y

FwTi
(x,y)

def
= argmax

y∈Y
〈wTi , φ̂φφTi(x,y)〉, (5)

on an individual tree Ti can be obtained in Θ(`) time by dynamic programming. However, there is
no guarantee that the maximizer ŷTi of Equation (5) is also a maximizer of FT . In practice, ŷTi
can differ for each spanning tree Ti ∈ T . Hence, instead of using only the best scoring multil-
abel ŷTi from each individual Ti ∈ T , we consider the set of the K highest scoring multilabels
YTi,K = {ŷTi,1, · · · , ŷTi,K} of FwTi

(x,y). In the supplementary material we describe a dynamic
programming to find the K highest multilabels in Θ(K`) time. Running this algorithm for all of the
trees gives us a candidate set of Θ(Kn) multilabels YT ,K = YT1,K ∪ · · · ∪ YTn,K . We now state a
key lemma that will enable us to verify if the candidate set contains the maximizer of FT .
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Lemma 7. Let y?K = argmax
y∈YT ,K

FT (x,y) be the highest scoring multilabel in YT ,K . Suppose that

FT (x,y?K) ≥ 1

n

n∑
i=1

FwTi
(x,yTi,K)

def
= θx(K).

It follows that FT (x,y?K) = maxy∈Y FT (x,y).

We can use any K satisfying the lemma as the length of K-best lists, and be assured that y?K is a
maximizer of FT .

We now examine the conditions under which the highest scoring multilabel is present in our can-
didate set YT ,K with high probability. For any x ∈ X and any predictor w, let ŷ def

= yw(x)
def
=

argmax
y∈Y

F (w, x,y) be the highest scoring multilabel in Y for predictor w on the complete graphG.

For any y ∈ Y , let KT (y) be the rank of y in tree T and let ρT (y)
def
= KT (y)/|Y| be the normalized

rank of y in tree T . We then have 0 < ρT (y) ≤ 1 and ρT (y′) = miny∈Y ρT (y) whenever y′ is a
highest scoring multilabel in tree T . Since w and x are arbitrary and fixed, let us drop them momen-
tarily from the notation and let F (y)

def
= F (w, x,y), and FT (y)

def
= FwT (x,y). Let U(Y) denote the

uniform distribution of multilabels on Y . Then, let µT
def
= Ey∼U(Y)FT (y) and µ def

= ET∼U(G)µT .

Let T ∼ U(G)n be a sample of n spanning trees of G. Since the scoring function FT of each tree
T of G is bounded in absolute value, it follows that FT is a σT -sub-Gaussian random variable for
some σT > 0. We now show that, with high probability, there exists a tree T ∈ T such that ρT (ŷ)

is decreasing exponentially rapidly with (F (ŷ)− µ)/σ, where σ2 def
= ET∼U(G)σ

2
T .

Lemma 8. Let the scoring function FT of each spanning tree of G be a σT -sub-Gaussian random
variable under the uniform distribution of labels; i.e., for each T on G, there exists σT > 0 such
that for any λ > 0 we have

E
y∼U(Y)

eλ(FT (y)−µT ) ≤ e
λ2

2 σ
2
T .

Let σ2 def
= E
T∼U(G)

σ2
T , and let α

def
= Pr
T∼U(G)

(
µT ≤ µ ∧ FT (ŷ) ≥ F (ŷ) ∧ σ2

T ≤ σ2
)

. Then,

Pr
T ∼U(G)n

(
∃T ∈ T : ρT (ŷ) ≤ e−

1
2

(F (ŷ)−µ)2

σ2

)
≥ 1− (1− α)n .

Thus, even for very small α, when n is large enough, there exists, with high probability, a tree T ∈ T
such that ŷ has a small ρT (ŷ) whenever [F (ŷ)− µ]/σ is large for G. For example, when |Y| = 2`

(the multiple binary classification case), we have with probability of at least 1− (1−α)n, that there
exists T ∈ T such that KT (ŷ) = 1 whenever F (ŷ)− µ ≥ σ

√
2` ln 2.

4.2 Optimization

To optimize the L2-norm RTA problem (Definition 6) we convert it to the marginalized dual form
(see the supplementary material for the derivation), which gives us a polynomial-size problem (in
the number of microlabels) and allows us to use kernels to tackle complex input spaces efficiently.
Definition 9. L2-norm RTA Marginalized Dual

max
µµµ∈Mm

1

|ET |
∑
e,k,ue

µ(k, e,ue)−
1

2

∑
e,k,ue,
k′,u′e

µ(k, e,ue)K
e
T (xk,ue;x

′
k,u
′
e)µ(k′, e,u′e) ,

where ET is the union of the sets of edges appearing in T , and µµµ ∈Mm are the marginal dual
variables µµµ

def
= (µ(k, e,ue))k,e,ue , with the triplet (k, e,ue) corresponding to labeling the edge

e=(v, v′) ∈ ET of the output graph by ue=(uv, uv′)∈Yv×Yv′ for the training example xk. Also,
Mm is the marginal dual feasible set and

Ke
T (xk,ue;xk′ ,u

′
e)

def
=

NT (e)

|ET |2
K(xk, xk′)

〈
ψψψe(ykv, ykv′)−ψψψe(uv, uv′),ψψψe(yk′v, yk′v′)−ψψψe(u

′
v, u
′
v′)

〉
is the joint kernel of input features and the differences of output features of true and competing
multilabels (yk,u), projected to the edge e. Finally, NT (e) denotes the number of times e appears
among the trees of the ensemble.
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DATASET
MICROLABEL LOSS (%) 0/1 LOSS (%)

SVM MTL MMCRF MAM RTA SVM MTL MMCRF MAM RTA
EMOTIONS 22.4 20.2 20.1 19.5 18.8 77.8 74.5 71.3 69.6 66.3

YEAST 20.0 20.7 21.7 20.1 19.8 85.9 88.7 93.0 86.0 77.7
SCENE 9.8 11.6 18.4 17.0 8.8 47.2 55.2 72.2 94.6 30.2
ENRON 6.4 6.5 6.2 5.0 5.3 99.6 99.6 92.7 87.9 87.7
CAL500 13.7 13.8 13.7 13.7 13.8 100.0 100.0 100.0 100.0 100.0

FINGERPRINT 10.3 17.3 10.5 10.5 10.7 99.0 100.0 99.6 99.6 96.7
NCI60 15.3 16.0 14.6 14.3 14.9 56.9 53.0 63.1 60.0 52.9

MEDICAL 2.6 2.6 2.1 2.1 2.1 91.8 91.8 63.8 63.1 58.8
CIRCLE10 4.7 6.3 2.6 2.5 0.6 28.9 33.2 20.3 17.7 4.0
CIRCLE50 5.7 6.2 1.5 2.1 3.8 69.8 72.3 38.8 46.2 52.8

Table 1: Prediction performance of each algorithm in terms of microlabel loss and 0/1 loss. The best
performing algorithm is highlighted with boldface, the second best is in italic.

The master algorithm described in the supplementary material iterates over each training example
until convergence. The processing of each training example xk proceeds by finding the worst vio-
lating multilabel of the ensemble defined as

ȳk
def
= argmax

y 6=yk

FT (xk,y) , (6)

using the K-best inference approach of the previous section, with the modification that the correct
multilabel is excluded from the K-best lists. The worst violator ȳk is mapped to a vertex

µ̄µµ(xk) = C · ([ȳe = ue])e,ue ∈Mk

corresponding to the steepest feasible ascent direction (c.f, [9]) in the marginal dual feasible setMk

of example xk, thus giving us a subgradient of the objective of Definition 9. An exact line search is
used to find the saddle point between the current solution and µ̄µµ.

5 Empirical Evaluation

In this section we evaluate the performance of our random tree approximation (RTA) algorithm and
compare it with the state-of-the-art methods through extensive experiments. We use ten multilabel
datasets from different domains including chemical, biological, and text classification from [5].

For comparison, we select the following learning models. The Support Vector Machine (SVM) [10,
11] is used as a single target classifier, predicting each microlabel separately. Multitask Feature
Learning (MTL) [12] is a multilabel classifier that assumes that the label specific functions are
related such that they share a small subset of features. Max-Margin Conditional Random Fields
(MMCRF) [9] is a multilabel classifier which uses the structure of the output graph that connects
multiple labels. MMCRF uses the loopy belief propagation algorithm for approximate inference on
the general graph. Maximum Average Marginal Aggregation (MAM) [5] is a multilabel ensemble
model that trains a set of random tree based learners separately and performs the final approximate
inference on a union graph of the edge potential functions of the trees.

Prediction performance. Following the setup in [5], MAM is constructed with 180 tree based
learners, and for MMCRF a consensus graph is created by pooling edges from 40 trees. We train
RTA with up to 40 spanning trees and with K up to 32. The linear kernel is used for methods that
require kernelized input. Margin slack parameters are selected from {100, 50, 10, 1, 0.5, 0.1, 0.01}.
Performances are computed by 5-fold cross-validation and are given as microlabel and error rates.

Table 1 shows the performance of different methods in terms of microlabel loss and 0/1 loss, where
the best performing methods on each dataset is highlighted in ’boldface’ and the second best is in
’italics’ (see Table 2 in the supplementary material for standard deviation results). We observe that
RTA quite often improves over MAM in 0/1 accuracy, sometimes with noticeable margin except
for Enron and Circle50. The performances in microlabel accuracy are quite similar while RTA is
slightly above the competition. This demonstrates the advantage of RTA that gains by optimizing on
a collection of trees simultaneously rather than optimizing on individual trees as MAM. In addition,
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Figure 1: Percentage of examples with provably optimal y∗ being in the K-best lists plotted as a
function of K, scaled with respect to the number of microlabels in the dataset.

learning using approximate inference on a general graph seems less favorable as the tree-based
methods, as MMCRF quite consistently trails to RTA and MAM in both microlabel and 0/1 error,
except for Circle50 where it outperforms other models. Finally, we notice that SVM, as a single
label classifier, is very competitive against most multilabel methods for microlabel accuracy.

Exactness of inference on the collection of trees. We now study the empirical behavior of the
inference (see Section 4) on the collection of trees, which, if taken as a single general graph, would
call for solving an NP-hard inference problem. We provide here empirical evidence that we can
perform exact inference on most examples in most datasets in polynomial time.
We ran the K-best inference on eleven datasets where the RTA models were trained with different
amounts of spanning trees |T |={5, 10, 40} and values forK={2, 4, 8, 16, 32, 40, 60}. For each pa-
rameter combination and for each example, we recorded whether theK-best inference was provably
exact on the collection (i.e., if Lemma 7 was satisfied). Figure 1 plots the percentage of examples
where the inference was indeed provably exact. The values are shown as a function of K, expressed
as the percentage of the number of microlabels in each dataset. Hence, 100% means K = `, which
denotes low polynomial (Θ(n`2)) time inference in the exponential size multilabel space.

We observe, from Figure 1, on some datasets (e.g., Medical, NCI60), that the inference task is very
easy since exact inference can be computed for most of the examples even with K values that are
below 50% of the number of microlabels. By setting K = ` (i.e., 100%) we can perform exact
inference for about 90% of the examples on nine datasets with five trees, and eight datasets with
40 trees. On two of the datasets (Cal500, Circle50), inference is not (in general) exact with low
values of K. Allowing K to grow superlinearly on ` would possibly permit exact inference on these
datasets. However, this is left for future studies.

Finally, we note that the difficulty of performing provably exact inference slightly increases when
more spanning trees are used. We have observed that, in most cases, the optimal multilabel y∗ is
still on the K-best lists but the conditions of Lemma 7 are no longer satisfied, hence forbidding us
to prove exactness of the inference. Thus, working to establish alternative proofs of exactness is a
worthy future research direction.

6 Conclusion

The main theoretical result of the paper is the demonstration that if a large margin structured output
predictor exists, then combining a small sample of random trees will, with high probability, generate
a predictor with good generalization. The key attraction of this approach is the tractability of the
inference problem for the ensemble of trees, both indicated by our theoretical analysis and supported
by our empirical results. However, as a by-product, we have a significant added benefit: we do not
need to know the output structure a priori as this is generated implicitly in the learned weights
for the trees. This is used to significant advantage in our experiments that automatically leverage
correlations between the multiple target outputs to give a substantive increase in accuracy. It also
suggests that the approach has enormous potential for applications where the structure of the output
is not known but is expected to play an important role.
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SUPPLEMENTARY MATERIAL
of Multilabel Structured Output Learning with Random Spanning Trees of
Max-Margin Markov Networks

Lemma 1

Let ŵT
def
= wT /‖wT ‖, φ̂φφT

def
= φφφT /‖φφφT ‖. Let U(G) denote the uniform distribution on S(G). Then,

we have

F (w, x,y) = E
T∼U(G)

aT 〈ŵT , φ̂φφT (x,y)〉, where aT
def
=

√
`

2
‖wT ‖ .

Moreover, for any w such that ‖w‖ = 1, we have

E
T∼U(G)

a2
T = 1 ; E

T∼U(G)
aT ≤ 1 .

Proof.

F (w, x,y) = 〈w,φφφ(x,y)〉

=
∑

(i,j)∈G

〈wi,j ,φφφi,j(x, yi, yj)〉 =
1

``−2

`

2

∑
T∈S(G)

∑
(i,j)∈T

〈wi,j ,φφφi,j(x, yi, yj)〉

=
`

2
E

T∼U(G)
〈wT ,φφφT (x,y)〉 =

`

2
E

T∼U(G)
‖wT ‖‖φφφT (x,y)‖〈ŵT , φ̂φφT (x,y)〉

= E
T∼U(G)

√
`

2
‖wT ‖〈ŵT , φ̂φφT (x,y)〉 = E

T∼U(G)
aT 〈ŵT , φ̂φφT (x,y)〉 ,

where

aT
def
=

√
`

2
‖wT ‖ .

Now, for any w such that ‖w‖ = 1, we have

E
T∼U(G)

a2
T =

`

2
E

T∼U(G)
‖wT ‖2 =

`

2

1

``−2

∑
T∈S(G)

‖wT ‖2 =
`

2

1

``−2

∑
T∈S(G)

∑
(i,j)∈T

‖wi,j‖2

=
∑

(i,j)∈G

‖wi,j‖2 = ‖w‖2 = 1 .

Since the variance of aT must be positive, we have, for any w of unit L2 norm, that

E
T∼U(G)

aT ≤ 1 .

Lemma 2

Consider any unit L2 norm predictor w on the complete graph G that achieves a margin of
Γ(w, x,y) for each (x,y) ∈ X × Y , then we have

ΓT (w, x,y) ≥ Γ(w, x,y)− 2ε ∀(x,y) ∈ X × Y ,

whenever for all (x,y) ∈ X × Y , we have

|FT (w, x,y)− F (w, x,y)| ≤ ε .

10



Proof. From the condition of the lemma, we have simultaneously for all (x,y) ∈ X × Y and
(x,y′) ∈ X × Y , that

FT (w, x,y) ≥ F (w, x,y)− ε AND FT (w, x,y′) ≤ F (w, x,y′) + ε .

Therefore,
FT (w, x,y)− FT (w, x,y′) ≥ F (w, x,y)− F (w, x,y′)− 2ε .

Hence, for all (x,y) ∈ X × Y , we have

ΓT (w, x,y) ≥ Γ(w, x,y)− 2ε .

Lemma 3

Consider any ε > 0 and any unit L2 norm predictor w for the complete graph G acting on a
normalized joint feature space. For any δ ∈ (0, 1), let

n ≥ `2

ε2

(
1

16
+

1

2
ln

8
√
n

δ

)2

. (2)

Then with probability of at least 1 − δ/2 over all samples T generated according to U(G)n, we
have, simultaneously for all (x,y) ∈ X × Y , that

|FT (w, x,y)− F (w, x,y)| ≤ ε .

Proof. Consider an isotropic Gaussian distribution of joint feature vectors of variance σ2, centred
on φφφ(x,y), with a density given by

Qφφφ(ζζζ)
def
=

(
1√
2πσ

)N
exp−‖ζ

ζζ −φφφ‖2

2σ2
,

where N is the dimension of the feature vectors. When the feature space is infinite-dimensional, we
can consider Q to be a Gaussian process. The end results will not depend on N .

Given the fixed w stated in the theorem, let us define the risk R(Qφφφ,wT ) of Qφφφ on the tree T by
E

ζζζ∼Qφφφ
〈wT , ζζζ〉. By the linearity of 〈·, ·〉, we have

R(Qφφφ,wT )
def
= E

ζζζ∼Qφφφ
〈wT , ζζζ〉 = 〈wT , E

ζζζ∼Qφφφ
ζζζ〉 = 〈wT ,φφφ〉 ,

which is independent of σ.

Gibbs’ risk R(Qφφφ) and its empirical estimate RT (Qφφφ) are defined as

R(Qφφφ)
def
= E

T∼U(G)
R(Qφφφ,wT ) = E

T∼U(G)
〈wT ,φφφ〉

RT (Qφφφ)
def
=

1

n

n∑
i=1

R(Qφφφ,wTi) =
1

n

n∑
i=1

〈wTi ,φφφ〉 .

Consequently, from the definitions of F and FT , we have

F (w, x,y) =
`

2
R(Qφφφ(x,y))

FT (w, x,y) =
`

2
RT (Qφφφ(x,y)) .

Recall that φφφ is a normalized feature map that applies to all (x,y) ∈ X × Y . Therefore, if we have
with probability ≥ 1− δ/2 that, simultaneously for all φφφ of unit L2 norm,

`

2
|RT (Qφφφ)−R(Qφφφ)| ≤ ε , (7)
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then, with the same probability, we will have simultaneously ∀(x,y) ∈ X × Y , that

|FT (w, x,y)− F (w, x,y)| ≤ ε ,
and, consequently, the lemma will be proved.

To prove that we satisfy Equation (7) with probability ≥ 1 − δ/2 simultaneously for all φφφ of unit
L2 norm, let us adapt some elements of PAC-Bayes theory to our case. Note that we cannot use the
usual PAC-Bayes bounds, such as those proposed by [13] because, in our case, the loss 〈wT , ζζζ〉 of
each individual “predictor” ζζζ is unbounded.

The distribution Qφφφ defined above constitutes the posterior distribution. For the prior P , let us use
an isotropic Gaussian with variance σ2 centered at the origin. Hence P = Q0. In that case we have

KL(Qφφφ‖P ) =
‖φφφ‖2

2σ2
=

1

2σ2
.

Given a tree sample T of n spanning trees, let

∆w
def
=

1

n

n∑
k=1

wTk − E
T∼U(G)

wT ,

and consider the Gaussian quadrature

I def
= E

ζζζ∼P
e
√
n|〈∆w,ζζζ〉|

= e
1
2nσ

2‖∆w‖2
(

1 + Erf

[√
n

2
‖∆w‖σ

])
≤ 2e

1
2nσ

2‖∆w‖2 .

We can then use this result for I to upper bound the Laplace transform L in the following way.

L def
= E

T ∼U(G)n
E
ζζζ∼P

e
√
n|〈∆w,ζζζ〉|

≤ 2 E
T ∼U(G)n

e
1
2nσ

2‖∆w‖2

= 2 E
T ∼U(G)n

e
1
2nσ

2 ∑
(i,j)∈G ‖(∆w)i,j‖2 .

Since
E

T∼U(G)
wT =

2

`
w ,

we can write

‖(∆w)i,j‖2 =

∥∥∥∥∥ 1

n

n∑
k=1

(wTk)i,j −
2

`
wi,j

∥∥∥∥∥
2

.

Note that for each (i, j) ∈ G, any sample T , and each Tk ∈ T , we can write

(wTk)i,j = wi,jZ
k
i,j .

where Zki,j = 1 if (i, j) ∈ Tk and Zki,j = 0 if (i, j) /∈ Tk. Hence, we have

‖(∆w)i,j‖2 = ‖wi,j‖2
(

1

n

n∑
k=1

Zki,j −
2

`

)2

.

Hence, for σ2 ≤ 4 and p def
= 2/`, we have

L ≤ 2 E
T ∼U(G)n

e
1
2nσ

2 ∑
(i,j)∈G ‖wi,j‖

2( 1
n

∑n
k=1 Z

k
i,j− 2

` )
2

≤ 2 E
T ∼U(G)n

e2n
∑

(i,j)∈G ‖wi,j‖
2( 1
n

∑n
k=1 Z

k
i,j−p)

2

≤ 2
∑

(i,j)∈G

‖wi,j‖2 E
T ∼U(G)n

e2n( 1
n

∑n
k=1 Z

k
i,j−p)

2

,
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where the last inequality is obtained by using
∑

(i,j)∈G ‖wi,j‖2 = 1 and by using Jensen’s inequal-
ity on the convexity of the exponential.

Now, for any (q, p) ∈ [0, 1]2, let

kl(q‖p) def
= q ln

q

p
+ (1− q) ln

1− q
1− p

.

Then, by using 2(q − p)2 ≤ kl(q‖p) (Pinsker’s inequality), we have for n ≥ 8,

L ≤ 2
∑

(i,j)∈G

‖wi,j‖2 E
T ∼U(G)n

enkl( 1
n

∑n
k=1 Z

k
i,j‖p) ≤ 4

√
n ,

where the last inequality follows from Maurer’s lemma [14] applied, for any fixed (i, j) ∈ G, to the
collection of n independent Bernoulli variables Zki,j of probability p.

The rest of the proof follows directly from standard PAC-Bayes theory [15, 13], which, for com-
pleteness, we briefly outline here.

Since
E
ζζζ∼P

e
√
n|〈∆w,ζζζ〉|

is a non negative random variable, Markov’s inequality implies that with probability > 1− δ/2 over
the random draws of T , we have

ln E
ζζζ∼P

e
√
n|〈∆w,ζζζ〉| ≤ ln

8
√
n

δ
.

By the change of measure inequality, we have with probability > 1− δ/2 over the random draws of
T , simultaneously for all φφφ,

√
n E
ζζζ∼Qφφφ

|〈∆w, ζζζ〉| ≤ KL (Qφφφ‖P ) + ln
8
√
n

δ
.

Hence, by using Jensen’s inequality on the convex absolute value function, we have with probability
> 1− δ/2 over the random draws of T , simultaneously for all φφφ,

|〈∆w,φφφ〉| ≤ 1√
n

[
KL (Qφφφ‖P ) + ln

8
√
n

δ

]
.

Note that we have KL(Qφφφ‖P ) = 1/8 for σ2 = 4 (which is the value we shall use). Also note that the
left hand side of this equation equals to |RT (Qφφφ)−R(Qφφφ)|. In that case, we satisfy Equation (7)
with probability 1− δ/2 simultaneously for all φφφ of unit L2 norm whenever we satisfy

`

2
√
n

[
1

8
+ ln

8
√
n

δ

]
≤ ε ,

which is the condition on n given by the theorem.

Theorem 4

Consider any unit L2 norm predictor w for the complete graph G, acting on a normalized joint
feature space, achieving a margin of Γ(w, x,y) for each (x,y) ∈ X × Y . Then for any ε > 0, and
any n satisfying Lemma 3, for any δ ∈ (0, 1], with probability of at least 1 − δ over all samples T
generated according to U(G)n, there exists a unit L2 norm conical combination (W,q) on T such
that, simultaneously ∀(x,y) ∈ X × Y , we have

ΓT (W,q, x,y) ≥ 1√
1 + ε

[Γ(w, x,y)− 2ε] .
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Proof. For any T , consider a conical combination (W,q) where each ŵTi ∈ W is obtained by
projecting w on Ti and normalizing to unit L2 norm and where

qi =
aTi√∑n
i=1 a

2
Ti

.

Then, from equations (3) and (4), and from the definition of ΓT (w, x,y), we find that for all (x,y) ∈
X × Y , we have

ΓT (W,q, x,y) =

√
n∑n

i=1 a
2
Ti

ΓT (w, x,y) .

Now, by using Hoeffding’s inequality, it is straightforward to show that for any δ ∈ (0, 1], we have

Pr
T ∼U(G)n

(
1

n

n∑
i=1

a2
Ti ≤ 1 + ε

)
≥ 1− δ/2 .

whenever n ≥ `2

8ε ln
(

2
δ

)
. Since n satisfies the condition of Lemma 3, we see that it also satisfies this

condition whenever ε ≤ 1/2. Hence, with probability of at least 1− δ/2, we have
n∑
i=1

a2
Ti ≤ n(1 + ε) .

Moreover Lemma 2 and Lemma 3 imply that, with probability of at least 1− δ/2, we have simulta-
neously for all (x,y) ∈ X × Y ,

ΓT (w, x,y) ≥ Γ(w, x,y)− 2ε .

Hence, from the union bound, with probability of at least 1 − δ, simultaneously ∀(x,y) ∈ X × Y ,
we have

ΓT (W,q, x,y) ≥ 1√
1 + ε

[Γ(w, x,y)− 2ε] .

Derivation of the Primal L2-norm Random Tree Approximation

If we introduce the usual slack variables ξi
def
= γ ·Lγ(ΓT (W,q, xi,yi)), Theorem 5 suggests that we

should minimize 1
γ

∑m
k=1 ξk for some fixed margin value γ > 0. Rather than performing this task

for several values of γ, we can, equivalently, solve the following optimization problem for several
values of C > 0.

min
ξξξ,γ,q,W

1

2γ2
+
C

γ

m∑
k=1

ξk (8)

s.t. : ΓT (W,q, xk,yk) ≥ γ − ξk, ξk ≥ 0, ∀ k ∈ {1, . . . ,m} ,
n∑
i=1

q2
i = 1, qi ≥ 0, ‖wTi‖2 = 1, ∀ i ∈ {1, . . . , n} .

If we now use instead ζk
def
= ξk/γ, and vTi

def
= qiwTi/γ, we then have

∑n
i=1 ‖vTi‖2 = 1/γ2 (under

the constraints of problem (8)). If V def
= {vT1 , . . . ,vTn}, optimization problem (8) is then equivalent

to

min
ζζζ,V

1

2

n∑
i=1

‖vTi‖2 + C

m∑
k=1

ζk (9)

s.t. : ΓT (V,1, xk,yk) ≥ 1− ζk, ζk ≥ 0, ∀ k ∈ {1, . . . ,m} .
Note that, following our definitions, we now have

ΓT (V,1, x,y) =
1√
n

n∑
i=1

〈vTi , φ̂φφTi(x,y)〉 −max
y′ 6=y

1√
n

n∑
i=1

〈vTi , φ̂φφTi(x,y
′)〉 .

We then obtain the optimization problem of Property 6 with the change of variables wTi ← vTi/
√
n,

ξk ← ζk, and C ← C/
√
n.
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Lemma 7

Let y?K = argmax
y∈YT ,K

FT (x,y) be the highest scoring multilabel in YT ,K . Suppose that

FT (x,y?K) ≥ 1

n

n∑
i=1

FwTi
(x,yTi,K)

def
= θx(K)

It follows that FT (x,y?K) = maxy∈Y FT (x,y).

Proof. Consider a multilabel y† 6∈ YT ,K . It follows that for all Ti we have

FwTi
(x,y†) ≤ FwTi

(x,yTi,K).

Hence,

FT (x,y†) =
1

n

n∑
i=1

FwTi
(x,y†) ≤ 1

n

n∑
i=1

FwTi
(x,yTi,K) ≤ FT (x,y?K),

as required.

Lemma 8

Let the scoring function FT of each spanning tree of G be a σT -sub-Gaussian random variable
under the uniform distribution of labels; i.e., for each T on G, there exists σT > 0 such that for any
λ > 0 we have

E
y∼U(Y)

eλ(FT (y)−µT ) ≤ e
λ2

2 σ
2
T .

Let σ2 def
= E
T∼U(G)

σ2
T , and let

α
def
= Pr
T∼U(G)

(
µT ≤ µ ∧ FT (ŷ) ≥ F (ŷ) ∧ σ2

T ≤ σ2
)
.

Then

Pr
T ∼U(G)n

(
∃T ∈ T : ρT (ŷ) ≤ e−

1
2

(F (ŷ)−µ)2

σ2

)
≥ 1− (1− α)n .

Proof. From the definition of ρ(ŷ) and for any λ > 0, we have

ρT (y∗) = Pr
y∼U(Y)

(FT (y) ≥ FT (ŷ))

= Pr
y∼U(Y)

(FT (y)− µT ≥ FT (ŷ)− µT )

= Pr
y∼U(Y)

(
eλ(FT (y)−µT ) ≥ eλ(FT (ŷ)−µT )

)
≤ e−λ(FT (ŷ)−µT ) E

y∼U(Y)
eλ(FT (y)−µT ) (10)

≤ e−λ(FT (ŷ)−µT )e
λ2

2 σ
2
T , (11)

where we have used Markov’s inequality for line (10) and the fact that FT is a σT -sub-Gaussian
variable for line (11). Hence, from this equation and from the definition of α, we have that

Pr
T∼U(G)

(
ρT (ŷ) ≤ e−λ(FT (ŷ)−µT )e

λ2

2 σ
2
T ≤ e−λ(F (ŷ)−µ)e

λ2

2 σ
2
)
≥ α .

Hence,
Pr

T ∼U(G)n

(
∀T ∈ T : ρT (ŷ) > e−λ(F (ŷ)−µ)e

λ2

2 σ
2
)
≤ (1− α)n ,

which is equivalent to the statement of the lemma when we choose λ = [F (ŷ)− µ]/σ2.
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The K-best Inference Algorithm

Algorithm 1 depicts the K-best inference algorithm for the ensemble of rooted spanning trees. The
algorithm takes as input the collection of spanning trees Ti ∈ T , the edge labeling scores

FET = {FTi,v,v′(yv, yv′)}(v,v′)∈Ei,yv∈Yv,yv′∈Yv′ ,Ti∈T

for fixed xk and w, the length of K-best list, and optionally (for training) also the true multilabel yk
for xk.

As a rooted tree implicitly orients the edges, for convenience we denote the edges as directed v →
pa(v), where pa(v) denotes the parent (i.e. the adjacent node on the path towards the root) of v. By
ch(v) we denote the set of children of v. Moreover, we denote the subtree of Ti rooted at a node v
as Tv and by Tv′→v the subtree consisting of Tv′ plus the edge v′ → v and the node v.

The algorithm performs a dynamic programming over each tree in turn, extracting the K-best list
of multilabels and their scores, and aggregates the results of the trees, retrieving the highest scoring
multilabel of the ensemble, the worst violating multilabel and the threshold score of theK-best lists.

The dynamic programming is based on traversing the tree in post-order, so that children of the node
are always processed before the parent. The algorithm maintains sorted K best lists of candidate
labelings of the subtrees Tv and Tv′→v , using the following data structures:

• Score matrix Pv , where element Pv(y, r) records the score of the r’th best multilabel of
the subtree Tv when node v is labeled as y.

• Pointer matrix Cv , where element Cv(y, r) keeps track of the ranks of the child nodes
v′ ∈ ch(v) in the message matrix Mv′→v that contributes to the score Pv(y, r).

• Message matrix Mv→pa(v), where element Mv→pa(v)(y
′, r) records the score of r’th best

multilabel of the subtree Tv→pa(v) when the label of pa(v) is y′.

• Configuration matrix Cv→pa(v), where element Cv→pa(v)(y
′, r) traces the label and rank

(y, r) of child v that achieves Mv→pa(v)(y
′, r).

The processing of a node v entails the following steps. First, the K-best lists of the children of
the node stored in Mv′→v are merged in amortized Θ(K) time per child node. This is achieved by
processing two child lists in tandem starting from the top of the lists and in each step picking the
best pair of items to merge. This process results in the score matrix Pv and the pointer matrix Cv .

Second, the K-best lists of Tv→pa(v) corresponding to all possible labels y′ of pa(v) are formed.
This is achieved by keeping the label of the head of the edge v → pa(v) fixed, and picking the
best combination of labeling the tail of the edge and selecting a multilabel of Tv consistent with that
label. This process results in the matrices Mv→pa(v) and Cv→pa(v). Also this step can be performed
in Θ(K) time.

The iteration ends when the root vroot has updated its score Pvroot . Finally, the multilabels in form
YTi,K are traced using the pointers stored in Cv and Cv→pa(v). The time complexity for a single
tree is Θ(K`), and repeating the process for n trees gives total time complexity of Θ(nK`).

Master algorithm for training the model

The master algorithm (Algorithm 2) iterates over each training example until convergence. The
processing of each training example proceeds by identifying the K worst violators of each tree
together with the threhold score θi = θxi (line 5), determining the worst ensemble violator from
among them (line 6) and updating each tree by the worst ensemble violator (line 8). During the
early stages of the algorithm, it is not essential to identify the worst violator. We therefore propose
that initially K = 2 , and the iterations continue until no violators are identified (line 7). We then
increment K and continue until the condition (line 10-12) given by Lemma 7 is satisfied so that we
are assured of having converged to the global optimum.
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Algorithm 1 Algorithm to obtain top K multilabels on a collection of spanning trees.
FindKBest(T , FET ,K,yi)
Input: Collection of rooted spanning trees Ti = (Ei, Vi),

edge labeling scores FET = {FT,v,v′(yv, yv′)}
Output: The best scoring multilabel y∗, worst violator ȳ, threshold θi

1: for Ti ∈ T do
2: Initialize Pv, Cv,Mv→pa(v), Cv→pa(v),∀v ∈ Vi
3: I = nodes indices in post-order of the tree Ti
4: for j = 1 : |I| do
5: v = vI(j)
6: % Collect and merge K-best lists of children
7: if ch(v) 6= ∅ then
8: Pv(y) = Pv(y) + kmax

rv,v′∈ch(v)

(∑
v′∈ch(v) (Mv′→v(y, rv))

)
9: Cv(y) = Pv(y) + argkmax

rv,v′∈ch(v)

(∑
v′∈ch(v) (Mv′→v(y, rv))

)
10: end if
11: % Form the K-best list of Tv→pa(v)

12: Mv→pa(v)(ypa(v)) = kmax
y,r

(
Pv(y, r) + FT,v→pa(v)(yv, ypa(v))

)
13: Cv→pa(v)(ypa(v)) = argkmax

uv,r

(
Pv(uv, r) + FT,v→pa(v)(uv, ypa(v))

)
14: end for
15: Trace back with Cv and Cv→pa(v) to get YTi,K .
16: end for
17: YT ,K =

⋃
Ti∈T

YTi,K

18: y∗ = argmax
y∈YT ,K

n∑
i=1

∑
(v,v′)=
e∈Ei

FTi,v,v′(yv, yv′)

19: ȳ = argmax
y∈YT ,K\yi

n∑
i=1

∑
(v,v′)=
e∈Ei

FTi,v,v′(yv, yv′)

20: θi =

n∑
i=1

∑
(v,v′)=
e∈Ei

FTi,v,v′(yTi,K,v, yTi,k,v′)
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Algorithm 2 Master algorithm.
Input: Training sample {(xk,yk)}mk=1, collection of spanning trees T , minimum violation γ0

Output: Scoring function FT
1: Kk = 2,∀k ∈ {1, · · · ,m}; wTi = 0,∀ Ti ∈ T ; converged = false
2: while not(converged) do
3: converged = true
4: for k = {1, . . . ,m} do
5: ST = {STi,e(k,ue)|STi,e(k,ue) = 〈wTi,e, φTi,e(xk,ue)〉 ,∀(e ∈ Ei, Ti ∈ T ,ue ∈

Yv × Yv′)}
6: [y∗, ȳ, θi] = FindKBest(T , ST ,Ki,yi)
7: if FT (xi, ȳ)− FT (xi,yi) ≥ γ0 then
8: {wTi}Ti∈T = updateTrees({wTi}Ti∈T , xi, ȳ)
9: converged = false

10: else
11: if θi > FT (xi, ȳ) then
12: Ki = min(2Ki, |Y|)
13: converged = false
14: end if
15: end if
16: end for
17: end while

Derivation of the Marginal Dual

Definition 6. Primal L2-norm Random Tree Approximation

min
wTi ,ξk

1

2

n∑
i=1

||wTi ||
2
2 + C

m∑
k=1

ξk

s.t.
n∑
i=1

〈wTi , φ̂φφTi(xk,yk)〉 −max
y 6=yk

n∑
i=1

〈wTi , φ̂φφTi(xk,y)〉 ≥ 1− ξk

ξk ≥ 0,∀ k ∈ {1, . . . ,m},
where {wTi |Ti ∈ T } are the feature weights to be learned on each tree, ξk is the margin slack allo-
cated for each example xk, and C is the slack parameter that controls the amount of regularization in
the model. This primal form has the interpretation of maximizing the joint margins from individual
trees between (correct) training examples and all the other (incorrect) examples.

The Lagrangian of the primal form (Definition 6) is

L(wTi , ξ,ααα,βββ) =
1

2

n∑
i=1

||wTi ||
2
2 + C

m∑
k=1

ξk −
m∑
k=1

βkξk

−
m∑
k=1

∑
y 6=yk

αk,y

(
n∑
i=1

〈wTi ,∆φ̂φφTi(xk,yk)〉 − 1 + ξk

)
,

where αk and βk are Lagrangian multipliers that correspond to the constraints of the primal form,
and ∆φ̂φφTi(xk,yk) = φ̂φφTi(xk,yk) − φ̂φφTi(xk,y). Note that given a training example-label pair
(xk,yk) there are exponential number of αk,y one for each constraint defined by incorrect example-
label pair (xk,y).

Setting the gradient of Lagrangian with respect to primal variables to zero, we obtain the following
equalities:

∂L
∂wTi

= wTi −
m∑
k=1

∑
y 6=yk

αk,y∆φ̂φφTi(xk,yk) = 0,

∂L
∂ξk

= C −
∑
y 6=yk

αk,y − βk = 0,
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which give the following dual optimization problem.
Definition 10. Dual L2-norm Random Tree Approximation

max
ααα≥0

αααᵀ1− 1

2
αααᵀ

(
n∑
i=1

KTi

)
ααα

s.t.
∑
y 6=yk

αk,y ≤ C, ∀ k ∈ {1, . . . ,m},

where ααα = (αk,y)k,y is the vector of dual variables. The joint kernel

KTi(xk,y;xk′ ,y
′) = 〈φ̂φφTi(xk,yk)− φ̂φφTi(xk,y), φ̂φφTi(xk′ ,yk′)− φ̂φφTi(xk′ ,y

′)〉
= 〈ϕ(xk), ϕ(xk′)〉ϕ · 〈ψTi(yk)− ψTi(y), ψTi(yk′)− ψTi(y′)〉ψ

= Kϕ(xk, xk′) ·
(
Kψ
Ti

(yk,yk′)−Kψ
Ti

(yk,y
′)−Kψ

Ti
(y,yk′) +Kψ

Ti
(y,y′)

)
= Kϕ(xk, xk′) ·K∆ψ

Ti
(yk,y;yk′ ,y

′)

is composed by input kernel Kϕ and output kernel Kψ
Ti

defined by
Kϕ(xk, xk′) = 〈ϕ(xk), ϕ(xk′)〉ϕ

K∆ψ
Ti

(yk,y;yk′ ,y
′) = Kψ

Ti
(yk,yk′)−Kψ

Ti
(yk,y

′)−Kψ
Ti

(yk′ ,y) +Kψ
Ti

(y,y′).

To take advantage of the spanning tree structure in solving the problem, we further factorize the dual
(Definition 10) according to the output structure [9, 16]. by defining a marginal dual variable µ as

µ(k, e,ue) =
∑
y 6=yk

1{ψ(y)=ue}αααk,y,

where e = (j, j′) ∈ E is an edge in the output graph and ue ∈ Y × Y ′ is a possible label of edge e.
As each marginal dual variable µ(k, e,ue) is the sum of a collection of dual variables αk,y that has
consistent label (uj , uj′) = ue, we have the following∑

ue

µ(k, e,ue) =
∑
y 6=yk

αααk,y (12)

for an arbitrary edge e, independently of the structure of the trees.

The linear part of the objective (Definition 10) can be stated in term of µµµ for an arbitrary collection
of trees as

αααᵀ1 =

m∑
k=1

∑
y 6=yk

αk,y =
1

|ET |

m∑
k=1

∑
e∈ET

∑
ue

µ(k, e,ue) =
1

|ET |
∑
e,k,ue

µ(k, e,ue) ,

where edge e = (j, j′) ∈ ET appearing in the collection of trees T .

We observe that the label kernel of tree Ti, K
ψ
Ti

, decomposes on the edges of the tree as

Kψ
Ti

(y,y′) = 〈y,y′〉ψ =
∑
e∈Ei

〈ye, y′e〉ψ =
∑
e∈Ei

Kψ,e(ye, y
′
e).

Thus, the output kernel K∆ψ
Ti

and the joint kernel KTi also decompose

K∆ψ
Ti

(yk,y;yk′ ,y
′) =

(
Kψ
Ti

(yk,yk′)−Kψ
Ti

(yk,y
′)−Kψ

Ti
(yk′ ,y) +Kψ

Ti
(y,y′)

)
=
∑
e∈Ei

(
Kψ,e
Ti

(yke, yk′e)−Kψ,e
Ti

(yke, y
′
e)−K

ψ,e
Ti

(ye, yk′e) +Kψ,e
Ti

(ye, y
′
e)
)

=
∑
e∈Ei

K∆ψ,e
Ti

(yke, ye; yk′e, y
′
e),

KTi(xk,y;xk′ ,y
′) = Kψ(xk, xk′) ·K∆ψ

Ti
(yk,y;yk′ ,y

′)

= Kψ(xk, xk′) ·
∑
e∈Ei

K∆ψ,e(yke, ye; yk′e, y
′
e)

=
∑
e∈Ei

Ke(xk, ye;xk′ , y
′
e).
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The sum of joint kernels of the trees can be expressed as
n∑
i=1

KTi(xk,y;xk′ ,y
′) =

n∑
i=1

∑
e∈Ei

Ke(xk, ye;xk′ , y
′
e)

=
∑
e∈ET

∑
Ti∈T :
e∈Ei

Ke(xk, ye;xk′ , y
′
e)

=
∑
e∈ET

NT (e)Ke(xk, ye;xk′ , y
′
e)

where NT (e) denotes the number of occurrences of edge e in the collection of trees T .

Taking advantage of the above decomposition and of the Equation (12) the quadratic part of the
objective (Definition 10) can be stated in term of µµµ as

− 1

2
αααᵀ

(
n∑
i=1

KTi

)
ααα

= − 1

2
αααᵀ

(∑
e∈ET

NT (e)Ke(xk,y;xk′ ,y
′)

)
ααα

= − 1

2

m∑
k,k′=1

∑
e∈ET

NT (e)
∑
y 6=yk
y′ 6=yk′

α(k,y)Ke(xk, ye;xk′ , y
′
e)α(k′,y′)

= − 1

2

m∑
k,k′=1

∑
e∈ET

NT (e)
∑
ue,u′e

∑
y 6=yk:ye=ue
y′ 6=yk′ :y

′
e=u′e

α(k,y)Ke(xk,ue;xk′ ,u
′
e)α(k′,y′)

= − 1

2

m∑
k,k′=1

∑
e∈ET

NT (e)

|ET |2
∑
ue,u′e

µ(k, e,ue)K
e(xk,ue;xk′ ,u

′
e)µ(k′, e,u′e)

= − 1

2

∑
e,k,ue,
k′,u′e

µ(k, e,ue)K
e
T (xk,ue;xk′ ,u

′
e)µ(k′, e,u′e),

where ET is the union of the sets of edges appearing in T .

We then arrive at the following definition.

Definition 9. Marginalized Dual L2-norm Random Tree Approximation

max
µµµ∈Mm

1

|ET |
∑
e,k,ue

µ(k, e,ue)−
1

2

∑
e,k,ue,
k′,u′e

µ(k, e,ue)K
e
T (xk,ue;x

′
k,u
′
e)µ(k′, e,u′e) ,

whereMm is marginal dual feasible set defined as (c.f., [9])

Mm =

µµµ |µ(k, e,ue) =
∑
y 6=yk

1{yke=ue}ααα(k,y) , ∀(k, e,ue)

 .

The feasible set is composed of a Cartesian product ofm identical polytopesMm =M×· · ·×M,
one for each training example. Furthermore, each µµµ ∈ M corresponds to some dual variable ααα in
the original dual feasible set A = {ααα|α(k,y) ≥ 0,

∑
y 6=yi

α(k,y) ≤ C, ∀k}.
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Experimental Results

Table 2 provides the standard deviation results of the prediction performance results of Table 1 for
each algorithm in terms of the microlabel and 0/1 error rates. Values are obtained by five fold
cross-validation.

DATASET
MICROLABEL LOSS (%) 0/1 LOSS (%)

SVM MTL MMCRF MAM RTA SVM MTL MMCRF MAM RTA
EMOTIONS 1.9 1.8 0.9 1.4 0.6 3.4 3.5 3.1 4.2 1.5

YEAST 0.7 0.5 0.6 0.5 0.6 2.8 1.0 1.5 0.4 1.2
SCENE 0.3 0.5 0.3 0.1 0.3 1.4 3.6 1.2 0.9 0.6
ENRON 0.2 0.2 0.2 0.2 0.2 0.3 0.4 2.8 2.3 0.9
CAL500 0.3 0.3 0.3 0.2 0.4 0.0 0.0 0.0 0.0 0.0

FINGERPRINT 0.3 0.6 0.6 0.3 0.6 0.7 0.0 0.5 0.6 1.3
NCI60 0.7 0.6 1.3 0.9 1.6 1.3 2.0 1.4 1.2 2.2

MEDICAL 0.0 0.1 0.1 0.1 0.2 2.1 2.3 3.3 2.5 3.6
CIRCLE10 0.9 0.7 0.3 0.4 0.3 3.8 3.4 2.1 3.5 1.7
CIRCLE50 0.5 0.5 0.3 0.3 0.6 2.0 3.3 4.5 5.5 2.2

Table 2: Standard deviation of prediction performance for each algorithm in terms of microlabel
loss and 0/1 loss.
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