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Abstract We present new methods for multilabel classification, relying on
ensemble learning on a collection of random output graphs imposed on the
multilabel, and a kernel-based structured output learner as the base classi-
fier. For ensemble learning, differences among the output graphs provide the
required base classifier diversity and lead to improved performance in the
increasing size of the ensemble. We study different methods of forming the
ensemble prediction, including majority voting and two methods that perform
inferences over the graph structures before or after combining the base models
into the ensemble. We put forward a theoretical explanation of the behaviour
of multilabel ensembles in terms of the diversity and coherence of microlabel
predictions, generalizing previous work on single target ensembles. We com-
pare our methods on a set of heterogeneous multilabel benchmark problems
against the state-of-the-art machine learning approaches, including multilabel
AdaBoost, convex multitask feature learning, as well as single target learning
approaches represented by Bagging and SVM. In our experiments, the random
graph ensembles are very competitive and robust, ranking first or second on
most of the datasets. Overall, our results show that our proposed random graph
ensembles are viable alternatives to flat multilabel and multitask learners.
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1 Introduction

Multilabel and multitask classification rely on representations and learning
methods that allow us to leverage the dependencies between the different la-
bels. When such dependencies are given in form of a graph structure such as a
sequence, a hierarchy or a network, structured output prediction (Taskar et al,
2003;; ' Tsochantaridis et al, [2004; [Rousu et al, |2006) becomes a viable option,
and has achieved a remarkable success. For multilabel classification, limiting
the applicability of the structured output prediction methods is the very fact
they require the predefined output structure to be at hand, or alternatively
auxiliary data where the structure can be learned from. When these are not
available, flat multilabel learners or collections of single target classifiers are
thus often resorted to.

In this paper, we study a different approach, namely using ensembles of
graph labeling classifiers, trained on randomly generated output graph struc-
tures. The methods are based on the idea that variation in the graph structures
shifts the inductive bias of the base learners and causes diversity in the pre-
dicted multilabels. Each base learner, on the other hand, is trained to predict
as good as possible multilabels, which makes them satisfy the weak learning
assumption, necessary for successful ensemble learning.

Ensembles of multitask or multilabel classifiers have been proposed, but
with important differences. The first group of methods, boosting type, rely
on changing the weights of the training instances so that difficult to classify
instances gradually receive more and more weights. The AdaBoost boosting
framework has spawned multilabel variants (Schapire and Singer}, 2000; [Esuli
et all 2008). In these methods the multilabel is considered essentially as a
flat vector. The second group of methods, Bagging, are based on bootstrap
sampling the training set several times and building the base classifiers from
the bootstrap samples. Thirdly, randomization has been used as the means of
achieving diversity by [Yan et al (2007) who select different random subsets
of input features and examples to induce the base classifiers, and by |Su and
Rousul (2011)) who use majority voting over random graphs in drug bioactivity
prediction context. Here we extend the last approach to two other types of en-
sembles and a wider set of applications, with gain in prediction performances.
A preliminary version of this article appeared as (Su and Rousu, [2013]).

The remainder of the article is structured as follows. In section[2] we present
the structured output model used as the graph labeling base classifier. In Sec-
tion [3] we present three aggregation strategies based on random graph labeling.
In section [4] we present empirical evaluation of the methods. In section [5] we
present concluding remarks.

2 Multilabel classification through graph labeling

We start by detailing the graph labeling classification methods that are sub-
sequently used as the base classifier. We examine the following multilabel
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classification setting. We assume data from a domain X x ), where X is a set
and Y = Y; X .-+ X Yy is the set of multilabels, represented by a Cartesian
product of the sets V; = {1,...,1;},7 = 1,..., k. In particular, setting k = 1,
Ii = 2 (¥ = {1,2}) corresponds to binary classification problem. A vector
y = (Y1,...,yk) € Y is called the multilabel and the components y; are called
the microlabels. We assume that a training set {(z;,y:)}.~; C X X Y has been
given. A pair (x;,y) where z; is a training pattern and y € ) is arbitrary, is
called a pseudo-example, to denote the fact that the pair may or may not be
generated by the distribution generating the training examples. The goal is to
learn a model F : X — ) so that the expected loss over predictions on future
instances is minimized, where the loss function is chosen suitably for multil-
abel learning problems. By 1., we denote the indicator function 1;4y = 1, if
A is true, 1;4y = 0 otherwise.

Here, we consider solving multilabel classification with graph labeling clas-
sifiers that, in addition to the training set, assumes a graph G = (V, E) with
nodes V' = {1,...,k} corresponding to microlabels and edges E C V x V
denoting potential dependencies between the microlabels. For any edge e =
(4,7") € E, we denote by y. = (y;,y;/) the edge label of e in multilabel y,
induced by concatenating the microlabels corresponding to end points of e,
with corresponding domain of edge labels V. = V; x V;/. By y;. we denote the
label of the edge e in the ¢’th training example. Hence, for a fixed multilabel
¥, we can compute corresponding node label y; of node j € V and edge label
ye of edge e € E. We also use separate notation for node and edge labels that
are free, that is, not bound to any particular multilabel. We denote by u; a
possible label of node j, and u. a possible labels of edge e. Naturally, u; € V;
and u, € ),. See supplementary material for a comprehensive list of notations.

2.1 Graph labeling classifier

As the graph labeling classifier in this work we use max-margin structured
output prediction, with the aim to learn a compatibility score for pairs (z,y) €
X x Y, indicating how well an input goes together with an output. Naturally,
such a score for coupling an input z with the correct multilabel y should be
higher than the score of the same input with an incorrect multilabel y’. The
compatibility score between an input z and a multilabel y takes the form

'(/)(x7Y) = <U},<p(l‘,y)> = Z<weagpe(l‘7ye)> = Zwe($7Ye)7 (1)

eckl ecE

where by (-,-) we denote the inner product and parameter w contains the
feature weights to be learned. 1.(z,y.) is a shorthand for the compatibility
score, or the potential, between the input z and an edge label y., defined as
Ye(T,ye) = (We, pe(x,¥e)), where w, is the element of w that associates to
edge e. The joint feature map

@(x,y) = (;S(x) ® T(Y) = (15(17) oY (Te(}’e))eeE = (‘Pe($7Ye))eeE
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is given by a tensor product of an input feature ¢(z) and the feature space
embedding of the multilabel Y'(y) = (Ye(ye)).cp, consisting of edge label
indicators 7, (y.) = (1{},6:“6})“0 cy,- The benefit of the tensor product rep-
resentation is that context (edge label) sensitive weights can be learned for
input features and no prior alignment of input and output features needs to
be assumed.

The parameters w of the model are learned through max-margin optimiza-
tion, where the primal optimization problem takes the form (e.g. Taskar et al,
2003;; ' Tsochantaridis et al, 2004; Rousu et all [2006)

r{ulign %||w||2+CZ§z‘ (2)
’ i=1
st (w, (s, y:)) > max ((w, p(z;,y)) + Lyi,y)) — &,
yEeY

fiZO,ViE{l,...,m},

where £; denotes the slack allotted to each example, ¢(y;,y) is the loss func-
tion between pseudo-label and correct label, and C' is the slack parameter that
controls the amount of regularization in the model. The primal form can be
interpreted as maximizing the minimum margin between the correct training
example and incorrect pseudo-examples, scaled by the loss function. The intu-
ition behind loss-scaled margin is that example with nearly correct multilabel
would require smaller margin than with multilabel that is quite different from
the correct one. Denoting Ap(x;,y) = ¢(x;,¥:) — o(zi,y), the Lagrangian of
the problem is given by

m

L&) = Jl0l4C Y 6= alivy) (w, Ap(wi,y) + Uyisy )=

1y

where by setting derivatives to zero with respect to w we obtain

w =Y ali,y)dp(zi,y), (3)

By

and the zero derivatives for £ give the box constraint  «a(i,y) < C for all 4,
while the dual variables p; are canceled out. Maximization with respect to a’s
gives the dual optimization problem as

1
max o’/ — —aTKa (4)
a>0 2

s.t. Za(@y) <C\Vie{l,...,m},
y



Multilabel Classification through Random Graph Ensembles 5

where a = (a(i,y)), , denotes the vector of dual variables and £ = ({(yi,y));
is the vector of losses for each pseudo-example (x;,y). The joint kernel

Yy

K(zi,y;25,5") = (p(@i,¥i) — (@0, ¥), (x5, ¥5) — o(z5,¥"))
= (p(x:), () - (V(yi) =T (¥), T (y;) = T(¥))r
= Ky(wi, zj) - (Kr(yi,y;) — Kr(yi,y') — Kr(y,y;) + Kx(y,y'))
= Ky(zi,75) - Kar(yi,y;5,5")

is composed by product of input kernel Ky(x;,x;) = (z;,x;)¢ and output
kernel

Kar(yi,y:y;,¥) = (Kr(yi,y;) — Kx(yi,y') — Kx(y,y;) + Kr(y,y')),

where Kr(y,y’") = (X (y'), Y (y)).

2.2 Factorized dual form

The dual optimization problem is a challenging one to solve due to the
exponential-sized dual variable space, thus efficient algorithms are required. A
tractable form is obtained via factorizing the problem according to the graph
structure. Following Rousu et al| (2007)), we transform into the factorized
dual form, where the edge-marginals of dual variables are used in place of the
original dual variables

pieue) = 1ix, y)—u (i, ¥), (5)
yey

where e = (j,j') € E is an edge in the output graph and u. € Y; x Y; is a
possible label for the edge (7, 5).
The output kernel decomposes by the edges of the graph as

Kr(y,y) =) T(y) =D Kre(ye,vo),

where Kre(u,u’) = (Te(u),Ye(v'))r. Given the joint features defined by the
tensor product, the joint kernel also decomposes as

K(z;,y;25,y') = Kg(z, 2" ) Kar(y:,y; ¥,y ) =
= ZKM”J;Q?/)KAT@(Y&Y;) = ZKe($,Ye§$/7y/e)7

where we have denoted

Kare(Yie;Yei Vie, Ye) =
(KT,e(Yianje) - KT,e(Yian;) - KT,e(Yanje) + KT,e(Yevyle)) .
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Using the above, the quadratic part of the objective factorizes as follows

TKOZ_ZZZ 7/ y $zaYe7$g7ye) (jvy/)

e jyy
= ZZZKG(Z‘Z',U; l‘j,ll/) Z Z a(z’,y)a(j,y')
e i,j uu y:iye=uyy,=u’
_ZZZMZQU .’17“11.’17], /)M(jae7u/)
e 1,75 u,u’

where Kp = diag (K.,e € E) is a block diagonal matrix with edge-specific
kernel blocks K. and p = (u(i, e,u)), ., is the vector of marginal dual vari-
ables. We assume a loss function that can be expressed in a decomposed form

as
,) = de(}’eyyé)v

a property that is satisfied by the Hamming loss family, counting incorrectly
predicted nodes (i.e. microlabel loss) or edges, and are thus suitable for our
purpose. With a decomposable loss function, the linear part of the objective
satisfies

DD aley)yny) =Y > aliy) Y Le(Yiesye) =

i=1yey =1y

Yo D> aliy)lelyie, ) (7)

le€Eu€EY,. y:ye=u

Z M €, u y’L€7 ZNTK - MTgEy

UEYe

3

I
NE

.
Il

I
Ms

i
I\
&

ec

where (g = ()", = (Ce(i,u))i, CGE uey is the vector of losses. Given the
above, we can state the dual problem in equivalent form (c.f. Taskar et al,
2003; [Rousu et al, [2007)) as

1
T T
max p' L ——u” Kgp 8
;LGaj\A QM B ()

where the constraint set is the marginal polytope (c.f. |Rousu et al, 2007}
Wainwright et all, [2005])

M ={u|Fa € As.t. uli,e,u.) = Z liy,.—u.0(i,y), Vi, uc, e}
yey

of the dual variables, the set of all combinations of marginal dual variables
of training examples that correspond to some « in the original dual feasible set
A={ala(i,y) > 0,3, a(i,y) < C,Vi} in (4). Note that the above definition
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of M automatically takes care of the consistency constraints between marginal
dual variables (c.f. [Rousu et al, 2007)).

The factorized dual problem is a quadratic program with a number
of variables linear in both the size of the output network and the number of
training examples. There is an exponential reduction in the number of dual
variables from the original dual , however, with the penalty of more complex
feasible polytope M. For solving (8]) we use MMCRF (Rousu et al, |2007) that
relies on a conditional gradient method. Update directions are found in linear
time via probabilistic inference (explained in the next section), making use of
the the exact correspondence of maximum margin violating multilabel in the
primal and steepest feasible gradient of the dual objective (4)).

2.3 Inference

In both training and prediction, efficient inference is required over the multi-
label spaces. In training any of the models , one needs to iteratively
solve the loss-augmented inference problem

y(x:) = argg;ax ((w, p(zi,y)) + £(yi,y))

= argmaxZ(we, Pe(@is¥e)) +Le(Yes Vie) 9)
yey e
that finds for each example the multilabel that violates its margins the most
(i.e. the worst margin violator) given the current w. Depending on the opti-
mization algorithm, the worst-margin violator may be used to grow a con-
straint set (column-generation methods), or to define an update direction
(structured perceptron, conditional gradient).
In the prediction phase, the inference problem to be solved is simply to
find the highest scoring multilabel for each example:

y(z) = argmax (w, (2, y)) = argmax ;@ve’ pe(,y)) (10)

Both of the above inference problems can be solved in the factorized dual,
thus allowing us to take advantage of kernels for complex and high-dimensional
inputs, as well as the linear-size dual variable space.

Next, we put forward a lemma that shows explicitly how the compatibility
score e (2,ye) = (We, pe(2,yc)) of labeling an edge e as y. given input x can
be expressed in terms of kernels and marginal dual variables. We note that the
property is already used in marginal dual based structured output methods
such as MMCRF, however, below we make the property explicit, to facilitate
the description of the ensemble learning methods.

Lemma 1 Let w be the solution to (@, p(xz,y) be the joint feature map, and
let G = (V,E) be the graph defining the output graph structure, and let us
denote

He(xh Ue; x7Ye) = K¢(1‘,JCZ‘) . (KT,e(yiea}’e) - KT,e(uea}’e)) .
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Then, we have

¢e(ane) <wev§pe x Ye Zﬂ i,€, ue : (xiaueQane)a

i,Ue

where p is the marginal dual variable learned by solving optimization problem

Proof Using and , and elementary tensor algebra, the compatibility
score of a example (z,y’) is given by

(w, p(z,y")) ZZ a(i,y)(Ap(wi, y), p(z,y"))
_ZZZ Z Z y A(pe(ﬂh,ue) (pe(.’lf,y;»

€ Uc Y:ye=Uc

=;Z;u i, e, u) (9(2:) @ (Lelyie) = Le(ue)), 6(2) @ elyL))
=Xe)iUZCu(zye,ue>K¢<xi7x><Te<yi6) ~Te(u). e(y0)
ZEiuzﬁu(iaaue)KM%w) (Kre(Yieyt) = Kre(uc,y0))
—Z;iu(eivevue) - He(zi,ue; 2, ye).

The loss-augmented inference problem can thus be equivalently expressed in
the factorized dual by

Y( ) =argmax Z% T Ye) + 4 (}’anze) (11)
yey

=argmax Z M(iae7ue)He(iaue;anE) +£e(yanie)-

Similarly, the inference problem solved in prediction phase can be solved
in the factorized dual by

y(x) =argmax Zwe Z,¥e) = argmax Z We, 0e(T,ye)) (12)
yey yey e

=argmax Z /J(ia €, ue)He(iv Ue; T, YE)'

To solve or any commonly used inference technique for graphi-
cal models can be applied. In this paper we use MMCRF that relies on the
message-passing method, also referred as loopy belief propagation (LBP). We
use early stopping in inference of LBP, so that the number of iterations is
limited by the diameter of the output graph G.
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3 Learning graph labeling ensembles

In this section we consider generating ensembles of multilabel classifiers,
where each base model is a graph labeling classifier. Algorithm [I| depicts the
general form of the learning approach. We assume a function to output a
random graph G® for each stage of the ensemble, a base learner F(*)(-) to learn
the graph labeling model, and an aggregation function A(-) to compose the
ensemble model. The prediction of the model is then obtained by aggregating
the base model predictions

F(z) = A(FD(z),...,FD(z)).

Given a set of base models trained on different graph structures we ex-
pect the predicted labels of the ensemble have diversity which is known to
be necessary for ensemble learning. At the same time, since the graph label-
ing classifiers aim to learn accurate multilabels, we expect the individual base
classifiers to be reasonably accurate, irrespective of the slight changes in the
underlying graphs. Indeed, in this work we use randomly generated graphs to
emphasize this point. We consider the following three aggregation methods:

— In majority-voting-ensemble, each base learner gives a prediction of the
multilabel. The ensemble prediction is obtained by taking the most frequent
value for each microlabel. Majority voting aggregation is admissible for any
multilabel classifier.

Second, we consider two aggregation strategies that assume the base classifier
has a conditional random field structure:

— In average-of-maximum-marginals aggregation, each base learner infers lo-
cal maximum marginal scores for each microlabel. The ensemble prediction
is taken as the value with highest average local score.

— In mazimum-of-average-marginals aggregation, the local edge potentials of
each base model are first averaged over the ensemble and maximum global
marginal scores are inferred from the averages.

In the following, we detail the above aggregation strategies.

Input: Training sample S = {(z;,y:)}/~,, ensemble size T, graph generating oracle
function outputGraph : t € {1,...,T} — Gy, aggregation function
A Fx - xF=Y
Output: Multilabel classification ensemble F'(-) : X — Y
s forte{l,...,T} do
G = outputGraph(t)
F*(-) = learnGraphLabelingClassifier((z;)™, , (y:)7, , G®)
end for

Algorithm 1: Graph Labeling Ensemble Learning
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3.1 Majority voting ensemble (MVE)

The first ensemble model we consider is the majority voting ensemble (MVE),
which was introduced in drug bioactivity prediction context by |Su and Rousu
(2011). In MVE, the ensemble prediction on each microlabel is the most fre-
quently appearing prediction among the base classifiers

T
1
FJMvE(gU) = argmax, (T E 1{F]?‘>(w)—yj}> ,
i=1

where F(*)(z) = (Fj(t) (z))h_, is the predicted multilabel in the #'th base clas-
sifier. When using as the base classifier, predictions F’ (t)(x) are obtained
via solving the inference problem . We note, however, in principle, any
multilabel learner will fit into the MVE framework as long as it adapts to
a collection of output graphs G = {G() ... ,G(T)} and generates multilabel

predictions accordingly from each graph.

3.2 Average-of-max-marginal aggregation (AMM)

Next, we consider an ensemble model where we perform inference over the
graph to extract information on the learned compatibility scores in each base
model. Thus, we assume that we have access to the compatibility scores be-
tween the inputs and edge labels

g’z(;t) (I) = (z/}ét) (.Z', ue))eGE(t),ueeye'

In the AMM model, our goal is to infer for each microlabel u; of each node
j its maz-marginal (Wainwright et all 2005)), that is, the maximum score of a
multilabel that is consistent with y; = u;

Vilew) = max ;we(x, ye). (13)
One readily sees as a variant of the inference problem , with similar
solution techniques. The maximization operation fixes the label of the node
y; = u; and queries the optimal configuration for the remaining part of output
graph. In message-passing algorithms, only slight modification is needed to
make sure that only the messages consistent with the microlabel restriction
are considered. To obtain the vector ¥ (z) = (¢;(z, uj))j.u; the same inference
is repeated for each target-microlabel pair (j,u;), hence it has quadratic time
complexity in the number of edges in the output graph.
Given the max-marginals of the base models, the AMM ensemble is con-
structed as follows. Let G = {G(l), e ,G(T)} be a set of output graphs, and
let {TW(z),--- ¥ ()} be the max-marginal vectors of the base classifiers
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Fig. 1 An example of AMM scheme, where three base models are learned on the output
graph GM G2 GG), Given an example z, each base model computes for node v1 local max-

marginals w(t) for all u1 € {4+, —}. The AMM collects local max-marginals Zt 1 w;t) (z),
and outputs F1 (z) =+ if Zt 1 w(t) (z) > Zt i w(t) (z), otherwise outputs Fi(z) = —.

trained on the output graphs. The ensemble prediction for each target is ob-
tained by averaging the max-marginals of the base models and choosing the
maximizing microlabel for the node:

FMM(z) = argn)l}ax Z 1/11(22
u;€Y;

and the predicted multilabel is composed from the predicted microlabels
FAMM(x) — (FJAMM(‘Z‘))JEV .

An illustration of AMM ensemble scheme is shown in Fig. [I} Edge infor-
mation on individual base learner are not preserved during AMM ensemble,
which is shown as dash line in Fig. [1l In principle, AMM ensemble can give
different predictions compared to MVE, since the most frequent label may not
be the ensemble prediction if it has lower average max-marginal score.

3.3 Maximum-of-average-marginals aggregation (MAM)

The next model, the maximum-of-average-marginals (MAM) ensemble, first

collects the local compatibility scores J/,(Et )(x) from individual base learners,
averages them and finally performs inference on the global consensus graph
with averaged edge potentials. The model is defined as

FMAM( ) = argmax Z Z w(t) .’IJ ye = argmax Z Z (t)7(Pe CL‘ ye)>'
yey eeE t=1 t lecE

With the factorized dual representation, this ensemble scheme can be im-
plemented simply and efficiently in terms of marginal dual variables and the
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e3

STl @)

Fig. 2 An example of MAM scheme, where three base models are learned on the output
graph GM G2 GG), Given an example z, each base model computes for edge ez local edge
potentials wﬁf,} (z,u) for all ue = {——, —+, +—, ++}. For graph G®) where ez ¢ E®) | we
first impute corresponding marginal dual variable of e on G(3)according to local consistency
constraints. Similar computations are required for edge e; and ez. The finial prediction is
through inference over averaged edge potentials on consensus graph G.

associated kernels, which saves us from explicitly computing the local com-
patibility scores from each base learner. Using Lemma , the above can be
equivalently expressed as

T
1
MAM _ - (t) (5 . : .
F (x)—argmaxTE E (i, e,ue) - He(i,ue; 2, ye)

yey t=1 i,e,u.

:argmax Z ﬁ(l7 e7u€)H€(i7 ue;x7y€)7

where we denote by fi(i,e,u.) = 7 23:1 1 (i, e,u.) the marginal dual vari-
able averaged over the ensemble. We note that u(*) is originally defined on edge
set E® 1 from different random output graph are not mutually consistent.
In practice, we first construct a consensus graph G = (E, V') by pooling edge
sets E®) then complete u(¥) on E where missing components are imputed
via exploring local consistency conditions and solving constrained least square
problem. Thus, the ensemble prediction can be computed in marginal dual
form without explicit access to input features, and the only input needed from
the different base models are the values of the marginal dual variables. An
example that illustrates the MAM ensemble scheme is shown in Fig.

3.4 The MAM ensemble analysis

Here, we present theoretical analysis of the improvement of the MAM ensemble
over the mean of the base classifiers. The analysis follows the spirit of the
single-label ensemble analysis by [Brown and Kuncheva| (2010), generalizing it
to the multilabel MAM ensemble.

Assume there is a collection of T individual base learners, indexed by ¢ €
{1,---, T}, that output compatibility scores wét) (x,u.) forall t € {1,...,T},
e € E® and u. € ).. For the purposes of this analysis, we express the
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compatibility scores in terms of the nodes (microlabels) instead of the edges
and their labels. We denote by

1
¢j($,yj): Z 1{yj:uj}§we(x7ue)

e=(4.4"),
eeN(j)

the sum of compatibility scores of the set of edges N(j) incident to node j
with consistent label y. = (y;,¥;/),y; = u;. Then, the compatibility score for
the input and the multilabel in can be alternatively expressed as

Y) =D el ye) = Y _ ;@ y5).
eckE jeVv

The compatibility score from MAM ensemble can be similarly represented in
terms of the nodes by

wMAM(‘,L‘7y) _ %Zw(t)(g;7y) = Z'(/;e(z%}’e) = Z’J}j(m7yj)a

ecE JjeVv

where we have denoted ¢, (z, ;) = + Zt (x y;) and Ve (2, ye) = = Zt (33 Ve)-
Assume now the ground truth, the optlmal compatibility score of an ex-

ample and multilabel pair (z,y), is given by ¢¥*(z,y) = Zjev Vi(z,y;). We
study the reconstruction error of the compatibility score distribution, given by
the squared distance of the estimated score distributions from the ensemble
and the ground truth. The reconstruction error of the MAM ensemble can be
expressed as

AﬁAM (l‘, Y) = (¢* (JZ, Y) - wMAM(Z‘v Y))z )

and the average reconstruction error of the base learners can be expressed as
1 . 2
Afay) = 23 (v (@y) — 0 @y))
t
We denote by ¥;(z,y;) a random variable of the compatibility scores ob-
tained by the base learners and {w§1) (@, y5),- - ,wj(-T) (x,y;)} as a sample from

its distribution. We have the following result:

Theorem 1 The reconstruction error of compatibility score distribution given
by MAM ensemble AL, (x,y) is guaranteed to be no greater than the average
reconstruction error given by individual base learners AR (z,y).

In addition, the gap can be estimated as

A?(xvy) AﬁAM( ) = Var(z q/j(ﬁﬁ,yj)) > 0.
JjeVv
The variance can be further expanded as

Var(z Vi(z,y;)) Z Var(¥;(z,y;)) Z Cov(¥y(z, yp), ¥ (z, Yq)) -

JjeV JeEV p,q€V,
PFq

diversity coherence
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Proof By expanding and simplifying the squares we get

ARy~ Af (e y) = 23 (07 @y) —00y)) (5 ay) - )

T
2
fZ PORTACHED SEILICEDE B D BIGTCRDED DE-D SRR
JEV JEV JEV JEV t
2 2
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= Var(d _ @;(x,y;))
JjeEV
> 0.

The expression of variance can be further expanded as

Var(z iz, y5)) Z Cov (¥ (z,yp), Yy(,yq))

Jjev p,qEV
= ZVar (x,y5)) Z Cov(¥,(x,yp), Uy(z,yq))-
JjeEV p,q€V,

PF£q

The Theorem [l states that the reconstruction error from MAM ensemble is
guaranteed to be less than or equal to the average reconstruction error from
the individuals. In particular, the improvement can be further addressed by
two terms, namely diversity and coherence. The classifier diversity measures
the variance of predictions from base learners independently on each single la-
bels. It has been previously studied in single-label classifier ensemble context
by [Krogh and Vedelsby| (1995). The diversity term prefers the variabilities of
individuals that are learned from different perspectives. It is a well known fac-
tor to improve the ensemble performance. The coherence term, that is specific
to the multilabel classifiers, indicates that the more the microlabel predictions
vary together, the greater advantage multilabel ensemble gets over the base
learners. This supports our intuitive understanding that microlabel correla-
tions are keys to successful multilabel learning.

4 Experiments
4.1 Datasets

We experiment on a collection of ten multilabel datasets from different do-
mains, including chemical, biological, and text classification problems. The
NCI60 dataset contains 4547 drug candidates with their cancer inhibition po-
tentials in 60 cell line targets. The Fingerprint dataset links 490 molecular
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Table 1 Statistics of multilabel datasets used in our experiments. For NCI60 and Finger-
print dataset where there is no explicit feature representation, the rows of kernel matrix is
assumed as feature vector.

Dataset Statistics
INSTANCES | LABELS | FEATURES | CARDINALITY | DENSITY

EMOTIONS 593 6 72 1.87 0.31
YEAST 2417 14 103 4.24 0.30
SCENE 2407 6 294 1.07 0.18
ENRON 1702 53 1001 3.36 0.06
CAL500 502 174 68 26.04 0.15
FINGERPRINT 490 286 490 49.10 0.17
NCI60 4547 60 4547 11.05 0.18
MEDICAL 978 45 1449 1.14 0.03
CIRCLELOQ 1000 10 3 8.54 0.85
CIRCLE50 1000 50 3 35.63 0.71

mass spectra together to 286 molecular substructures used as prediction tar-
gets. Four text classification datasetsﬂ are also used in our experiment. In
addition, two artificial Circle dataset are generated according to (Bian et al,
2012) with different amount of labels. An overview of the datasets is shown in
Table |1} where cardinality is defined as the average number of positive micro-
labels for each example

R Ty
cardinality = - Z Hily:; = 1},
i=1

and density is the average number of labels for each example divided by the
size of label space defined as

cardinality

density = 2

4.2 Kernels

We use kernel methods to describe the similarity between complex data objects
in some experiment datasets. We calculate linear kernel on datasets where in-
stants are described by feature vectors. For text classification datasets, we first
compute weighted features with term frequency inverse document frequency
model (TF-IDF) (c.f. [Rajaraman and Ullman, [2011). TF-IDF weights reflect
how important a word is to a document in a collection of corpus defined as the
ratio between the word frequency in a document and the word frequency in
the a collection of corpus. We compute linear kernel of the weighted features.

As the input kernel of the Fingerprint dataset where we have for each
instant a mass spectrometry (MS) data, we calculated quadratic kernel over

1 Available at http://mulan.sourceforge.net/datasets.html
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the 'bag’ of mass/charge peak intensities. As the input kernel of the cancer
dataset where each object is described as a molecular graph, we used the
hash fingerprint Tanimoto kernel (Ralaivola et al, [2005)) that enumerates all
linear fragments up to length n in a molecule z. A hash function assigns each
fragment a hash value that determines its position in descriptor space ¢(z).
Given two binary bit vectors ¢(x) and ¢(y) as descriptors, Tanimoto kernel is

defined as
_ (@) N 1((y))]
[1(p(x)) UI((y)|’

where I(¢(z)) denotes the set of indices of 1-bits in ¢(z).

In practice, some learning algorithms required kernelized input while others
need feature representation of input data. Due to the intractability of using
explicit features for complex data and in order to achieve a fair comparison,
we take precomputed kernel matrix as rows of feature vectors for the learning
algorithms that required input of feature vectors.

K(z,y)

4.3 Obtaining random output graphs

The structure of the output graph is significant both in term of efficiency
of learning and inference, and the predictive performance. We consider the
following two approaches to generate random output graphs.

— In the random pair approach, one takes each vertex in turn, randomly draw
another vertex and couples the two with an edge.

— In the random spanning tree approach, one first draws a random k X k
weight matrix W with non-negative edge weights and then extracts a max-
imum weight spanning tree out of the matrix, using w;; as the weight for
edge connecting labels ¢ and j.

The random pair approach generally produces a set of disconnected graphs,
which may not let the base learner to fully benefit from complex multilabel
dependencies. On the other hand, the learning of the base classifier is poten-
tially made more efficient due to the graph simplicity. The random spanning
tree approach connects all targets so that complex multilabel dependencies
can be learned. Also, the tree structure facilitates efficient inference.

4.4 Compared classification methods

For comparison, we choose the following established classification methods
form different perspectives towards multilabel classification, accounting for
single-label and multilabel, as well as ensemble and standalone methods:

— MMCRF (Rousu et all 2007)) is used both as a standalone multilabel clas-
sifier and the base classifier in the ensembles. Individual MMCRF models
are trained with two kinds of output graphs, random tree and random pair
graph.
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— SVM is a discriminative learning method that has become very popular
over recent years, described in several textbooks (Cristianini and Shawe-
Taylor, 2000; Scholkopf and Smolal [2001). For multilabel classification task,
we split the multilabel task into a collection of single-label classification
problems. Then we apply SVM on each single problem and compute the
predictions. The drawback of SVM on multilabel classification task is the
computation becomes infeasible as the number of the labels increases. Be-
side, this approach assumes independency between labels, it does not get
any benefit from dependencies defined by complex structures of the label
space. SVM serves as the single-label non-ensemble baseline learner.

— MTL is a multi-task feature learning methods developed in (Argyriou
et al, 2008]), which is used as multilabel baseline learner. The underlying
assumption of MTL is that the task specific functions are related such that
they share a small subset of features.

— Adaboost is an ensemble method that has been extensively studied both

empirically and theoretically since it was developed in (Freund and Schapire,
1997). The idea behind the model is that a distribution is assigned over
data points. In each iteration, a weak hypothesis is calculated based on
current distribution, and the distribution is updated according to the per-
formance of the weak hypothesis. As a results, the difficult examples will
receive more weight (probability mass) after the update, and will be em-
phasized by the base learner in the next round.
In addition, Adaboost for multilabel classification using Hamming loss (Ad-
aboostMH), is designed for incorporating multilabel learner into Adaboost
framework (Schapire and Singer, [1998]). The only difference is the distri-
bution is assigned to each example and microlabel pair and updated ac-
cordingly. In our study, we use real-valued decision tree with at most 100
leaves as base learner of AdaboostMH, and generate an ensemble with 180
weak hypothesises.

— Bagging (bootstrapping aggregation) was introduced in (Breiman) (1996])
as an ensemble method of combining multiple weak leaners. It creates indi-
vidual weak hypothesises for its ensemble by calling base learner repeatedly
on the random subsets of the training set. The training set for the weak
learner in each round is generated by randomly sampling with replacement.
As a result, many original training examples may be repeated many times
while others may be left out. In our experiment, we randomly select 40%
of the data as input to SVM to compute a weak hypothesis, and repeat
the process until we collect an ensemble of 180 weak hypotheses.

4.5 Parameter selection and evaluation measures

We first sample 10% data uniform at random from each experimental dataset
for the purpose of parameter selection. SVM, MMCRF and MAM ensemble
each have a margin softness parameter C', which potentially needs to be tuned.
We tested the value of parameter C from a set {0.01,0.1,0.5,1,5,10} based
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Fig. 3 Ensemble learning curve (microlabel accuracy) plotted as the size of ensemble. Av-
erage performance over datasets is shown as the last plot.

on tuning data, then keep the best ones for the following validation step. We
also perform extensive selection on v parameters in MTL model in the same
range as margin softness parameters.

We observe that most of the multilabel datasets are highly biased with
regards to multilabel density. Therefore, we use the following stratified 5-fold
cross validation scheme in the experiments reported, such that we group ex-
amples in equivalence classes based on the number of positive labels they have.
Each equivalence class is then randomly split into five local folds, after that
the local folds are merged to create five global folds. The proposed procedure
ensures that also the smaller classes have representations in all folds.

To quantitatively evaluate the performance of different classifiers, we adopt
several performance measures. We report multilabel accuracy which counts the
proportion of multilabel predictions that have all of the microlabels being
correct, microlabel accuracy as the proportion of microlabel being correct, and

microlabel Fy score that is the harmonic mean of microlabel precision and

__ 9. PrexRec
recall F; =2 PretRee-

4.6 Comparison of different ensemble approaches

We evaluate our proposed ensemble approaches by learning ensemble with
180 base learners. The learning curves as the size of ensemble on varying
datasets are shown in Figures 3] [ and [5] for microlabel accuracy, multilabel
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accuracy, and microlabel F1 score, respectively. The base learners are trained
with random tree as output graph structure.

There is a clear trend of improving microlabel accuracy for proposed en-
semble approaches as more individual base models are combined. On most
datasets and algorithms the ensemble accuracy increases fast and levels off
rather quickly, the most obvious exception being the Circlel0 dataset where
improvement can be still seen beyond ensemble size 180. In addition, all
three proposed ensemble learners (MVE, AMM, MAM) outperform their base
learner MMCRF (horizontal dash lines) with consistent and noticeable mar-
gins, which is best seen from the learning curves of the average performance.

Similar patterns of learning curves are also observed in microlabel Fj
(Fig. [4) and multilabel accuracy (Figure [5)), with a few exceptions. The Fin-
gerprint and Cal500 datasets prove to be difficult to learn in that very few
multilabels are perfectly predicted, this is not surprising as these datasets have
a large number of microlabels. The datasets also have the largest proportion of
positive microlabels, which is reflected in the low F1 score. Scene dataset is the
only exception where increasing the number of base learners seems to hurt the
ensemble performance in microlabel F; and multilabel accuracy. In fact Scene
is practically a single-label multiclass dataset, having very few examples with
more than one positive microlabel. This contradicts the implicit assumption of
graph based learners that there are rich dependency structures between differ-
ent labels that could be revealed by the different random graphs. Among the
extreme label sparsity, the ensemble learners appear to predict more negative
labels for each example which leads to decreased performances in F; and mul-
tilabel accuracy space. We also observe large fluctuations in the initial part
of MVE learning curves of Fingerprint and Cal500 datasets in F} score space,
implying MVE is not as stable as AMM and MAM approaches.

In particular, the performance of MAM ensemble surpasses MVE and
AMM in eight out of ten datasets, the exceptions being Scene and Medical,
making it the best among all proposed ensemble approaches. Consequently,
we choose MAM for the further studies described in the following sections.

4.7 Effect of the structure of output graph

To find out which is the more beneficial output graph structure, we carry
out empirical studies on MAM ensemble with random tree and random pair
graph as output graph structure. Table [2| illustrates the performance of two
output structures in terms of microlabel accuracy, multilabel accuracy and
microlabel F} score. The results show that random tree and random pair
graph are competitive output graph structures in terms of microlabel accuracy
and Fj score, with random tree achieves slightly better results. In addition,
we observe noticeable difference in multilabel accuracy, where random tree
behaves better than random pair graph. One way to understand this is to
realize that random tree is able to connect all output labels so that learning
and inference can work over the the whole label space. On the other hand,
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Table 2 Prediction performance of MAM ensemble with random tree and random pair
graph in terms of microlabel accuracy, multilabel accuracy, and microlabel F; score.

Microlabel Acc % | Multilabel Acc % Microlabel F; %
Dataset
PAIR TREE PAIR TREE PAIR TREE
EMOTIONS 80.4+2.4| 80.3+£1.4 | 27.843.4| 29.24+4.2| 65.7+4.3 | 66.31+2.3
YEAST 80.24+0.7 | 80.3+0.5| 15.94+1.1| 16.7+0.4| 63.5+1.4| 63.7+1.1
SCENE 84.04+0.5 | 84.04+0.1| 16.4+1.9| 15.0+0.9 | 28.9+2.5| 27.4+2.4
ENRON 94.14+0.1| 94.04+0.2 | 7.74+1.0 8.1+2.3 51.1£1.9| 51.14+1.3
CAL500 86.24+0.1| 86.24+0.2 | 0.04+0.0 0.0£+0.0 35.24+0.8 | 35.61+0.4
FINGERPRINT | 89.8+0.5| 89.84+0.3 | 1.2+0.6 1.440.6 66.9+2.5| 67.0+1.9
NCI60 85.94+0.8 | 86.0+0.9 | 37.94+1.2 | 38.9+1.2| 57.1+3.8 | 57.14+3.2
MEDICAL 97.940.2 | 97.9+0.1 | 37.6+4.3 | 837.6+£2.5| 52.2+4.6 | 52.24+3.2
CIRCLELOQ 97.54+0.4 | 97.840.4| 79.0+2.0 | 83.2+3.5| 98.5+0.2 | 98.74+0.3
CIRCLES0 97.64+0.3 | 98.44+0.3 | 47.6+5.9 | 59.4+5.6| 98.3+0.2 | 98.940.2
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Fig. 6 Performance of MAM ensemble with random tree and random pair as output graph.
Performance is averaged over 10 datasets and plotted as the size of ensemble.

random pair approach divides the label space into isolated pairs where there
is no cross-talk between pairs.

We continue by studying learning curves of average performance of MAM
ensemble on two different output structures. Fig. [f] illustrates that MAM en-
semble with random tree as output structure consistently outperforms random
pair in accuracy space. The performance differences in F space are not clear
where we see the random pair approach fluctuating around random tree curve.
Base on the experiments, we deem random tree the better of the two output
graph structures.

4.8 Multilabel prediction performance

In the following experiments we examine whether our proposed ensemble
model (MAM) can boost the prediction performance in multilabel classifica-
tion problems. Therefore, we compare our model with other advanced methods
including both single-label and multilabel classifiers, both standalone and en-
semble frameworks. Table [3| shows the performance of difference methods in
terms of microlabel accuracy, multilabel accuracy and microlabel F} score,
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Table 3 Prediction performance of methods in terms of microlabel accuracy (top), mi-

)

crolabel Fj score (middle), and multilabel accuracy (bottom). '—’
predictions. ’Avg.Rank’ is the average rank of the performance over datasets. The aver-
age rank is marked with *{1’ (resp. ’{’) if the algorithm performs significantly different at
p-value = 0.05 (resp. at p-value = 0.1.) from the top performing one according to two-tailed
Bonferroni-Dunn test.

represents no positive

Dataset Microlabel Accuracy %
SvM BAGGING ADABOOST MTL MMCRF MAaM
EMOTIONS 77.3+1.9 74.1+1.8 76.8+1.6 79.84+1.8 79.0+0.9 80.3+1.4
YEAST 80.0+0.7 78.440.9 74.84+0.7 79.3+0.5 79.54+0.6 80.3+0.5
SCENE 90.2+0.3 | 87.84+0.5 84.3+0.9 88.4+0.5 83.44+0.3 84.0+0.1
ENRON 93.6+0.2 93.7+£0.1 86.2+0.3 93.5+0.2 93.7+0.2 94.0+0.2
CAL500 86.3+0.3 | 86.040.2 74.940.7 86.2+0.3 85.31+0.3 86.24+0.2
FINGERPRINT | 89.740.3 85.0+0.4 84.1+0.7 82.7+0.6 89.8+0.6 | 89.84+0.3
NCI60 84.7+0.7 79.5+0.4 79.3+0.8 84.0+0.6 85.5+1.3 86.0+0.9
MEDICAL 97.4+0.0 97.4+0.1 91.440.3 97.440.1 97.940.1 97.940.1
CIRCLEL0 94.840.9 92.940.7 98.0+0.3 93.7+0.7 97.1+0.3 97.8%£0.4
CIRCLE50 94.14+0.5 91.7+0.5 96.6+0.3 93.8+0.5 96.7+0.3 98.440.3
Avg.Rank | 3.0 4.5TF 48T 4.0TT 3.0 1.8
Dataset Microlabel F; Score %
SvMm Bacacina ADABOOST MTL MMCRF MaAMm
EMOTIONS 57.1+4.4 61.5£3.1 66.2+2.9 64.6+3.0 64.3+£1.2 66.3+2.3
YEAST 62.6t1.1 65.5+1.4 63.5+1.2 60.2+1.2 62.6+1.2 63.7+1.1
SCENE 68.8+1.4 69.9+1.4 64.84+2.1 61.5+2.1 34.0+£2.7 27.4+2.4
ENRON 29.4+1.5 38.8+1.0 42.3+1.1 - 50.0+1.0 51.1+1.3
CAL500 31.440.6 40.1+£0.8 44.3+1.5 28.6+1.3 35.5+0.4 35.6+0.4
FINGERPRINT | 66.340.7 64.4+0.5 62.8+1.2 0.4£0.3 66.91£0.8 67.0+1.9
NCI60 45.9+3.6 53.9+1.2 32.9+2.7 32.9+3.4 56.1+£3.7 | 57.1£3.2
MEDICAL - - 33.7£1.2 - 51.6+£2.7 | 52.2+3.2
CIRCLE1L0Q 97.01+0.6 96.0+0.4 98.8+0.2 96.4+0.4 98.3+0.2 98.7£0.3
CIRCLES0 96.0+0.3 94.5+0.3 97.6+0.2 95.7£0.3 97.7+0.3 98.940.2
Avg.Rank | 4.27f 3.87 3.0 5.2fF 3.0 1.9
Dataset Multilabel Accuracy %
SvM BAcGING ADABOOST MTL MMCRF Mam
EMOTIONS 21.243.4 20.9£2.6 23.84+2.3 25.5+3.5 25.843.1 29.2+44.2
YEAST 14.0£2.8 13.1£1.9 7.5+1.3 11.3£1.0 13.4+1.5 16.74+0.4
SCENE 52.8+1.4 | 46.56+1.9 34.7+2.2 44.8+3.6 19.3£1.2 15.0£0.9
ENRON 0.4+0.3 0.1£0.2 0.04+0.0 0.44+0.4 7.1£2.8 8.1+2.3
CAL500 0.0+0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0+0.0 0.0£0.0
FINGERPRINT | 1.0£0.7 0.0£0.0 0.0£+0.0 0.0%+0.0 1.24£0.5 1.44+0.6
NCI60 48.1+1.8 21.1+0.9 2.5+0.6 47.0+2.0 | 34.1+1.4 38.9+1.2
MEDICAL 8.2+2.1 8.2+2.7 5.1+£2.0 8.242.3 86.5+3.3 37.6+2.5
CIRCLE10 69.1+3.8 64.8+3.3 86.0+2.7 66.8+3.4 76.44+2.1 83.243.5
CIRCLE50 29.74+2.0 21.7+3.9 28.94+3.4 27.7+3.3 84.6+4.5 59.4+5.5
Avg.Rank | 3.1 4.77F 4.57F 3.9f 2.9 2.0
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Table 4 Paired t-test to assess whether the method from group A outperforms the one
from group B in a significant manner. By ’f, *,1’ we denote the performance in microlabel
accuracy, microlabel F} score, and multilabel accuracy, respectively. By double marks (e.g.
’T17) we denote p-value = 0.05, and by single mark (e.g. ’’) we denote p-value = 0.1. By -’
we denote not significant given above p-values.

Group A Group B
SvM | BAGGING | ADABOOST | MTL | MMCRF | MAM

SvMm — 11,1 Tt * - —
BAGGING Kk — — *x — —
ADABOOST — — — *x - —
MTL — T Tt — — —
MMCRF — it Tt *ok — —
Mawm - 11, § 1, § T, 11, § -

where the best performance in each dataset is emphasised in boldface and the
second best is shown in italics.

We observe from Table [3| that MAM receives in general higher evaluation
scores than the competitors. In particular, it achieves nine times as top two
performing methods in microlabel accuracy, eight times in multilabel accuracy,
and eight times in microlabel F; score. The only datasets where MAM is
consistently outside the top two is the Scene dataset. As discussed above, the
dataset is practically a single-label multiclass dataset. On this dataset the
single target classifiers SVM and Bagging outperform all compared multilabel
classifiers.

In these experiments, MMCRF also performs robustly, being in top two
on half of the datasets with respect to microlabel and multilabel accuracy.
However, it quite consistently trails to MAM in all three evaluation scores, the
Scene dataset again being the exception. We also notice that the standalone
single target classifier SVM is competitive against most multilabel methods,
performs better than Bagging, AdaBoost and MTL with respect to microlabel
and microlabel accuracy.

4.9 Statistical evaluation

To statistically evaluate the performance of different methods over multiple
datasets, we first apply paired t-test on the values shown in Table [3] In par-
ticular, we compute a test statistic (with a p-value) for each ordered pair of
methods to assess whether the average performance of the first is better than
the second in a statistically significant manner. The result, shown in Table [4]
indicates that, in terms of microlabel accuracy, MAM significantly outperforms
MMCRF, AdaBoost and Bagging and almost significantly outperforms MTL,
while the performance is not significantly different from SVM. In multilabel
accuracy, MAM outperforms Bagging, Adaboost and MMCRF in almost sig-
nificant manner. SVM, MTL and MMCRF perform similarly to each other,
and are better than Bagging and Adaboost with respect to microlabel ac-
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curacy. In addition, in microlabel Fj score, we notice that all methods are
competitive against MTL, and SVM performs better than Bagging.

As suggested by [Demsar| (2006), several critical assumptions might be
violated when performing paired t-test to compare classifiers over multiple
datasets. Similarly, other commonly used statistical tests might also be ill-
posed in this scope (e.g. sign test, Wilcoxon signed-ranks test, ANOVA with
post-hoc Tukey test). We therefore follow the test procedure proposed in
(Demsar}, 2006)). First, we compute the rank of each model based on the per-
formance on different datasets, where the best performing algorithm getting
the rank of one. In case of ties, averaged ranks are then assigned. Then we
use Friedman test (Friedmanl |1937) which compares the average rank of each
algorithm, and under null hypothesis, states that all algorithms are equivalent
with equal average ranks. P-values calculated from Friedman test for micro-
label accuracy, microlabel Fy score, and multilabel accuracy are 0.001, 0.002
and 0.005, respectively. As a result, we reject the null-hypothesis and proceed
with post-hoc two-tailed Bonferroni-Dunn test (Dunn, [1961)), where all other
methods are compared against the top performing control (MAM). We com-
pute the critical difference CD = 2.2 at p-value = 0.05, and CD = 1.9 at
p-value = 0.1 (see details in supplementary material). The performance of an
algorithm is significantly different from the control if the corresponding aver-
age ranks differ by at least C'D. The corresponding rank is marked with '}’
(at p-value = 0.1) or {1’ (at p-value = 0.05) in Table [3] We observe from the
results that in microlabel accuracy and multilabel accuracy, the performance
differences of SVM and MMCRF to MAM fail to be statistically significant.
On the other hand, Bagging, Adaboost and MTL perform significantly worse
than MAM in terms of microlabel accuracy and multilabel accuracy. In addi-
tion, with respect to microlabel Fj score, the performances of MMCRF and
Adaboost are not significantly different from MAM, while SVM, Bagging and
MTL perform worse than MAM in a significant manner.

Overall, the results indicate that ensemble by MAM is a robust and com-
petitive alternative for multilabel classification.

4.10 Effect of diversity and coherence

To explain the performance of MAM as well as to empirically validate the
diversity and coherence arguments stated in Theorem [1} we conduct the fol-
lowing experiment.

We train a MAM ensemble model for each dataset consist of 30 base
learners with a random spanning tree as output graph structure. For each
example-label pair (x;,y;) and the corresponding set of microlabels y; =
{Yi1, " ,¥i1}, we then calculate from each base learner ¢ a set of node com-
patibility scores {¢*(z;,yi1), -+, %" (zi,yi1)}. Next, the node compatibility
scores from different base learners are pooled together to get ¥;(x;,y; ;) =
{p (@i yig)y - 3% (wiyyig)} for all j € {1,---,1}. Diversity and coherence
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Fig. 7 Performance of MAM ensemble plotted in diversity and coherence space. Color of
the blocks depicts average performance in term of microlabel accuracy computed from the
data points in the block. White area means there is no examples with corresponding diversity
and coherence. Colors are normalized for datasets so that worst and best performances are
shown as light blue and red.

of pair (x;,y;) can be calculated from {¥;(x;,y;;)}}—, according to

Diversity = Z Var(¥;(z;,yi5)),
je{1--1}

Coherence = Z Cov(¥y(xi, Yip), Yg(Ti, Yig)),

p,q€{1-+1},
PF£q

which locates pair (z;,y;) in the diversity-coherence space. We also compute
the microlabel accuracy from the microlabels in y; based on the prediction
from MAM ensemble. The accuracy of different diversity-coherence region in
the space is computed as the average microlabel accuracy of examples in that
region. The results are shown in Fig. [7

We observe from the results a pattern of increasing prediction performance
from lower left corner to upper right corner. In particular, microlabel accuracy
are lower for examples with both low diversity and coherence computed based
on current set of base learners, shown as the light blue blocks in lower left
corner. On the other hand, we achieve higher prediction accuracy on examples
with high diversity and coherence, which are shown as red blocks in the upper
right corner. In addition, fixing one factor while increasing the other usually
leads to improved performance.

The observations demonstrates both diversity and coherence have positive
effects on the performance of MAM ensemble. They reflect different aspects
of the ensemble. To improve the quality of the prediction, one should aim to



26 Hongyu Su, Juho Rousu

increase either the diversity of the base learner on a single microlabel or the
coherence among microlabel pairs.

5 Conclusions

In this paper we have put forward new methods for multilabel classification,
relying on ensemble learning on random output graphs. In our experiments,
models thus created have favourable predictive performances on a heteroge-
neous collection of multilabel datasets, compared to several established meth-
ods. The theoretical analysis of the MAM ensemble highlights the covariance
of the compatibility scores between the inputs and microlabels learned by the
base learners as the quantity explaining the advantage of the ensemble predic-
tion over the base learners.

We note in passing that it is straightforward to generalize the theoretical
analysis to any multilabel classifiers that give scores to microlabels; there is
no dependency on random graph classifiers in the analysis.

The empirical evaluation supports the theoretical analysis, explaining the
performance of the proposed ensemble models. Our results indicate that struc-
tured output prediction methods can be successfully applied to problems where
no prior known output structure exists, and thus widen the applicability of
the structured output prediction.

Acknowledgements The work was financially supported by Helsinki Doctoral Programme
in Computer Science (Hecse), Academy of Finland grant 118653 (ALGODAN), IST Pro-
gramme of the European Community under the PASCAL2 Network of Excellence, ICT-
2007-216886. This publication only reflects the authors’ views.

References

Argyriou A, Evgeniou T, Pontil M (2008) Convex multi-task feature learning.
Mach Learn 73(3):243-272

Bian W, Xie B, Tao D (2012) Corrlog: Correlated logistic models for joint
prediction of multiple labels. In: Proceedings of the Fifteenth International
Conference on Artificial Intelligence and Statistics (AISTATS-12), vol 22,
pp 109-117

Breiman L (1996) Bagging predictors. Machine Learning 24:123-140

Brown G, Kuncheva LI (2010) good and bad diversity in majority vote ensem-
bles. In: Multiple Classifier Systems, Springer, pp 124-133

Cristianini N, Shawe-Taylor J (2000) An Introduction to Support Vector Ma-
chines and Other Kernel-based Learning Methods, 1st edn. Cambridge Uni-
versity Press

Demsar J (2006) Statistical comparisons of classifiers over multiple data sets.
J Mach Learn Res 7:1-30

Dunn OJ (1961) Multiple comparisons among means. Journal of the American
Statistical Association 56(293):52-64



Multilabel Classification through Random Graph Ensembles 27

Esuli A, Fagni T, Sebastiani F (2008) Boosting multi-label hierarchical text
categorization. Information Retrieval 11(4):287-313

Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line
learning and an application to boosting. J Comput Syst Sci 55(1):119-139

Friedman M (1937) The use of ranks to avoid the assumption of normality
implicit in the analysis of variance. Journal of the American Statistical As-
sociation 32(200):pp. 675-701

Krogh A, Vedelsby J (1995) Neural network ensembles, cross validation, and
active learning. In: Advances in Neural Information Processing Systems,
MIT Press, pp 231-238

Nemenyi PB (1963) Distribution-free multiple comparisons. PhD thesis,
Princeton University

Rajaraman A, Ullman J (2011) Mining of Massive Datasets. Cambridge Uni-
versity Press

Ralaivola L, Swamidass S, Saigo H, Baldi P (2005) Graph kernels for chemical
informatics. Neural Networks 18:1093-1110

Rousu J, Saunders C, Szedmak S, Shawe-Taylor J (2006) Kernel-Based Learn-
ing of Hierarchical Multilabel Classification Models. The Journal of Machine
Learning Research 7:1601-1626

Rousu J, Saunders C, Szedmak S, Shawe-Taylor J (2007) Efficient algorithms
for max-margin structured classification. Predicting Structured Data pp
105-129

Schapire R, Singer Y (1998) Improved boosting algorithms using confidence-
rated predictions. In: Proceedings of the Annual Conference on Computa-
tional Learning Theory, ACM Press, New York, pp 80 — 91

Schapire RE, Singer Y (2000) Boostexter: A boosting-based system for text
categorization. Machine Learning 39(2/3):135 — 168

Scholkopf B, Smola A (2001) Learning with Kernels. MIT Press, Cambridge,
MA

Su H, Rousu J (2011) Multi-task drug bioactivity classification with graph
labeling ensembles. Pattern Recognition in Bioinformatics pp 157-167

Su H, Rousu J (2013) Multilabel classification through random graph en-
sembles. In: Proceedings, 5th Asian Conference on Machine Learning
(ACML2013), Journal of Machine Learning Research W&CP, vol 29, pp
404-418

Taskar B, Guestrin C, Koller D (2003) Max-margin markov networks. In: Neu-
ral Information Processing Systems

Tsochantaridis I, Hofmann T, Joachims T, Altun Y (2004) Support vec-
tor machine learning for interdependent and structured output spaces. In:
ICML’04, pp 823-830

Wainwright M, Jaakkola T, Willsky A (2005) MAP estimation via agreement
on trees: message-passing and linear programming. IEEE Transactions on
Information Theory 51(11):3697-3717

Yan R, Tesic J, Smith J (2007) Model-shared subspace boosting for multi-
label classification. In: Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining, ACM, pp 834-843



	Introduction
	Multilabel classification through graph labeling
	Learning graph labeling ensembles
	Experiments
	Conclusions

