
9HSTFMG*agbafe+
9HSTFMG*agbafe+
9HSTFMG*agbafe+

Multilabel classification is an important topic in machine learning that arises naturally from

many real world applications. For example, in document classification, a research article can

be categorized as “science”, “drug discovery” and “genomics” at the same time. The goal of

multilabel classification is to reliably predict multiple outputs for a given input. As multiple

interdependent labels can be “on” and “off” simultaneously, the central problem in multilabel

classification is how to best exploit the correlation between labels to make accurate predictions.

Compared to the previous flat multilabel classification approaches which treat multiple labels

as a flat vector, structured output learning relies on an output graph connecting multiple labels

to model the correlation between labels in a comprehensive manner. The main question studied

in this thesis is how to tackle multilabel classification through structured output learning.

This thesis starts with an extensive review on the topic of classification learning including

both single-label and multilabel classification. The first problem we address is how to solve

the multilabel classification problem when the output graph is observed apriori. We discuss

several well-established structured output learning algorithms and study the network response

prediction problem within the context of social network analysis. As the current structured

output learning algorithms rely on the output graph to exploit the dependency between labels,

the second problem we address is how to use structured output learning when the output graph

is not known. Specifically, we examine the potential of learning on a set of random output graphs

when the “real” one is hidden. This problem is relevant as in most multilabel classification

problems there does not exist any output graph that reveals the dependency between labels. The

third problem we address is how to analyze the proposed learning algorithms in a theoretical

manner. Specifically, we want to explain the intuition behind the proposed models and to study

the generalization error.

The main contributions of this thesis are several new learning algorithms that widen the ap-

plicability of structured output learning. For the problem with an observed output graph, the

proposed algorithm “SPIN” is able to predict an optimal directed acyclic graph from an observed

underlying network that best responses to an input. For general multilabel classification prob-

lems without any known output graph, we proposed several learning algorithms that combine

a set of structured output learners built on random output graphs. In addition, we develop a

joint learning and inference framework which is based on max-margin learning over a random

sample of spanning trees. The theoretic analysis also guarantees the generalization error of the

proposed methods.

1

Preface

First and foremost, I wish to express my deep gratitude to Prof. Juho

Rousu for supervising my research during my doctoral years. The the-

sis would not have been possible without his continuous guidance and

enormous support. I am grateful to Prof. John Shawe-Taylor and Prof.

Mario Marchand for the inspirations and brilliant ideas during my vis-

its to University College London and Université Laval. I thank Prof.

Aristides Gionis for all the fruitful discussions and his expertise in data

mining. My gratitude also goes to other coauthors, Emile Morvant and

Markus Heinonen. I thank Alan Medlar and Swee Chong Wong for the

feedback on the writing of the thesis. I am grateful to pre-examiners,

Prof. Pierre Geurts and Doc. Tapio Pahikkala for their valuable com-

ments. I also thank Prof. Tapio Elomaa for the honour of having him as

my opponent. I gratefully acknowledge Helsinki Doctoral Programme in

Computer Science (Hecse), Academy of Finland (grant 118653), and EU

PASCAL Network. I thank all my colleagues in Helsinki Institute for In-

formation Technology HIIT, ICS Department in Aalto University, and CS

Department in University of Helsinki for the enjoyable working environ-

ment and the excellent IT support. In particular, I thank Minna Kauppila

and Pirjo Moen. I am thankful to Esa, Jefrey, Céline, Huibin, Jana, Elena,

Nicole, Anna, Viivi, and Sahely from our research group. I am deeply in-

debted to Chunxiang for her perseverance and endless encouragements.

Last but certainly not least, I am grateful to my parents – for everything!

Espoo, February 13, 2015,

Hongyu Su

1

Preface

2

Contents

Preface 1

Contents 3

List of Publications 5

Author’s Contribution 7

1. Introduction 9
1.1 Scope of the Thesis . 9

1.2 Contributions and Organization 12

2. Regularized Learning for Classification 15
2.1 Regularized Risk Minimization 15

2.1.1 Empirical Risk Minimization 15

2.1.2 Regularized Learning 16

2.2 Single-Label Classification . 17

2.2.1 Preliminaries . 18

2.2.2 Logistic Regression (LR) 18

2.2.3 Support Vector Machines (SVM) 20

2.3 Ensemble Methods . 25

2.3.1 Preliminaries . 26

2.3.2 Boosting . 26

2.3.3 Bootstrap Aggregating 28

3. Multilabel Classification 31
3.1 Preliminaries . 32

3.2 Problem Transformation . 32

3.2.1 Multilabel K-Nearest Neighbors (ML-KNN) 33

3.2.2 Classifier Chains (CC) 33

3

Contents

3.2.3 Instant Based Logistic Regression (IBLR) 34

3.3 Algorithm Adaptation . 35

3.3.1 Ensemble Methods for Flat Multilabel Classification 35

3.3.2 Correlated Logistic Regression (CORRLOG) 36

3.3.3 Multitask Feature Learning (MTL) 37

4. Structured Output Prediction 39
4.1 Preliminaries . 39

4.2 Related Methods . 40

4.2.1 Structured Perceptron 40

4.2.2 Conditional Random Field (CRF) 41

4.2.3 Max-Margin Markov Network (M3N) 42

4.2.4 Max-Margin Conditional Random Fields (MMCRF) . . 43

4.2.5 Support Vector Machines for Interdependent and Struc-

tured Outputs (SSVM) 44

4.3 SPIN for Network Response Prediction 45

4.3.1 Background . 45

4.3.2 Methods . 46

5. Structured Output Prediction with Unknown Output Graphs 49
5.1 Structured Output Prediction for Molecular Classification . 49

5.1.1 Background . 50

5.1.2 Methods . 50

5.2 Graph Labeling Ensemble (MVE) 52

5.2.1 Methods . 52

5.3 Random Graph Ensemble (AMM, MAM) 53

5.3.1 Background . 54

5.3.2 Methods . 54

5.4 Random Spanning Tree Approximation (RTA) 55

5.4.1 Background . 56

5.4.2 Methods . 57

6. Implementations 59

7. Conclusion 61
7.1 Discussion . 61

7.2 Future Work . 62

Bibliography 65

Publications 79

4

List of Publications

This thesis consists of an overview and of the following publications which

are referred to in the text by their Roman numerals.

I Hongyu Su, Aristides Gionis, Juho Rousu. Structured Prediction of

Network Response. In Proceedings of the 31th International Confer-

ence on Machine Learning (ICML 2014), Beijing, China, 2014. Jour-

nal of Machine Learning Research (JMLR) W&CP volume 32:442-

450, June 2014.

II Hongyu Su, Markus Heinonen, Juho Rousu. Multilabel Classifi-

cation of Drug-like Molecules via Max-margin Conditional Random

Fields. In Proceedings of the 5th International Conference on Pattern

Recognition in Bioinformatics (PRIB 2010), Nijmegen, The Nether-

lands, 2010. Springer LNBI volume 6282:265-273, September 2010.

III Hongyu Su, Juho Rousu. Multi-task Drug Bioactivity Classification

with Graph Labeling Ensembles. In Proceedings of the 6th Inter-

national Conference on Pattern Recognition in Bioinformatics (PRIB

2011), Delft, The Netherlands, 2011. Springer LNBI volume 7035:157-

167, November 2011.

IV Hongyu Su, Juho Rousu. Multilabel Classification through Ran-

dom Graph Ensembles. Machine Learning, DOI:10.1007/s10994-

014-5465-9, 26 Pages, September 2014.

V Mario Marchand, Hongyu Su, Emilie Morvant, Juho Rousu, John

Shawe-Taylor. Multilabel Structured Output Learning with Ran-

dom Spanning Trees of Max-Margin Markov Networks. In Advances

in Neural Information Processing Systems 27 (NIPS 2014), 873-881,

December 2014.

5

List of Publications

6

Author’s Contribution

Publication I: “Structured Prediction of Network Response”

Publication I presents a novel definition of the network response predic-

tion problem, and proposes a new structured output learning algorithm

to solve the problem. The proposed algorithm, SPIN, captures the contex-

tual information and improves the state-of-the-art models in terms of the

prediction performance.

The definition of the problem was jointly proposed. The author made

a major contribution to the design of the learning system and the opti-

mization algorithm. The author implemented the learning system and

the optimization algorithm. The author designed and performed the ex-

periments and analyzed the results. The author worked jointly on writing

the research article.

Publication II: “Multilabel Classification of Drug-like Molecules via
Max-margin Conditional Random Fields”

Publication II presents a structured output learning algorithm for the

multilabel molecular classification problem. The new algorithm incorpo-

rates into the learning process the correlations between multiple output

variables. It outperforms previous single-label classification approaches

in terms of the prediction performance.

The original modeling idea was jointly developed. The author imple-

mented the learning system. The author designed and performed the ex-

periments and analyzed the results. The author worked jointly on writing

the research article.

7

Author’s Contribution

Publication III: “Multi-task Drug Bioactivity Classification with Graph
Labeling Ensembles”

Publication III extends Publication II by applying majority vote to com-

bine the predictions from a set of structured output learners built on a

collection of random output graphs.

The learning strategy was jointly developed. The author made a ma-

jor contribution to the design of the learning system and the optimization

algorithm. The author implemented the algorithms, designed and per-

formed the experiments, and analyzed the results. The author worked

jointly on writing the research article.

Publication IV: “Multilabel Classification through Random Graph
Ensembles”

Publication IV extends Publication III by introducing two aggregation

techniques which perform inference before or after combining multiple

structure output learners. Publication IV also presents a theoretical study

that explains the performance of the proposed algorithms. The developed

algorithms are evaluated on a collection of heterogeneous multilabel clas-

sification problems.

The modeling idea was jointly developed by the authors. The author

designed and implemented the learning frameworks and the optimiza-

tion algorithms. The author conducted the theoretical study which ex-

plains the performance of the proposed learning algorithms. The author

designed and performed the experiments and analyzed the results. The

author worked jointly on writing the research article.

Publication V: “Multilabel Structured Output Learning with Random
Spanning Trees of Max-Margin Markov Networks”

Publication V is a major step forward of Publication IV by introducing a

joint learning and inference framework, and developing rigorous theories

to backup the algorithm.

The idea was jointly initialized by the authors. The author worked

jointly on developing the theories and the proofs. The author made a

major contribution to the design of the learning framework and the opti-

mization algorithm. The author implemented the learning system and the

8

Author’s Contribution

optimization algorithm. The author designed and performed the experi-

ments, and analyzed the results. The author worked jointly on writing

the research article.

9

Author’s Contribution

10

1. Introduction

1.1 Scope of the Thesis

Machine learning, defined by Arthur Samuel in 1959 as “a field of study

that gives computers the ability to learn without being explicitly pro-

grammed”, has gained in popularity and become an active research field

in computer science during the last few decades. Machine learning not

only produces intelligent systems that generalize well from previously ob-

served examples, but is also firmly rooted in statistical learning theory

that establishes the conditions guaranteeing good generalization (Vapnik,

1998, 1999). Machine learning appears in many real world applications,

to name but a few, ranking web pages in internet search (Richardson

et al., 2006), spam filtering in email (Goodman and tau Yih, 2006), rec-

ommender systems for online shopping (Bell and Koren, 2007), and image

and speech recognitions (Bengio, 2009). With the increasing availability

of large scale datasets, machine learning is expected to play an indispens-

able role in many research fields (Fan and Bifet, 2013).

Supervised learning, an important paradigm in machine learning, is

usually defined as learning a function that is capable of predicting the

best value for an output variable given an input variable. The function is

learned by exploring a set of observed input/output pairs known as train-

ing examples. In the classical supervised learning setting, there is only

one variable to be predicted. This is called single-label classification if

the output variable is discrete, or regression if the output variable is con-

tinuous. Many single-label classification models have been designed and

applied in practice, for example, the perceptron (Rosenblatt, 1958), logis-

tic regression (Chen and Rosenfeld, 1999), and support vector machines

(Cortes and Vapnik, 1995).

11

Introduction

Multilabel classification is a natural extension to single-label classifica-

tion by defining multiple interdependent output variables associated with

each input. This type of problems are prevalent in everyday life. For ex-

ample, a movie can be classified as “sci-fi”, “thriller” and “crime”; a news

article can be categorized as “science”, “drug discovery” and “genomics”;

a gene can be associated with multiple functions in genomics research; a

surveillance photo can be tagged with “car”, “building” and “road”. When

multiple output variables are treated as a “flat” vector, the problem is

often called flat multilabel classification. Flat multilabel classification is

one branch of multilabel classification that has seen interest from the ma-

chine learning community (Tsoumakas and Katakis, 2007; Tsoumakas

et al., 2010). As multiple output variables can be “on” and “off” simul-

taneously, various flat multilabel classification algorithms have been de-

veloped that aim to explore the correlation between multiple output vari-

ables in order to make accurate predictions. In particular, Tsoumakas and

Katakis (2007) summarized the established flat multilabel classification

algorithms into two categories, namely problem transformation (Zhang

and Zhou, 2005; Read et al., 2009; Cheng and Hüllermeier, 2009) and al-

gorithm adaptation (Schapire and Singer, 1999; Bian et al., 2012).

There exists another line of research in multilabel classification known

as structured output prediction where a complex structure (output graph)

is defined on multiple output variables to model dependencies in a more

comprehensive way. Hierarchical classification is one type of structured

output prediction in which the prediction needs to be reconciled along a

pre-established hierarchical structure (Silla and Freitas, 2011). Hierar-

chical classification is usually applied to the problem in which different

levels of granularity need to be addressed by a hierarchical structure. The

hierarchy can be either a rooted tree such as in the document classifica-

tion problem (Hao et al., 2007; Li et al., 2007; Rousu et al., 2006), or a

directed acyclic graph (DAG) with parent-children relationships such as

in the gene function prediction problem (Barutcuoglu et al., 2006). There

exists a large body of work on hierarchical classification from the early

approaches which use the hierarchical structure heuristically for prepro-

cessing or post-processing (Koller and Sahami, 1997; Dumais and Chen,

2000; Liu et al., 2005; DeCoro et al., 2007) to the recent approaches which

encodes the structure into the learning process (Cai and Hofmann, 2004;

Cesa-bianchi et al., 2005; Rousu et al., 2006; Gopal et al., 2012).

Graph labeling is another type of structured output prediction in which

12

Introduction

Multilabel
Classification

Flat Multilabel
Classification

Structured
Output Prediction

Problem
Transformation

Algorithm
Adaptation

Hierarchical
Classification

Graph Labeling

Figure 1.1. The taxonomy of the multilabel classification approaches.

the output graph often takes a more general form and does not require

the concept of “level” compared to hierarchical classification. The ap-

proach can be applied to a wider range of problems, for example, speech

tagging with sequence structure (Collins, 2002), and action recognition

with Markov network structure (Wang and Mori, 2011). The graph label-

ing approach often directly incorporates the output graph into learning

and exploits the dependency between labels to improve classification per-

formance (Collins, 2002; Lafferty et al., 2001; Taskar et al., 2002, 2004;

Tsochantaridis et al., 2004; Rousu et al., 2007). For graph labeling or

structured output learning in general, one central problem is the output

graph is assumed to be known apriori. However, this cannot be taken for

granted as the proper dependency structure for the output variables is ei-

ther hidden or difficult to retrieve in many applications (Chickering et al.,

1994).

Figure 1.1 illustrates the taxonomy of multilabel classification. How-

ever, there is no clear line drawn between different categories. In partic-

ular, some hierarchical classification models (Tsochantaridis et al., 2004;

Rousu et al., 2006) can also belong to the graph labeling category. As we

focus on graph labeling in structured output prediction, we will explicitly

use “structured output prediction” to refer to “graph labeling” throughout

this thesis.

In this thesis, we extend the applicability of structured output learn-

ing by developing several new learning models and applying them to real

world multilabel classification problems. In addition, we work on the

problem of structured output learning when the output dependency struc-

ture is not observed. The models thus created are not constrained by the

availability of the output graph and can therefore be applied to a wider

13

Introduction

range of multilabel classification problems. We also investigate the ef-

ficiency and the scalability of the inference algorithms in the proposed

structured output learning models. Finally, we study the theoretic aspect

of the proposed models. The research questions can be summarized as

follows.

• Should we tackle multilabel classification with structured output

learning rather than flat multilabel classification?

• How to apply structured output learning to multilabel classification

problems when the output graph is not known apriori?

• Can we provide any theoretical studies to explain the behavior of the

proposed learning models and to guarantee the performance?

• Can we efficiently solve the inference problems of the proposed struc-

tured output learning models?

1.2 Contributions and Organization

The contributions of the thesis are several novel statistical learning mod-

els that widen the applicability of structured output learning. The thesis

starts by reviewing several lines of research in classification learning. The

first contribution is to develop a new structured output learning model for

the multilabel classification problem with an observed output graph. The

proposed model can predict an optimal directed acyclic graph (DAG) from

an observed underlying network which best responds to an input. The

model has been applied to network response prediction within the con-

text of social network analysis. For the general multilabel classification

problems in which the output graph is not known apriori, we develop sev-

eral new models that combine a set of structured output learners built

on a collection of random output graphs. In addition, we develop a joint

learning and inference framework that is based on max-margin learning

on a random sample of spanning trees. Thus, the proposed methods are

not constrained by the availability of the output graphs. Moreover, we

provide the theoretical studies which not only explain the intuition be-

hind the formalisms but also guarantee the generalization error of the

proposed models.

The remaining part of this thesis is structured as follows. Chapter 2

gives the background information to the learning problem in terms of

14

Introduction

classification, covering the basic concepts in classification learning in-

cluding regularized risk minimization in Section 2.1, single-label classi-

fication in Section 2.2, and ensemble learning in Section 2.3. Chapter 3

introduces the multilabel classification problem which is the core problem

under study in this thesis. The chapter also describes the flat multilabel

classification approach which is a standard treatment for the multilabel

classification problem. Chapter 4 and Chapter 5 present the main con-

tributions of the thesis. In particular, Chapter 4 presents the structured

output learning models developed for the multilabel classification prob-

lem with an observed output graph. The methods presented extend the

flat multilabel classification approaches described in the previous chap-

ter. Chapter 5 presents several models developed for structured output

learning when the output graph is not observed. Chapter 6 describes the

implementation details of the developed models. Chapter 7 concludes the

thesis and details the future research directions.

This thesis presents the idea and the background of the proposed struc-

tured output learning models. The formalisms of the proposed models are

also briefly explained. The notation and the presentation of some of the

proposed models are slightly improved to incorporate the models into an

unified framework. The technical details and the empirical evaluations of

the proposed models are not repeated, rather, they can be found from the

original research articles in the latter part of the thesis.

15

Introduction

16

2. Regularized Learning for
Classification

2.1 Regularized Risk Minimization

In this section, the author will introduce two fundamental concepts in

statistical machine learning, known as empirical risk minimization (Vap-

nik, 1992) and regularization (Evgeniou et al., 1999) which create most

learning algorithms presented in the remaining part of this thesis.

2.1.1 Empirical Risk Minimization

We assume that two random variables x ∈ XXX and y ∈ Y are jointly dis-

tributed according to some fixed but unknown probability distribution

P (x, y) over a domain XXX × Y , where XXX is an input (instance) space and

Y is an output (label) space. We use bold face to distinguish vectors

from scalars. The definition of the output space Y will decide the type

of the learning problem, for example, multiclass classification by setting

Y = {1, · · · ,K}, regression by setting Y = R where R is the set of real

numbers, binary classification by setting Y = {−1,+1}, and multilabel bi-

nary classification by setting YYY = {−1,+1}k. In addition, we are provided

with paired examples (x, y) ∈ XXX × Y which are generated by sampling

according to the distribution P (x, y). A hypothesis class H is a set of func-

tions that a learning algorithm is allowed to search against. The goal

of statistical learning is to provide an estimator f ∈ H : XXX → Y which

predicts the best value of an output y given an input x.

We use loss function L(y, f(x)) : Y × Y → R+ to measure the goodness

of an estimator, which is a monotonic bounded function between a true

value y and an estimated value f(x). There are many ways to define

the loss function including, for example, the hinge loss in support vector

17

Regularized Learning for Classification

machines (Cortes and Vapnik, 1995)

Lhinge(y, f(x)) = max(0, 1− yf(x)), Y = [−1,+1], (2.1)

the 0/1 loss in structured SVM (Tsochantaridis et al., 2004)

L0/1(y, f(x)) = 1{y=f(x)}, YYY = {−1,+1}k, (2.2)

the squared loss in ridge regression (Hoerl and Kennard, 2000)

Lsquared(y, f(x)) = (y − f(x))2, Y = R,

the exponential loss in ADABOOST (Schapire and Singer, 1999)

Lexp(y, f(x)) = exp(−yf(x)), Y = R, (2.3)

and the logistic loss in logistic regression (Chen and Rosenfeld, 1999)

Llog(y, f(x)) = log(1 + exp(−yf(x))), Y = [−1,+1]. (2.4)

We will study the loss functions with the corresponding learning algo-

rithms in detail in the following part of this thesis.

The true risk of an estimator f over all examples from a domain XXX × Y

is then defined as

R(f) =

∫

(x,y)∈XXX×Y
L(y, f(x))P (x, y) dxdy. (2.5)

As a result, the learning algorithm should search for an estimator f ∈ H

which minimizes the true risk. However, it is impossible to compute the

true risk directly according to (2.5), as the distribution P (x, y) is usually

unknown. Instead we are given a random sample of m examples, denoted

by S = {(x1, y1), · · · , (xm, ym)}, called the training data. The empirical

risk of an estimator f ∈ H is defined as the average error made by the

estimator on the training data S of a finite size

Remp(f) =
1

m

m∑

i=1

L(yi, f(xi)). (2.6)

This suggests that the learning algorithm should search for an estimator

to minimize the empirical risk (2.6), which is called empirical risk mini-

mization (Vapnik, 1992) in machine learning.

2.1.2 Regularized Learning

The empirical risk minimization strategy is ill-posed as it will provide an

infinite number of estimators with the same empirical risk on the same

18

Regularized Learning for Classification

training data. Besides, it quite often leads to overfitting, in particular

when the dimensionality of the feature space is high and the number of

training examples is relatively small. That is, the underlying true distri-

bution P (x, y) is difficult to estimate based on a finite sample of training

examples. As a result, the estimator will generalize poorly on unseen test

examples. Regularization theory (Evgeniou et al., 1999, 2002) provides

a framework to tackle these two problems. In particular, it suggests to

minimize

J (f) = Remp(f) + λΩ(f), (2.7)

where Ω(f) is a regularization function that controls the complexity of the

estimator by penalizing the norm of the feature weight vector, λ is a pos-

itive parameter that controls the relative weight between the empirical

risk term and the regularization term.

For the linear function class, there are several ways to define the reg-

ularization term including, for example, the L1-norm and the L2-norm

regularizations. The L2-norm regularization, defined by

ΩL2(f) = ||w||2 =
(

d∑

i=1

|w[i]|2
) 1

2

, (2.8)

controls the complexity of the estimator f and provides a smooth solution.

It has been applied in, for example, ridge regression (Hoerl and Kennard,

2000), logistic regression (Chen and Rosenfeld, 2000), and support vector

machines (Cortes and Vapnik, 1995). On the other hand, the L1-norm

regularization, defined by

ΩL1(f) = ||w||1 =
d∑

i=1

|w[i]|,

provides a sparse parameter estimation such that we obtain a high dimen-

sional feature weight vector with many zero entries. This is an attractive

property as feature selection is incorporated into the learning process. The

model thus created is usually easy to interpret. The L1-norm regulariza-

tion has been applied in, for example, LASSO (Tibshirani, 1994). Many

other regularization techniques have been widely studied, for example,

the L1,2-norm regularization (Argyriou et al., 2007), and the elastic net

regularization (Zou and Hastie, 2005).

19

Regularized Learning for Classification

2.2 Single-Label Classification

In this section, the author will introduce the basic classification prob-

lem known as single-label classification, and explain two prominent al-

gorithms in this area, namely logistic regression and support vector ma-

chines. Optimization techniques and the latest advances of these two al-

gorithms will also be briefly discussed. The goal is to provide background

information that is necessary to understand the algorithms presented in

the latter part of this thesis.

2.2.1 Preliminaries

In this section, we focus on the standard supervised learning problem also

known as binary classification, by explicitly assuming the output space

Y = {−1,+1}. Additionally, we assume a feature map ϕϕϕ : XXX → FFF , which

embeds an input into some high dimensional feature space FFF = Rd. In

particular, ϕϕϕ(x) is a vector of real values in d dimensions. We consider the

hypothesis class to be a set of linear classifiers that is parameterized by a

weight vector w and a bias term b defined as

f(x;w, b) = ⟨w,ϕϕϕ(x)⟩+ b, (2.9)

where ⟨· , · ⟩ denotes the inner product of two vectors

⟨w,ϕϕϕ(x)⟩ =
d∑

i=1

w[i]ϕϕϕ(x)[i].

For any 1 ≤ ρ ∈ R, the Lρ-norm of a vector w is defined as

||w||ρ =

(
d∑

i=1

|w[i]|ρ
) 1

ρ

.

For the convenience of presentation, we will explicitly use ||w|| to refer to

the L2-norm of w in the remaining part of the thesis.

2.2.2 Logistic Regression (LR)

Logistic regression is a classification model rather than a regression model

(Bishop, 2007). The formalism nicely transits from risk minimization

(Section 2.1.2) to regularized risk minimization (Section 2.1.2). Logistic

regression has been extended to many other classification algorithms pre-

sented in the latter part of the thesis, for example, IBLR in Section 3.2.3,

and CORRLOG in Section 3.3.2. The central idea of logistic regression, the

20

Regularized Learning for Classification

odd-ratio type learning in particular, is also the building block of M3N in

Section 4.2.3 and many other algorithms developed in this thesis.

Logistic regression models the conditional probability P (y = +1|x) for a

binary output variable y ∈ Y. To model the probability, we do not restrict

to any particular form, as any unknown parameters can be estimated by

maximum likelihood estimation (MLE). However, we are most interested

in the simple linear model as described in (2.9). To apply the linear model,

we compute the logistic transformation of the original conditional proba-

bility by

log
P (y = +1|x)
P (y = −1|x) = ⟨w,ϕϕϕ(x)⟩+ b.

Solve it for P (y = +1|x), we obtain

P (y = +1|x;w, b) =
1

1 + e−⟨w,ϕϕϕ(x)⟩−b
. (2.10)

We can also compute

P (y = −1|x;w, b) = 1− P (y = +1|x;w, b) =
1

1 + e⟨w,ϕϕϕ(x)⟩+b
. (2.11)

Putting (2.10) and (2.11) together, we define logistic regression as

Definition 1. Logistic Regression (LR).

P (y|x;w, b) =
1

1 + e−y(⟨w,ϕϕϕ(x)⟩−b)
.

We predict y = +1 when P (y = +1|x;w, b) ≥ 0.5, and y = −1 otherwise.

The decision rule is such that we predict y = +1 when ⟨w,ϕϕϕ(x)⟩ + b ≥ 0,

and y = −1 otherwise. Besides the decision boundary, logistic regression

can output the class probability of a data point as the “distance” of the

data point to the decision boundary. It is the probabilistic output that

makes logistic regression no more than a classifier.

The parameter w and b can be obtained by maximizing the probability

(likelihood) of the training data. The likelihood of parameters given data

can be computed by

L(w, b|D) =
m∏

i=1

P (yi|xi). (2.12)

To apply MLE, it is easier if, instead of maximizing the likelihood, we

maximize the log-likelihood, which turns the product (2.12) into sum

logL(w, b|D) =
m∑

i=1

logP (yi|xi) = −
m∑

i=1

log(1 + e−yi(⟨ϕϕϕ(xi),w⟩+b)). (2.13)

21

Regularized Learning for Classification

MLE can generate a LR model that fits the training data. However, there

is no guarantee that the model also generalizes well on the unseen test

data. To achieve a better generalization power, we apply the regulariza-

tion technique presented in Section 2.1.2. Many regularization methods

for LR have been developed (Chen and Rosenfeld, 1999, 2000; Goodman,

2003) among which adding Gaussian prior on the weight parameter w is

a standard option. In practice, we assume w is generated according to a

zero-mean spherical Gaussian with variance σ2. Thus, the MLE problem

(2.13) is transformed into the maximum a-posteriori (MAP) problem of the

following form

P (w, b|D;σ2) = P (w|σ2)
m∏

i=1

P (yi|xi) = e−
||w||2

σ2

m∏

i=1

1

1 + e−yi(⟨ϕϕϕ(xi),w⟩+b)
.

(2.14)

Instead of maximizing the posterior (2.14), it is easier to maximize the

log-posterior

logP (w, b|D;σ2) = − ||w||2

σ2
−

m∑

i=1

log (1 + e−yi(⟨ϕϕϕ(xi),w⟩+b)). (2.15)

In fact, (2.15) is an instantiation of the regularized risk minimization

strategy described in (2.7) with the L2-norm regularization (2.8) and the

logistic loss (2.4).

Many optimization techniques have been proposed (Minka, 2003), for ex-

ample, the iterative scaling method (Darroch and Ratcliff, 1972; Della Pietra

et al., 1997; Berger, 1999; Goodman, 2002; Jin et al., 2003), the quasi-

Newton method (Minka, 2003), the truncated Newton method (Komarek

and Moore, 2005; Lin et al., 2008), and the coordinate descent method

(Huang et al., 2009). There also exists a line of research that aims to

optimize LR from the dual representation (Jaakkola and Haussler, 1999;

Keerthi et al., 2005; Yu et al., 2011).

2.2.3 Support Vector Machines (SVM)

Support vector machines (SVM) is probably the most widely used single-

label classification algorithm in machine learning. Its extensions for mul-

tilabel classification will be described in the latter part of the thesis (e.g.,

SSVM in Section 4.2.5). In this section, we first introduce maximum-

margin principle which is also the basis of many structured output learn-

ing models, for example, M3N in Section 4.2.3, SPIN in Section 4.3, and

RTA in Section 5.4. After that, we will discuss the formalism of SVM, the

22

Regularized Learning for Classification

primal-dual optimization strategy, and kernel methods which allow SVM

to deal with the high dimensionality of the input feature space. In the end

we will briefly present the optimization strategies developed for SVM.

The framework of SVM was originally introduced by Cortes and Vapnik

(1995). The theory and the algorithm details of SVM are also presented

in the book chapters (Schölkopf and Smola, 2002; Shawe-Taylor and Cris-

tianini, 2004; Bishop, 2007). We begin our discussion by considering a

very simple case where the training data is assumed to be linearly sepa-

rable. There exists a hyperplane in the feature space which separates the

training data into two classes. Additionally, we assume the separating

hyperplane has a simple linear form (2.9) as

f(x) = ⟨w,ϕϕϕ(x)⟩+ b = 0.

As a result, we predict yi = +1 if f(xi) ≥ 0 and yi = −1 otherwise. Given

that a feature weight parameter w achieves a correct separation on the

training data, we can decide the label of an unseen test example xts by

the decision rule yts = sign(f(xts)).

There can be an infinite number of separating hyperplanes that solve

the separation problem on the same training data, which is also suggested

by the empirical risk minimization strategy presented in Section 2.1.1.

We wish to find the hyperplane which also generalizes well on the test

data. A good strategy is to look for a hyperplane that keeps the maximum

distance from the examples of two classes, which is known as maximum-

margin principle. To see this, imagine putting a separating hyperplane

close to one class of examples, which will achieve better classification per-

formance for the test examples from the other class.

We further use γi to denote the margin of the i’th example defined as

the geometric distance from the data point to the separating hyperplane

γi =
yi(⟨w,ϕϕϕ(xi)⟩+ b)

||w|| .

We notice that if w and b are scaled by any constant κ ∈ R (e.g., w ←

κw, b ← κb) the margin γi stays unchanged. The same classification per-

formance and generalization power can still be obtained. As the parame-

ters are invariant to scaling, we set ||w|| = 1. Given a collection of training

examples S, we define the margin with respect to S as the minimum mar-

gin achieved by an individual training example

γ = min
i∈{1,··· ,m}

γi.

23

Regularized Learning for Classification

Based on the maximum-margin principle, the goal of learning is to find

a separating hyperplane such that it maximizes the margin with respect

to all training examples while separating the training examples into two

classes. This corresponds to finding a “big gap” between the examples of

two classes in the feature space. The corresponding optimization problem

(Bishop, 2007) is given as

max
w,b,γ

γ

s.t. yi(⟨w,ϕϕϕ(xi)⟩+ b) ≥ γ, ||w|| = 1, ∀i ∈ {1, · · · ,m}.

This is very difficult to optimize not only because the constraint ||w|| = 1

is non-convex, but also the optimization is not in any standard form. By

replacing w with w
γ , we obtain the following optimization problem

Definition 2. Primal Hard-Margin SVM Optimization Problem.

min
w

1

2
||w||2

s.t. yi(⟨w,ϕϕϕ(xi)⟩+ b) ≥ 1, ∀i ∈ {1, · · · ,m},

where the goal is to find a weight vector of the minimum norm which cor-

responds to maximize the margin between the examples of two classes.

The constraints state that the training examples should be correctly sep-

arated.

We do not use Definition 2 in practice for two reasons. First, many real

world data is not linearly separable, where the solution to the optimiza-

tion problem in Definition 2 does not always exist. Secondly, the data

usually comes with noises and errors. We do not want the resulting clas-

sifier to over-fit the training data. Therefore, we relax the constraints by

introducing a margin slack parameter ξi for each training example xi and

rewrite the constraints as

yi(⟨w,ϕϕϕ(xi)⟩+ b) ≥ 1− ξi, ξi ≥ 0, ∀i ∈ {1, · · · ,m}. (2.16)

ξi will allow data points to have a margin less than 1. In particular, with

ξi = 0, the data point xi is correctly classified, and lies either on the mar-

gin or on the correct side. With 0 < ξi ≤ 1, the data point is correctly

classified, and lies between the margin and the separating hyperplane.

With ξi > 1, the data point is misclassified locating on the other side of

the separating hyperplane. Now the new goal is to maximize the margin

while penalizing the data points which either lie on the wrong side of the

hyperplane or have a margin less than one. This can be defined by

24

Regularized Learning for Classification

Definition 3. Primal Soft-Margin SVM Optimization Problem.

min
w,ξi

1

2
||w||2 + C

m∑

i=1

ξi

s.t. yi(⟨w,ϕϕϕ(xi)⟩+ b) ≥ 1− ξi, ξi ≥ 0, ∀i ∈ {1, · · · ,m}.

Definition 3 is an instantiation of the regularized risk minimization strat-

egy (2.7) with the L2-norm regularization (2.8) and the hinge loss (2.1).

The optimization problem is usually transformed into a dual form by in-

troducing for each constraint a Lagrangian multiplier (dual variable) α.

We defined the dual optimization problem as

Definition 4. Dual Soft-Margin SVM Optimization Problem.

max
α

m∑

i=1

αi −
1

2

m∑

i=1

m∑

i=1

αiαjyiyj⟨ϕϕϕ(xi),ϕϕϕ(xj)⟩

s.t.
m∑

i=1

αiyi = 0, 0 ≤ αi ≤ C, ∀i ∈ {1, · · · ,m}.

It is not difficult to verify that according to Karush-Kuhn Tucher (K.K.T)

conditions only the examples with ξi = 0 and satisfying the equality con-

straints (2.16) will be “active”, have a dual variable αi > 0, and lie on the

margin with γi = 1. They are called support vectors during the optimiza-

tion of SVM. In fact the number of support vectors is usually smaller than

the size of the training data. As the weight vector can be expressed as

a linear combination of training examples (Shawe-Taylor and Cristianini,

2004)

w =
m∑

i=1

αiyiϕϕϕ(xi),

the evaluation can be done efficiently by maintaining a small set of non-

zero dual variables.

To solve the optimization problem in Definition 4, we only need the re-

sult of the inner product ⟨ϕϕϕ(xi),ϕϕϕ(xj)⟩ rather than work explicitly in the

feature space of ϕϕϕ(x). This suggests that training data can be radically

represented through pairwise similarities. In particular, we defined a

function k : X × X → R such that training data S is represented through

a m×m matrix of pairwise similarities.

Definition 5. Kernel function. A kernel k : X × X → R is a function that

for all xi,xj ∈ X satisfies

k(xi,xj) = ⟨ϕϕϕ(xi),ϕϕϕ(xj)⟩,

where ϕϕϕ : X → FFF is a feature map that encodes from an input space X to

some feature space FFF which is also an inner product space.

25

Regularized Learning for Classification

Definition 6. Inner Product Space. A real vector spaceFFF is an inner prod-

uct space if it is defined with the inner product operation ⟨·, ·⟩ : FFF ×FFF → R
that is symmetric ⟨zi, zj⟩ = ⟨zj , zi⟩, bilinear in both scalars ⟨λzi, zj⟩ =

λ⟨zi, zj⟩ and vectors ⟨zi + zj , z⟩ = ⟨ziz, zjz⟩, and positive ⟨z, z⟩ ≥ 0, for all

λ ∈ R and zi, zj , z ∈ FFF .

Definition 7. Symmetric and Positive Semi-definite Property. Given a

non-empty set S = {x1, · · · ,xm} ⊆ X of m objects, a function k : S × S → R
is symmetric and positive semi-definite if it satisfies

k(xi,xj) = k(xj ,xi) and
m∑

i,j=1

cicjk(xi,xj) ≥ 0

for any c1, · · · , cm ∈ R.

Kernel functions in Definition 5 are symmetric positive semi-definite. In

particular, the symmetry can be verified by

k(xi,xj) = ⟨ϕϕϕ(xi),ϕϕϕ(xj)⟩ = ⟨ϕϕϕ(xj),ϕϕϕ(xi)⟩ = k(xj ,xi),

and the positive semi-definiteness can be verified by
m∑

i,j=1

cicjk(xi,xj) =
m∑

i,j=1

cicj⟨ϕϕϕ(xi),ϕϕϕ(xj)⟩ = ||
m∑

i=1

ciϕϕϕ(xi)||2 ≥ 0. (2.17)

(2.17) also implies that kernels are positive semi-definite for any choice of

the feature map ϕϕϕ. In particular, if X is already a inner product space,

we can define a linear feature map ϕϕϕLINEAR : X → X , which corresponds to

the simplest kernel, known as linear kernel

klinear(xi,xj) = ⟨xi,xj⟩.

Kernels that are heavily used in practice include polynomial kernel

kpoly(xi,xj) = (⟨xi,xj⟩+ b)d,

where b is a bias term and d is the degree of polynomial, and Gaussian

kernel (RBF)

kRBF(xi,xj) = exp

(
||xi − xj ||2

2σ2

)
,

where σ is the Gaussian width parameter.

Any kernel function can be represented as an inner product in some

feature space FFF . Kernel enables us to work in a high dimensional feature

space FFF without ever computing the exact coordinate or evaluating the

inner product explicitly in that space. Instead, kernel can be computed

based on the inner product in the original input space X .

26

Regularized Learning for Classification

Definition 8. Kernel Matrix. Given any choice of m objects S = {x1, · · · ,xm} ⊆

X and a kernel function k on S, an m×m matrix K = (k(xi,xj))i,j is called

a Kernel matrix (Gram matrix) of kernel k with respect to S.

The kernel matrix is usually normalized by

K(i, j) =
K(i, j)√

K(i, i)K(j, j)

to ensure that all elements in the kernel matrix lie on a unit hypersphere.

Definition 9. Positive Semi-definite Matrix. An m×m symmetric matrix

K is a positive semi-definite matrix if it satisfies

m∑

i,j=1

cicjK(i, j) ≥ 0

for any c1, · · · , cm ∈ R.

It has been shown that any Kernel matrices are positive semi-definite

(Shawe-Taylor and Cristianini, 2004). Positive semi-definiteness distin-

guishes between general similarity measures and kernels. The property

is essential in kernel based methods. It ensures kernel based methods will

converge to a relevant solution in convex optimization (Boyd and Vanden-

berghe, 2004).

The algorithms for solving the optimization problem of SVM have been

intensively studied, for example, the “chunking” method (Vapnik, 1982;

Pérez-Cruz et al., 2004), the decomposition method (Osuna et al., 1997;

Joachims, 1998), sequential minimal optimization (SMO) (Platt, 1998, 1999),

and the “digesting” method (Decoste and Schölkopf, 2002). There are

some recent studies that aim to scale SVM learning on large scale datasets,

for example, representing the training data with a small set of landmark

points (Pavlov et al., 2000; Boley and Cao, 2004; Yu et al., 2005; Zhang

et al., 2008), the greedy method for basis selections (Keerthi et al., 2006),

the online SVM solver (Bordes et al., 2005), approximating the objective

function of SVM (Zhang et al., 2012; Le et al., 2013), and approximating

the kernel matrix with a low-rank matrix (Smola and Schökopf, 2000;

Fine and Scheinberg, 2002; Drineas and Mahoney, 2005; Si et al., 2014).

2.3 Ensemble Methods

Ensemble methods are general classification techniques in machine learn-

ing. The methods train several base classifiers and combine them in order

27

Regularized Learning for Classification

to achieve more accurate predictions. There are several variants of ensem-

ble methods, to name but a few, bagging (Breiman, 1996a), boosting (Fre-

und and Schapire, 1997; Schapire and Singer, 1999), stacking (Smyth and

Wolpert, 1999), and Bayesian averaging (Freund et al., 2004). Ensemble

methods have improved the classification performance when compared to

their base learner counterpart, some of them are also supported with the

theoretical analysis which guarantees the performance (Schapire et al.,

1997; Koltchinskii and Panchenko, 2000; Cortes et al., 2014a,b). This sec-

tion will be devoted to bagging and boosting as both methods are exten-

sively studied and quite relevant to this thesis.

Ensemble methods and their theories are primarily developed for single-

label classification. The extensions for multilabel classification will be

briefly presented in Section 3.3.1. Moreover, we will present several new

learning algorithms in the latter part of the thesis, which are related to

the ensemble methods presented in this section but with significant dif-

ferences.

2.3.1 Preliminaries

In addition to the notations introduced in Section 2.2.1, we assume there

is a hypothesis class Hw where we generate weak/base hypotheses f t(x) ∈

Hw. We use t to index the t’th weak hypothesis. Let H(x) denote the

ensemble framework which combines multiple weak hypotheses and gen-

erate a stronger one. In many cases, no other information about f t(x) is

available to H(x) except that each weak hypothesis will take in a param-

eter x ∈ XXX and generate an output y ∈ Y.

2.3.2 Boosting

Boosting corresponds to a learning framework or a family of algorithms

that takes in a weak classifier and tunes it into a strong one. We begin

our discussion from the concept class. A concept is a boolean function over

a domain XXX , and a concept class is a class of concepts. A concept class is

strongly learnable if there exists a polynomial learning algorithm which

achieves high accuracy with high probability for all concepts in the class.

On the other hand, a concept class is weakly learnable if the learning

algorithm achieves arbitrarily high accuracy where the only requirement

is that the learning algorithm finds a function which performs better than

the coin flipping. The concept of learnability was proposed by Kearns and

28

Regularized Learning for Classification

Valiant (1989) together with the question whether the strong learnability

and the weak learnability are equivalent which is known as the hypothesis

boosting problem. Finding a weak learner which performs better than

random guessing is easy in practice, but finding a strong learner is usually

difficult. Schapire (1990) has proved that the two classes of learnability

are equivalent which lays the foundation of the boosting algorithm that

tunes a weak learning algorithm into a strong one.

Adaptive Boosting (ADABOOST) proposed by Freund and Schapire (1997)

is the very first practical boosting algorithm and is the most influential

one. In addition, Schapire and Singer (1999) proposed a variant of the

algorithm which updates the adaptive parameters to minimize the expo-

nential loss (2.3) of each weak learner. The algorithm is shown in Algo-

rithm 1. The central idea of ADABOOST is to maintain a distribution D

over all training examples, and update the distribution in each iteration

such that the difficult-to-classify examples will get more probability mass

for the next iteration (line 7). Particularly, in each iteration, the algo-

rithm computes a weak learner f t(x) based on all training examples and

the current distribution Dt (line 3), calculates the weighted training error

ϵt (line 4), and computes the adaptive parameter αt (line 5). The ensemble

prediction is the weighted combination of all weak learners (line 9).

Algorithm 1 ADABOOST

Input: Training sample S = {(xi,yi)}mi=1, learning function W, number

of weak learners T

Output: Boosting ensemble H(x)

1: Initialize D1(i) = 1
m , ∀i ∈ {1, · · · ,m}

2: for t = 1 · · ·T do
3: f t(x)←W(S, Dt)

4: ϵt =
∑m

i=1D
t(i)1{yi ̸=f t(xi)}

5: αt = 1
2 ln

(
1−ϵt

ϵt

)

6: Z =
∑m

i=1D
t(i) exp(−αtyif t(xi))

7: Dt+1(i) = 1
ZD

t(i) exp(−αtyif t(xi)), ∀i ∈ {1, · · · ,m}

8: end for
9: return H(x) = sign(

∑T
t=1 α

tf t(x))

For each weak learner f t(x), the strategy of updating the adaptive pa-

rameter αt is to ensure that the exponential loss of αtf t(x) is minimized.

To see this, we first compute the exponential loss of αtf t(x) given the cur-

29

Regularized Learning for Classification

rent distribution Dt and the adaptive parameter αt

Lexp(y,α
tf t(x);Dt)

=
m∑

i=1

Dt(i) exp(−yiαtf t(xi))

= exp(−αt)
m∑

i=1

Dt(i)1{yi=f(xi)} + exp(αt)
m∑

i=1

Dt(i)1{yi ̸=f(xi)}

= exp(−αt)(1− ϵt) + exp(αt)ϵt.

To minimize Lexp(y,αtf t(x);Dt), we take the partial derivative with re-

spect to αt and set it to zero

∂Lexp(y,αtf t(x);Dt)

∂αt
= − exp(−αt)(1− ϵt) + exp(αt)ϵt = 0.

Solve it for αt, we get

αt =
1

2
ln

(
1− ϵt

ϵt

)
.

It is worth pointing out that ADABOOST described in (algorithm 1) re-

quires the learning algorithm W work with some specific distribution

defined on the training data. The distribution is usually generated by

reweighing which initializes a uniform distribution over all training ex-

amples and updates the distribution in each iteration. For the learning

algorithms that cannot work with distributions, resampling is often ap-

plied which generates a new training dataset in each iteration by sam-

pling training examples according to some desired distribution.

DEEPBOOSTING (Cortes et al., 2014b) improves ADABOOST by allow-

ing the base learning algorithm to use a complex hypothesis class. The

theoretic analysis of DEEPBOOSTING also advances the previous perfor-

mance guarantee of ADABOOST (Schapire et al., 1997; Koltchinskii and

Panchenko, 2000).

2.3.3 Bootstrap Aggregating

Bootstrap Aggregating (BAGGING) (Breiman, 1996a) is an ensemble method

that exploits the independency between weak learners. The algorithm is

based on the fact that errors can be dramatically reduced by combining

independent base learners. Let f t denote the t’th weak learner. The en-

semble prediction H(x) is the averaged prediction over all weak learners

H(x) = sign
(

T∑

t=1

f t(x)

)
. (2.18)

30

Regularized Learning for Classification

We assume that each base learner has a probability of ϵ to make an inde-

pendent mistake

P (f t(x) ̸= y) = ϵ.

As BAGGING (2.18) makes a mistake when at least half of the weak learn-

ers make mistakes, the probability of BAGGING making mistake can be

computed by

P (H(x) ̸= y) =

T/2∑

t=0

⎛

⎝ T

t

⎞

⎠ (1− ϵ)tϵT−t ≤ exp

(
−1

2
T (2ϵ− 1)2

)
.

The probability decreases exponentially in the number of weak learners,

which will approach zero when the number of weak learners approaches

infinity. However, it does not hold in practice as base learners are gener-

ated from the same training data which can hardly be independent from

each other. The goal of BAGGING is to best exploit the independency by

adding randomness into the algorithm.

Bootstrap sampling (Efron and Tibshirani, 1994) is applied in BAGGING

to generate subsets of training examples. Given a training set of m train-

ing examples, a subset of the same size is generated by sampling with

replacement m times from the original training set. The sampling pro-

cedure is repeated T times to generate T subsets for constructing base

learners. Sampled subsets will be similar as they are sampled from the

same training set. However, they will not be too similar in that each sub-

set will only cover around 63% of the original training data under the

condition that m is large. To see this, consider the probability that the

i’th training examples is not sampled once is (1− 1
m), and the probability

that it is not sampled at all is (1 − 1
m)m. When m is large, this probabil-

ity will approach 37%. That is, around 37% of the training examples will

not appear in any sampled training set. The property of Bootstrap Sam-

pling also allows us to efficiently estimate the generalization error of the

base learner known as out-of-bag estimation (Breiman, 1996b; Tibshirani,

1996; Wolpert and Macready, 1999).

31

Regularized Learning for Classification

32

3. Multilabel Classification

Multilabel classification is a natural extension to single-label classifica-

tion presented in Section 2.2. In multilabel classification, each input (in-

stant) is simultaneously associated with multiple outputs (labels). The

research of multilabel classification has progressed rapidly in the last two

decades with many learning models being developed and applied to the

real world classification problems (Lafferty et al., 2001; Taskar et al.,

2002, 2004; Tsochantaridis et al., 2004; Rousu et al., 2007). In general,

there are two broad categories of research in multilabel classification,

namely flat multilabel classification and structured output prediction. In

flat multilabel classification, multiple interdependent labels are treated

essentially as a “flat” vector of labels. Structured output prediction, on

the other hand, models the correlation between multiple labels with an

output graph connecting labels. The output graph is usually given apriori

in addition to the vector of multiple labels. This chapter will be devoted to

flat multilabel classification in which several well-established algorithms

will be presented. Structured output prediction will be covered in the lat-

ter part of the thesis.

It is prohibitive to present all the algorithms developed for flat multi-

label classification, it is easier if we can categorize the algorithms into

groups. In this chapter, we adopt the categorization scheme (Tsoumakas

and Katakis, 2007; Tsoumakas et al., 2010) which gives us two major

groups of algorithms, namely problem transformation and algorithm adap-

tation. Problem transformation aims to transfer the flat multilabel clas-

sification problem into other well-studied problems, for example, single-

label classification, label ranking, label power set. The algorithm adap-

tation directly modifies the established learning techniques to solve the

multilabel classification problem. Nevertheless, the presented algorithms

aim to tackle the central problems of flat multilabel classification, namely

33

Multilabel Classification

to explore the exponential sized multilabel space and to model the corre-

lation between labels. It is impossible to cover every lines of research in

the field of flat multilabel classification. Readers are pointed out to the re-

cent research survey articles (Tsoumakas and Katakis, 2007; Tsoumakas

et al., 2010; Zhang and Zhou, 2014).

3.1 Preliminaries

We borrow most notations from the single-label classification setting de-

scribed in Section 2.2.1. In particular, we examine the following multil-

abel classification problem. We assume training examples are drawn from

a domain XXX × YYY, where XXX is an input (instant) space and YYY is a space of

outputs (multilabels). The output space YYY = Y1× · · ·×Yk is composed by a

Cartesian product of k sets Yi = {−1,+1}. We retain a single-label classifi-

cation problem by setting k = 1. A vector y = (y[1], · · · ,y[k]) ∈ YYY is called

a multilabel and its element y[j] is called a microlabel. We use yi[j] to

denote the j’th microlabel in the i’th multilabel. In addition, we are given

a training set of m labeled examples S = {(xi,yi)}mi=1 ∈ XXX × YYY. A pair

(xi,y), where xi is a training input and y ∈ YYY is an arbitrary output, is

called pseudo-example. It is worth pointing out that the pseudo-example

(xi,y) can be generated from a different distribution that generates train-

ing examples (xi,yi). The goal of learning is to find a mapping function

f ∈ H : XXX → YYY which can compute the best multilabel for an input exam-

ple such that the predefined loss function L for the unseen examples will

be minimized.

3.2 Problem Transformation

Problem transformation aims to transform the flat multilabel classifica-

tion problem into other well studied problems. The most typical way

of the transformation is binary relevance (BR) (Tsoumakas and Katakis,

2007; Tsoumakas et al., 2010), which transforms a multilabel classifica-

tion problem into a set of single-label classification problems and to in-

dependently learns a single-label classifier for each subproblem. There

exists many other types of transformations, for example, into the label

power set problem (Tsoumakas and Vlahavas, 2007), and into the label

ranking problem (Elisseeff and Weston, 2002; Brinker and Hüllermeier,

34

Multilabel Classification

2007; Fürnkranz et al., 2008; Chiang et al., 2012). However, learning by

label ranking will not be explained in detail as it slightly diverges from

the main scope of this thesis. We will focus on BR in this section.

3.2.1 Multilabel K-Nearest Neighbors (ML-KNN)

Multilabel K-Nearest Neightbors algorithm (ML-KNN) developed by Zhang

and Zhou (2005, 2007) is perhaps the most famous binary relevance clas-

sifier for flat multilabel classification. ML-KNN is also an instance based

learning approach (Aha et al., 1991) that is derived from the K-Nearest

Neightbors algorithm (KNN) designed for single-label classification. ML-

KNN transforms the flat multilabel classification problem into a set of

single-label classification problems and processes each microlabel inde-

pendently. For each unseen example x, ML-KNN first identifies a set of

K-nearest neighbors NK(x) from the training set. After that, the algo-

rithm predicts the multilabel y of the example by examining the set of

multilabels collected from the K-nearest neightbors.

Mathematically, let C(j) denote the number of the neighbors of x with

the j’th label being “+1”, let Hb(j) denote the event that the j’th label of

x is b ∈ Yj , and let El(j) denote the event that 0 ≤ l ≤ K neighbors of

x have the j’th label being “+1”. ML-KNN processes each microlabel at

a time and determines the value of the j’th microlabel by examining the

following maximize a-posteriori (MAP) problem

y[j]∗ = argmax
b∈Yj

P (Hb(j)|EC(j)(j)) = argmax
b∈Yj

P (Hb(j))P (EC(j)(j)|Hb(j))

P (EC(j)(j))
.

The prior probability distribution P (Hb(j)) and the likelihood distribution

P (EC(j)(j))|Hb(j)) can be estimated from the training data in terms of

relative frequencies.

The central problem of ML-KNN is that the algorithm ignores the corre-

lation between labels. Cheng and Hüllermeier (2009); Younes et al. (2011)

proposed several variants of ML-KNN that aim to explore the label corre-

lations. In addition, there exists many alternatives which also align to the

direction of KNN typed learning for flat multilabel classification (Brinker

and Hüllermeier, 2007; Chiang et al., 2012).

3.2.2 Classifier Chains (CC)

Classifier chains (CC) (Read et al., 2009, 2011) is another problem trans-

formation approach for flat multilabel classification. CC involves k binary

35

Multilabel Classification

transformations and forms a chain of k binary classifiers h = {h1, · · · , hk},

in which the j’th classifier hj is built for predicting the j’th microlabel.

For the j’th microlabel y[j], CC first constructs a new training data Sj by

taking the j’th microlabel as the output variable and combining the origi-

nal feature space with all j−1 prior microlabels as the new input features

defined by

Sj = {((xi[1], · · · ,xi[d],yi[1], · · · ,yi[j − 1]),yi[j])}mi=1.

A classifier hj is built by applying any single-label classification algorithm

on Sj .

Thus, CC takes the correlation between labels into consideration by in-

corporating the label information as the concatenated features in the new

input feature space. The idea is not new which has been previously stud-

ied (Godbole and Sarawagi, 2004). CC makes a strong assumption that

there is a high correlation between the output microlabel and the concate-

nated microlabels. The central problem of CC is that the additional label

information only takes a small part of the input feature space especially

when the dimension of the original feature space is already high.

Probabilistic classifier chains (PCC) extends CC by analyzing the algo-

rithm with the condition probability theory (Read et al., 2009; Dembczyn-

ski et al., 2010). In addition, ensemble classifier chains (ECC) has been de-

veloped which improves CC by generating and combining multiple chains

of classifiers (Read et al., 2011).

3.2.3 Instant Based Logistic Regression (IBLR)

Cheng and Hüllermeier (2009) developed instance based logistic regres-

sion (IBLR) with an extension to flat multilabel classification. IBLR is also

an instant base learning approach (Aha et al., 1991) that is similar to

ML-KNN. It extends ML-KNN by exploring the correlation between labels

within the neighbors of an instant for posterior inference. The central idea

of IBLR is to take the labels of the examples in the neighbor as the only

features to predict the label of the current example. Similar ideas have

been applied in collective classification (Ghamrawi and McCallum, 2005)

and link based classification (Getoor, 2005; Getoor and Taskar, 2007).

In particular, for each unseen example x, IBLR first identifies a set of

K-nearest neighbors NK(x) from the training data. The algorithm builds

a logistic regression model (Section 2.2.2) for each microlabel based on

the label information collected from the examples in NK(x). Mathemati-

36

Multilabel Classification

cally, IBLR defines a posterior probability of the j’th microlabel of x being

labeled as “+1” by

π(j) = P (y[j] = +1|NK(x)).

It constructs a logistic regression classifier for π(j) which can be derived

from the following

log
π(j)

1− π(j)
= w(j)

0 +
k∑

i=1

α(j)
i · w(j)

i (x),

where i iterates over all microlabels, w(j)
0 is the regression constant which

can be computed from the training data, and α(j)
i is the regression coeffi-

cient which can be obtained during training. w(j)
i (x) defined by

w(j)
i (x) =

∑

x′∈NK(x)

K(x′,x) · y′[i]

collects the i′th microlabel from each neighbor x′ ∈ NK(x) and weights

the microlabels according to the similarity between x and x′ encoded in

K(x′,x).

3.3 Algorithm Adaptation

Algorithm adaptation directly modifies popular single-label classification

algorithms to solve the multilabel classification problems. We will present

the algorithms that are modified from ensemble methods and logistic re-

gression. There also exists many other algorithms in the algorithm adap-

tation category, for example, the method based on label ranking (Cram-

mer et al., 2003), and the method based on neural network (Zhang and

Zhou, 2006). These methods are not explained in detail due to the diver-

gence from the main scope of this thesis.

3.3.1 Ensemble Methods for Flat Multilabel Classification

Ensemble methods have been initially developed for single-label classifi-

cation (Breiman, 1996a; Freund and Schapire, 1997) or regression (Breiman,

1996a), as it is straightforward to combine multiple scalar output vari-

ables. However, it is not immediately clear how to combine vector valued

outputs in flat multilabel classification.

ADABOOST.MH (Schapire and Singer, 1999; Esuli et al., 2008) is a multi-

label variant of the ADABOOST algorithm. The core idea of ADABOOST.MH

37

Multilabel Classification

is to apply the hamming loss instead of the 0/1 loss (2.2). In particular, the

algorithm reduces a multilabel classification problem into a single-label

classification problem by replacing each training example (xi,yi) with k

examples {(xi,yi[l])}kl=1. The algorithm is described in Algorithm 2. In

particular, it maintains a distribution over all examples and labels. In

each iteration, the algorithm takes in the distribution over all training

examples, generates a weak learner f t(x) (line 3), computes the hamming

loss (line 5), computes the adaptive parameter αt (line 6), and update the

distribution (line 8). The prediction H(x) is a weighted combination of the

base learners f t(x) weighted by the adapter parameters αt.

Algorithm 2 ADABOOST.MH

Input: Training sample S = {(xi,yi)}mi=1, learning function W, number

of weak learners T

Output: Boosting ensemble H(x)

1: Initialize D1(i, l) = 1
mk , ∀i ∈ {1, · · · ,m}, l ∈ {1, · · · , k}

2: for t = 1 · · ·T do
3: f t(x)←W(S, Dt)

4: ŷi = f t(xi), ∀i ∈ {1, · · · ,m}

5: ϵt =
∑k

l=1

∑m
i=1D

t(i, l)1{yi[l]̸=ŷi[l]}

6: αt = 1
2 ln

(
1−ϵt

ϵt

)

7: Z =
∑m

i=1

∑k
l=1D

t(i, l) exp(−αtyi[l]ŷi[l])

8: Dt+1(i, l) = 1
ZD

t(i, l) exp(−αtyi[l]ŷi[l]), ∀i, ∀l

9: end for
10: return H(x) = sign(

∑T
t=1 α

tf t(x))

Besides ADABOOST.MH, some other ensemble methods for multilabel

classification have also been developed that are based on boosting or bag-

ging (Wang et al., 2007; Yan et al., 2007; Kocev et al., 2013). In addition,

there is a large body of work which aim to apply ensemble methods to

solve the real world multilabel classification problems, for example, nat-

ural language processing (Collins and Koo, 2005; Zeman and Žabokrtský,

2005; Sagae and Lavie, 2006; Zhang et al., 2009), and text and speech

recognition (Fiscus, 1997; Mohri et al., 2008; Petrov, 2010).

3.3.2 Correlated Logistic Regression (CORRLOG)

Correlated logistic regression (CORRLOG) is a model based approach for

flat multilabel classification (Bian et al., 2012). CORRLOG is a major step

forward of IBLR by constructing a logistic regression classifier over all mi-

38

Multilabel Classification

crolabels and by modeling the pairwise correlation of labels with a func-

tion defined on the microlabel pairs.

In fact, CORRLOG is derived from independent logistic regressions (ILRS).

Given a pair of an arbitrary training example and a label (x,y), we can

construct a set of ILRS classifiers, one for each microlabel. The posterior

probability can be computed by

PILRS(y|x) =
k∏

j=1

PLR(y[j]|x) =
k∏

j=1

exp(y[j]w
ᵀ
ϕϕϕ(x))

exp(wᵀϕϕϕ(x)) + exp(−wᵀϕϕϕ(x))
, (3.1)

where j is the index that iterates over microlabels and ᵀ denotes matrix

transpose. The bias term as that appears in Definition 1 is omitted which

is equivalent to augmenting x with a constant term (Bian et al., 2012).

Otherwise, (3.1) can be derived into the same form of Definition 1 by re-

placing w with w
2 . ILRS has the problem of ignoring the correlation be-

tween labels and overfitting the training data when the number of micro-

labels is large. To alleviate the problems, CORRLOG augments the poste-

rior probability (3.1) by a function Q(y) defined on the pairs of microlabels

as

Q(y) = exp

⎧
⎨

⎩
∑

k<j

αk,jy[k]y[j]

⎫
⎬

⎭ . (3.2)

Putting together (3.1) and (3.2), CORRLOG can be defined as

PCORRLOG(y|x) ∝ PILRS(y|x)Q(y)

= exp

⎧
⎨

⎩

m∑

j=1

y[j]⟨w,ϕϕϕ(x)⟩+
∑

k<j

αkjy[k]y[j]

⎫
⎬

⎭ .

Thus, CORRLOG examines the pairwise label correlations by augmenting

the joint prediction with a quadratic term Q(y) built from the pairs of

microlabels.

3.3.3 Multitask Feature Learning (MTL)

Multitask feature learning (MTL) (Argyriou et al., 2007) is another algo-

rithm designed for flat multilabel classification. MTL is quite different

from the algorithms discussed in the previous part of the section. Specif-

ically, MTL is based on the assumption that different microlabels are re-

lated such that they share a common underlying feature representation.

Similar assumptions are also made in other models (Caruana, 1997; Bax-

ter, 2000; Ben-David and Schuller, 2003).

39

Multilabel Classification

Let ft(x) denote a label specific function for the t’th microlabel. ft(x) can

be expressed as

ft(x) = ⟨at, h(x)⟩ =
d∑

i=1

at[i]h(x)[i],

where at ∈ Rd is the feature weight parameter for the t’th microlabel. h(x)

is a linear feature mapping function defined as

h(x) = ⟨U,ϕϕϕ(x)⟩,

where ϕϕϕ(x) ∈ Rd is the input feature map in the original feature space

and U ∈ Rd×d is a square matrix. We further use A to denote the matrix

composed by at. MTL assumes that microlabels share a small set of fea-

tures in which A is assumed to be sparse with many entries being zero.

The optimization problem of MTL is defined as

Definition 10. MTL Optimization Problem in Primal

min
U∈Rd×d

A∈Rd×T

{
T∑

t=1

m∑

i=1

ℓ(yi,t, ⟨at, ⟨U,ϕϕϕ(xi)⟩⟩) + C ||A||22,1

}
,

where C is a positive parameter that controls the balance of the regu-

larization term and the risk minimization term. The optimization prob-

lem is an instantiation of the regularized risk minimization (2.7) with

the hamming loss and the L2,1-norm regularization. As Definition 10 is

non-convex and the second term is non-smooth, the optimization is trans-

formed into an equivalent form which is solved by an alternative opti-

mization approach (Argyriou et al., 2007).

Argyriou et al. (2008a) developed an extension of MTL that introduces

a nonlinear generalization using kernel methods. In addition, Argyriou

et al. (2008b); Jacob et al. (2009) have developed several similar but not

identical algorithms based on the assumption that microlabels form clus-

ters such that label specific weight vectors should be similar within the

clusters. Recently, Romera-Paredes et al. (2012) proposed a method that

exploits the information between unrelated microlabels based on a simi-

lar assumption that the microlabels of different groups tend not to share

any features.

40

4. Structured Output Prediction

Structured output prediction is a natural extension to flat multilabel clas-

sification presented in Chapter 3. Unlike flat multilabel classification

which takes multiple interdependent output variables essentially as a

“flat” vector, structured output prediction assumes that multiple output

variables are correlated and located in a structured output space. In other

words, there exists an output graph (e.g., a chain, a spanning tree) given

as input in addition to the flat vector of multiple labels. The multiple out-

put variables are connected by the output graph so that the correlation

between labels can be utilized during learning. In this chapter, we will

start by introducing several structured output learning algorithms devel-

oped during the last decade. We will present our new algorithm SPIN that

can predict an optimal directed acyclic graph (DAG) which best “responds”

to an input, and examine the performance on the network response pre-

diction problem within the context of social network analysis.

4.1 Preliminaries

Multilabel classification deals with multiple interdependent output vari-

ables, y ∈ YYY. The problem is called structured output prediction when

these variables are located in a structured output space. That is, the cor-

relation between labels is described by an output graph connecting multi-

ple labels. In particular, we define the output graph G = (E, V) by a node

set V = {1, · · · , k} which corresponds to the microlabels {y[1], · · · ,y[k]}

and an edge set E = V × V which represents the correlation between mi-

crolabels. For an edge e = (j, j′) ∈ E, we use ye to denote the label of

the edge e with respect to a multilabel y by concatenating the head label

y[j] and the tail label y[j′], with an edge label domain ye ∈ YYYe = Yj × Yj′ .

We use yi,e to denote the edge label of an example (xi,yi) on an edge e.

41

Structured Output Prediction

Thus, given a training example (xi,yi) and an output graph G, we can

uniquely identify the node label yi and the edge label yi,e of the output

graph. In addition, we denote the possible label of a node i by ui and the

possible label of an edge e by ue where ui and ue are not constrained by

any multilabel y. Naturally, ui ∈ Yi and ue ∈ YYYe.

4.2 Related Methods

In this section, we will briefly present several related algorithms for struc-

tured output prediction including structured perceptron, conditional ran-

dom field, max-margin conditional random fields, structured SVM, and

max-margin Markov networks.

4.2.1 Structured Perceptron

The perceptron (Rosenblatt, 1958) is one of the oldest algorithms in ma-

chine learning. Structured perceptron (Collins, 2002; Collins and Duffy,

2002), as suggested by its name, is a generalization of the perceptron al-

gorithm to the structured output space. The formalism of structured per-

ceptron is quite similar to multiclass perceptron. The model assumes a

score function ⟨w,φφφ(x,y)⟩ as the inner product between a feature weight

parameter w and a joint feature map φφφ(x,y), In particular, φφφ : XXX ×YYY → Rd

maps an input–output pair to a vector of d dimension. The joint feature

map is often defined based on the structure of the output graph (e.g.,

a chain in sequence tagging problem (Collins, 2002)). After the feature

weight parameter w is obtained, one needs to solve the argmax problem

to find the best output for a given input x, which is defined as

ŷ = argmax
y∈YYY

⟨w,φφφ(x,y)⟩. (4.1)

The argmax problem is solved by an algorithm such as Viterbi decoding

(Collins, 2002) rather than an exhaustive search through the exponential

sized output space.

The weight parameter w is learned through the standard perceptron it-

erative update by solving the argmax problem (4.1) in each iteration. In

particular, the algorithm loops through all training examples and updates

w whenever the predicted multilabel ŷi is different from the true multil-

abel yi. The update is given by

w← w + (φφφ(xi,yi)− φφφ(xi, ŷi)) . (4.2)

42

Structured Output Prediction

The update (4.2) usually leads to over-fitting. A simple refinement is usu-

ally applied which is similar to averaged perceptron developed by Freund

and Schapire (1999).

The central problem with structured perceptron is the loss function. In

fact, Structured Perceptron tacitly applies 0/1 loss (2.2) on multilabels,

with which it is impossible to distinguish a nearly correct multilabel and a

completely incorrect one. Both will lead to the same update to the feature

weight parameter (4.2) during learning.

4.2.2 Conditional Random Field (CRF)

Condition random field (CRF) (Lafferty et al., 2001; Taskar et al., 2002) is a

discriminative framework that constructs a conditional probability P (y|x)

for an input variable x ∈ XXX and an output variable y ∈ YYY. It optimizes

the log-loss which is analogue to the 0/1 loss (2.2) in the structured output

space.

Mathematically, let Y = {y1, · · · ,ym} denote a set of output random

variables and X = {x1, · · · ,xm} denote a set of input random variables

to condition on. Let G = (E, V) denote an output graph such that y =

(y[v])v∈V . CRF defines a conditional probability distribution

P (y|x) = 1

Z(x,w)
exp ⟨w,φφφ(x,y)⟩,

where φφφ(x,y) is a joint feature map defined according to the output graph

G. Z(x,w) is the partition function dependent on x that sums over all

possible multilabels

Zx,w =
∑

y′∈YYY
exp ⟨w,φφφ(x,y′)⟩. (4.3)

When conditioned on x, random variables y[v] obey the Markov property

with respect to the output graph G.

Applying the similar regularization technique as used in logistic regres-

sion in Section 2.2.2, the feature weight parameter w can be solved by

introducing a Gaussian prior and maximizing the logarithm of the result-

ing maximize a-posteriori (MAP) problem (Taskar et al., 2002)

L(w) =
m∑

i=1

[⟨w,φφφ(xi,yi)⟩ − logZ(xi,w)]− 1

σ2
||w||2 . (4.4)

The optimization problem derived from (4.4) is an instantiation of the reg-

ularized risk minimization (2.7) with the log-loss and the L2-norm regu-

larization (2.8). An improved iterative scaling algorithm (IIS) (Della Pietra

43

Structured Output Prediction

et al., 1997) is used to solve the optimization problem in the original work

(Lafferty et al., 2001). To make CRF work in practice, one also need to

make sure that the partition function (4.3) can be evaluated efficiently.

4.2.3 Max-Margin Markov Network (M3N)

Taskar et al. (2004) proposed max-margin Markov network (M3N) that

combines the framework of the kernel based discriminative learning and

the probabilistic graphical model. M3N extends SVM (Section 2.2.3) to the

structured output space. It also improves CRF (Section 4.2.2) by which the

evaluation of the partition function (4.3) can be avoided by introducing

the odd-ratio typed learning that is not dissimilar to logistic regression

presented in Section 2.2.2.

M3N defines a log-linear Markov network over multiple labels which ex-

ploits the correlation between labels. The compatibility score defined by

F (x,y;w) = ⟨w,φφφ(x,y)⟩ (4.5)

can be seen as the affinity of a multilabel y to an input x according to

an output graph. The feature weight parameter w ensures the exam-

ple with the correct multilabel will obtain a higher score than with any

incorrect multilabels. M3N defines a margin as the difference of compati-

bility scores between the correct example (xi,yi) and the pseudo-example

(xi,y). Under the maximum-margin principle in Section 2.2.3, M3N re-

quires the margin to be at least ℓ(yi,y). To learn the feature weight pa-

rameter w, we need to solve the following primal optimization problem

Definition 11. M3N Optimization Problem in Primal.

min
w,ξi

1

2
||w||2 + C

m∑

i=1

ξi

s.t. ⟨w,φφφ(xi,yi)⟩ − ⟨w,φφφ(xi,y)⟩ ≥ ℓ(yi,y)− ξi,

∀ξi ≥ 0, ∀y ∈ YYY/yi, ∀i ∈ {1, · · · ,m},

where ξi is the slack allotted to each example to make sure the solution

can always be found, ℓ(yi,y) is the loss function between a correct mul-

tilabel yi and an incorrect multilabel y, C is the slack parameter that

controls the amount of regularization in the model.

For each example xi, the optimization calls for maximizing the margin

between the correct label yi and any incorrect labels y. The margin is

scaled by the loss function ℓ(yi,y) such that the completely incorrect mul-

tilabel will incur bigger loss than the nearly correct multilabel. The loss

44

Structured Output Prediction

scaled margin optimization will push the high-loss pseudo-examples fur-

ther away from the correct example than the low-loss pseudo-examples.

Definition 11 is an instantiation of the regularized risk minimization (2.7)

with the hamming loss and the L2-norm regularization (2.8).

The primal optimization problem of M3N in Definition 11 is difficult to

solve as there are exponential number of constraints, one for each pseudo-

example (xi,y). The corresponding dual form is also difficult due to the

exponential number of dual variables (Taskar et al., 2004). By exploring

the Markov network structure, the original optimization problem (Defini-

tion 11) can be formulated into a factorized dual quadratic programming,

as long as the loss function ℓ and the joint feature map φφφ(x,y) are decom-

posable over the Markov network.

As the number of parameters is quadratic in the number of training

examples and the edges of the Markov network, it still cannot fit into

the standard Quadratic Programming (QP) solver. Taskar et al. (2004)

developed a coordinate descent method analogous to sequential minimal

optimization (SMO) (Platt, 1998, 1999). Many other efficient optimiza-

tion algorithms have been proposed, for example, the exponential gradi-

ent optimization method (Bartlett et al., 2005), the extra-gradient method

(Taskar et al., 2006), the sub-gradient method Ratliff et al. (2007), and the

conditional gradient method (Rousu et al., 2006, 2007).

To use M3N in practice, one have to solve the loss augmented inference

problem defined as

ŷ = argmax
y∈YYY/yi

⟨w,φφφ(xi,y)⟩+ ℓ(yi,y). (4.6)

To compute (4.6) efficiently, the loss function need to be decomposable

over the Markov network. Nevertheless, M3N improves CRF by avoiding

the evaluation of the partition function (4.3) and allowing complex loss

functions to be defined.

4.2.4 Max-Margin Conditional Random Fields (MMCRF)

Max-margin conditional random field (MMCRF) (Rousu et al., 2007) is a

structured output learning method, that extends M3N by defining the joint

feature map as the tensor product between an input feature map and an

output feature map, and by developing an efficient optimization strategy.

MMCRF is applied in Publication II in which the task is to reliably predict

the multiple interdependent molecular activities.

In particular, MMCRF uses exponential family to model the conditional

45

Structured Output Prediction

probability of a multilabel y given an input example x

P (y|x) ∝ exp(⟨w,φφφ(x,y)⟩) =
∏

e∈E
exp(⟨we,φφφe(x,ye)⟩),

where the joint feature map φφφe(x,ye) = ϕϕϕ(x) ⊗ ΥΥΥe(ye) is defined as the

tensor product between an input feature map and an output feature map

which is the label of an edge e ∈ E in an output Markov network G with

respect to a multilabel y. To obtain w, one needs to solve the primal opti-

mization problem that is not dissimilar to Definition 11. After the feature

weight parameter w is obtained, the prediction of an input example can

be computed by solving the following argmax problem

ŷ = argmax
y∈YYY/yi

⟨w,φφφ(xi,y)⟩. (4.7)

To solve the optimization problem, MMCRF uses the conditional gradi-

ent optimization method (Bertsekas, 1995) in the marginalized dual space

(Taskar et al., 2004), which not only benefits from a polynomial-size pa-

rameter space but also enables kernels (Definition 5) that can deal with

the non-linearity of the complex input space. The inference problem (4.7)

is solved by loopy belief propagation (LBP) which is an instantiation of the

message-passing algorithm (Wainwright and Jordan, 2003).

4.2.5 Support Vector Machines for Interdependent and
Structured Outputs (SSVM)

Support vector machines for interdependent and structured output space

(SSVM) is developed by Tsochantaridis et al. (2004, 2005). The formalism

of SSVM is quite similar to M3N described in Section 4.2.3. Compared to

M3N which scales the margin by the loss function, SSVM scales the margin

errors (slacks) by the loss function. The primal optimization problem of

SSVM can be defined as

Definition 12. SSVM Optimization Problem in Primal.

min
w,ξi

1

2
||w||2 + C

m

m∑

i=1

ξi

s.t. ⟨w,φφφ(xi,yi)⟩ − ⟨w,φφφ(xi,y)⟩ ≥ 1− ξi
ℓ(yi,y)

,

∀ξi ≥ 0, ∀y ∈ YYY/yi, ∀i ∈ {1, · · · ,m},

where ξi is the slack allotted to each example, ℓ(yi,y) is the loss function

between a correct multilabel and an incorrect multilabel, and C is the

slack parameter that controls the amount of regularization in the model.

46

Structured Output Prediction

The interpretation of Definition 12 is also similar to that of Definition 11.

Besides, Tsochantaridis et al. (2004) suggests that M3N will work hard on

the pseudo-examples (xi,y) which incur a big loss though they may not

even close to be confusable to the true multilabel yi.

On the other hand, the optimization techniques employed by SSVM differ

significantly compared to M3N. SSVM will have to work with the exponen-

tial number of constraints as the optimization is not decomposable over

the Markov network. An iterative optimization approach (Tsochantaridis

et al., 2004) has been developed which creates a nested sequence of suc-

cessively tighter relaxations of the original problem via the cutting-plane

method (Bishop, 2007; Joachims et al., 2009). Constraints are added as

necessary and the iterative optimization approach will converge to an op-

timal solution of ϵ precision within a polynomial number of iterations.

Besides the issue during the optimization, another problem with SSVM

is the intractability of the inference problem. To find the most violat-

ing constraint, we need to compute the loss-augmented inference problem

(Tsochantaridis et al., 2005) defined as

ŷ = argmax
y∈YYY/yi

[1− ⟨w,φφφ(xi,y)⟩] ℓ(yi,y). (4.8)

The loss function appears as a multiplicative term making (4.8) not de-

composable over the Markov network. This gives an intractable inference

problem in general. In exchange of the intractability, SSVM can work with

complex loss functions which do not assume any properties of decompo-

sition. The generality of the loss function can be seen as an advantage

compared to CRF, M3N, and MMCRF.

4.3 SPIN for Network Response Prediction

Publication I presents a novel definition of the network response predic-

tion problem and develops a structured output learning model for the

problem. Unlike the previous methods which model the influence in terms

of the network connectivity, the proposed model (SPIN) is context-sensitive.

That is, the influence dynamics also depend on the properties of the action

performed on the underlying network. The inference problem of SPIN is

NP-hard in general. We develop a semi-definite programming algorithm

(SDP) with an approximation guarantee as well as a fast GREEDY heuris-

tics.

47

Structured Output Prediction

4.3.1 Background

With the extensive availability of the large scale networks, there is an

increasing amount of interest in studying the phenomena of the network

influence, in particular, the structure, the function, and the influence dy-

namics. The outcome of the network influence research has been widely

applied to many areas, for example, the spreading of pathogens or infec-

tious diseases (Hethcote, 2000; Anderson and May, 2002), the diffusion

of medical and technology innovations (Strang and Soule, 1998; Rogers,

2003), the opinion and news formations (Adar et al., 2004; Gruhl et al.,

2004; Adar and Adamic, 2005; Leskovec et al., 2007; Liben-Nowell and

Kleinberg, 2008; Leskovec et al., 2009), and the viral market (Domingos

and Richardson, 2001; Kempe et al., 2003; Liben-Nowell and Kleinberg,

2003).

In the field of studying the network influence, one primary interest is

to discover the latent structure that reveals the dynamics of influences.

In general, the problem can be defined into two different ways depend-

ing on the availability of the underlying network structure. On one hand,

one would assume that the underlying structure is hidden or incomplete

and the only observation is a cascade of actions. The instantiations of the

setting include, for example, the online news agents sharing information

but not physically connected, in the epidemiological study where people

are affected by pathogens through various ways. The task is to infer the

network structure in terms of edges connecting nodes given a collection

of actions. Many algorithms are designed to solve the problem in this

setting, for example, NETINF (Gomez Rodriguez et al., 2010), NETRATE

(Rodriguez et al., 2011), KERNEL CASCADE (Du et al., 2012), the two stage

model for inferring influence (Du et al., 2014), the inference algorithm us-

ing cascades without any timestamps (Amin et al., 2014), and the general

framework of inferring the diffusion structure (Daneshmand et al., 2014).

However, we argue the problem is unnecessarily hard as in many cases

the structure of the network is observed (e.g., the friendship network, the

citation network). There are also many related research that aims to dis-

cover the hidden variables in the network (Saito et al., 2008; Goyal et al.,

2010).

None of them consider the property of the action performed on the net-

work. In particular, our network influence problem is motivated by the

following observation: for a given action a performed on a network G, the

48

Structured Output Prediction

influence from a node u to a node u′ not only depends on their connections

but also depends on the action under consideration. For example, u′ is a

follower of u in Twitter, u′ will retweet the message from u if it is related

to science but not related to politics. Therefore, we propose the following

definition of the network response problem

Definition 13. Network Response Problem. Given a complex network and

an action performed on the network, predict an optimal subnetwork that

best responds to the action. In particular, which nodes perform the action

and which directed edges relay the action from one node to its neighbors.

4.3.2 Methods

We approach the problem by structured output learning, where we define

a computability score as the inner product between an action a and a

response network Ga

F (a, Ga;w) = ⟨w,φφφ(a, Ga)⟩.

Intuitively, the action a with a correct response network Ga will achieve

a higher score than with any incorrect response network G′
a. The joint

feature map φφφ(a, Ga) is composed by the tensor product between an in-

put feature map ϕϕϕ(a) of an action and an output feature map ΥΥΥ(Ga) of

a response network. In particular, ϕϕϕ(a) can be a bag-of-words feature of

an action (e.g., a posted message on Twitter) and ΥΥΥ(Ga) can be a vector

of edges and labels of the response network Ga. See Publication I for an

example of input and output feature maps.

The feature weight parameter w is learned through maximum-margin

structured output learning by solving the following optimization problem

Definition 14. Primal SPIN Optimization Problem.

min
w,ξi

1

2
||w||2 + C

m∑

i=1

ξi

s.t. F (ai, Gai ;w) > max
G′

ai
∈H(G)/Gai

(F (ai, G
′
ai
;w) + ℓG(Gai , G

′
ai
))− ξi,

ξi ≥ 0, ∀i ∈ {1, · · · ,m},

where H(G) denotes a set of directed acyclic graphs of G. To solve the

above optimization problem, we have to compute the highest-scoring sub-

graph given an action. In particular, the goal during training is to find the

49

Structured Output Prediction

worst margin violating subgraph which corresponds to solving the follow-

ing loss-augmented maximization problem

H∗(ai) = argmax
G′

ai
∈H(G)/Gai

(F (ai, G
′
ai
;w) + ℓG(Gai , G

′
ai
)).

The goal during prediction is to find the subgraph with maximum com-

patibility given an action a

H∗(a) = argmax
H∈H(G)

F (a, H;w). (4.9)

As these two problems are different only in terms of the definition of

scores, we explain our inference algorithm based on (4.9) by writing the

problem explicitly in terms of the weight vectors and the feature maps

H∗(a) = argmax
H∈H(G)

⟨w,ϕϕϕ(a)⊗ΥΥΥ(H)⟩

= argmax
H∈H(G)

∑

e∈EH

sye(e,a), (4.10)

where sye(e,a) =
∑

iwi,e,yeϕϕϕ(a)[i] denotes the score of an edge e with an

edge label ye. The tuples (i, e,ye) index the elements in the vector w.

We have proved the NP-hardness of (4.10) by forming a reduction from

the MAX-CUT problem (Garey and Johnson, 1990). In addition, we pro-

posed two algorithms to solve the inference problem (4.10). The first is

called SDP inference which introduces for each node u ∈ V a binary vari-

able xu ∈ {−1,+1} and transforms the inference problem into an integer

quadratic programming problem (IQP). The IQP is tackled by a similar

technique proposed by Goemans and Williamson (1995) such that each

variable xu is relaxed to a vector vu ∈ Rn and the relaxed problem is solved

by semi-definite programming (SDP). The resulting vector is rounded back

into binary values by incomplete Cholesky decomposition. The benefit

from SDP inference algorithm is an approximation guarantee. In particu-

lar, the proposed SDP inference algorithm is a 0.796 approximation of the

original IQP.

As SDP inference is not scalable to large scale networks, we develop a

GREEDY heuristic based on the observation stated in the following lemma:

Lemma 1. The inference problem (4.10) can be expressed equivalently

with a set of activated vertices V H
p and the marginal gain function Fm(vi)

defined on each vertex vi ∈ V H
p as

H∗(a) = argmax
H∈H(G)

∑

vi∈V H
p

Fm(vi).

50

Structured Output Prediction

The proof and the definition of the marginal gain function are given in

the supplementary material of Publication I. As a result, the GREEDY

algorithm starts with an empty vertex set and adds one vertex in each

iteration such that the increment of the score is maximized over all possi-

ble choices of inactivated vertices. The procedure ends when the objective

cannot be improved. It is worth pointing out that we are not able to give

any approximation guarantee for the solutions produced by the GREEDY

algorithm. The property of sub-modularity, which is often used to ana-

lyze the greedy algorithm, only holds for the special case of our inference

problem.

51

Structured Output Prediction

52

5. Structured Output Prediction with
Unknown Output Graphs

Structured output learning relies on an output graph connecting multi-

label interdependent output variables to exploit the correlation between

labels. The applicability of structured output learning is limited due to

the fact that the output graph needs to be known apriori. In this chap-

ter, we aim to develop several structured output learning algorithms that

are not constrained by the availability of the output graph. As a result,

structured output learning can be applied to a wide range of multilabel

classification problems. In Section 5.1, we study the multilabel molecular

classification problem with structured output learning in which the out-

put graph is extracted from auxiliary datasets. In Section 5.2, we present

MVE which uses majority vote to combine the predictions from a set of

structured output learners built on a collection of random output graphs.

In Section 5.3, we present two aggregation techniques, namely AMM and

MAM, which perform inference on output graphs before or after combin-

ing multiple structured output learners. In Section 5.4, we present RTA

which is a joint learning and inference model that performs max-margin

learning on a random sample of spanning trees.

5.1 Structured Output Prediction for Molecular Classification

The molecular classification problem has been tackled by a variety of

single-label classification approaches (Menchetti et al., 2005; Singh et al.,

2012; Dutt, 2012). On the other hand, multiple interdependent molec-

ular activities are often screened simultaneously in the field of drug re-

search (Shoemaker, 2006), which presents two challenges for single-label

classification. The first challenge is the scalability issue in which a set

of single-label classifiers needs to be built to predict multiple activities

of a molecule. This becomes infeasible in computation when we need to

53

Structured Output Prediction with Unknown Output Graphs

examine a large number of molecular activities at the same time. The

second challenge is that single-label classification ignores the correlation

between multiple output variables. On the other hand, multiple molec-

ular activities are often correlated which can be utilized to improve the

classification performance. In Publication II, we explore the potential of

structured output learning in the molecular activity classification prob-

lem. To apply structured output learning, we extract output graphs from

several auxiliary datasets which encode the correlation between multiple

molecular activities.

5.1.1 Background

Molecular classification, the goal of which is to predict the anti-cancer po-

tentials of drug-like molecules, is a crucial step in drug discovery and has

gained in popularity from the machine learning community (Singh et al.,

2012; Dutt, 2012). Viable molecular structures are scanned, searched, or

designed for therapeutic efficacy. In particular, expensive preclinical in

vitro and in vivo drug tests can be largely avoided and special efforts can

be devoted to few promising candidate molecules, once accurate in silico

models are available (Burbidge et al., 2001).

A variety of machine learning methods have been developed for this

task, to name but a few, inductive logic programming (King et al., 1996),

artificial neural network (Bernazzani et al., 2006), kernel methods for

nonlinear molecular properties (Trotter et al., 2001; Ralaivola et al., 2005;

Swamidass et al., 2005; Ceroni et al., 2007a), and the SVM based methods

(Trotter et al., 2001; Byvatov et al., 2003; Xue et al., 2004). Albeit with

a large quantity of the developed methods, they only focus on predicting

a single output variable (e.g., the inhibition potential of a molecule in a

target cell line). On the other hand, a large number of interdependent

molecular activities are often screened at the same time in the field of

drug research. For example, in the recent NCI-60 human tumor cell line

screen project (Shoemaker, 2006), thousands of molecular structures are

tested agains hundreds of target cell lines.

5.1.2 Methods

To efficiently and accurately predict molecular activities in multiple cell

lines at the same time, we applied a structured output learning approach

in Publication II, which is to our knowledge the first multilabel classifica-

54

Structured Output Prediction with Unknown Output Graphs

tion approach for the molecular classification problem. The algorithm is

an instantiation of MMCRF (Rousu et al., 2007) presented in Section 4.2.4.

In particular, the model defines a compatibility score through the inner

product of a molecular structure x and the activities in multiple target

cell lines y

F (x,y;w) = ⟨w,φφφ(x,y)⟩,

where w is the feature weight parameter to ensure that a molecule with

the correct activity will be scored higher than with any incorrect activities.

w is obtained by maximizing the minimum loss-scaled margin between

the correct examples (xi,yi) and the incorrect pseudo-examples (xi,y)

over all training examples, which amounts to solving the optimization

problem that is not dissimilar to Definition 11.

As MMCRF kernelizes input, we use graph kernel to measure the sim-

ilarity between a pair of molecular structures. The common way to rep-

resent the structure of a molecule is to use an undirected labeled graph

G = (V,E) with a set of vertices V = {v1, · · · , vn} that corresponds to

atoms and a set of edges E = {e1, · · · , em} that corresponds to covalent

bonds. The adjacency matrix A of a graph G is defined such that the

(i, j)’th entry Ai,j equals to one if there is an edge connecting the i’th and

the j’th atoms.

Walk kernel (Kashima et al., 2003; Gärtner, 2003) computes the sum of

all matching walks in a pair of graphs. The contribution of each match-

ing walk is down scaled exponentially by the length of the walk. Let wm

denote a walk of length m such that there exists an edge for each pair of

vertices (vi, vi+1) for all i ∈ {1, · · · ,m− 1}. In addition, we use G×(G1, G2)

to denote the direct product graph of two graphs G1 and G2, in which the

set of vertices in G× is computed by

V×(G1, G2) = {(v1, v2) ∈ V1 × V2, label(v1) = label(v2)},

and the set of edges in G× are computed by

E×(G1, G2) = {((v1, v2), (u1, u2)) ∈ V× × V×, (v1, u1) ∈ E1 ∧ (v2, u2) ∈ E2}.

Walk kernel can be equivalently expressed in terms of the adjacency ma-

trix A× of the product graph G× as

Kwk(G1, G2) =

|V×|∑

i,j=1

[∞∑

n=0

λnAn
×

]

i,j

,

55

Structured Output Prediction with Unknown Output Graphs

where 0 < λ ≤ 1 is a scaling parameter. Using exponential series or

geometric series, walk kernel can be evaluated in cubic time (Gärtner,

2003) in the number of vertices V× according to

Kwk(G1, G2) = eᵀ(I− λA×)
−1e,

where I denotes an identity matrix and e denotes a vector of ones.

Weighted decomposition kernel (Menchetti et al., 2005; Ceroni et al.,

2007b) is an extension of substructure kernel (Komarek and Moore, 1999)

that weights the identical atoms of two graphs by contextual information.

The contextual information is defined as the matching subgraph in the

neighborhood of an atom. In addition, we used Tanimoto kernel (Ralaivola

et al., 2005) on a finite set of molecular fingerprints (Wang et al., 2009).

The readers are also pointed to the comprehensive survey on graph ker-

nels (Vishwanathan et al., 2010).

To apply the structured output learning method described above, we

need an output graph connecting labels given apriori. However, the out-

put graph is not known in the molecular classification problem. There

exists a variety of auxiliary datasets (Shoemaker, 2006) which implicitly

encodes the correlation of labels (target cell lines). To extract the output

graph, we first compute a covariance matrix of cell lines from the auxil-

iary data, then extract the structure of the output graph by the following

two methods. The maximum spanning tree approach takes the minimum

number of edges that make a connected graph whilst maximizing the sum

of edge weights. The correlation thresholding approach takes all edges

that exceed a fixed threshold in terms of the pairwise correlation, which

typically generates a non-tree graph.

5.2 Graph Labeling Ensemble (MVE)

The structured output learning approaches, relying on the representation

of multiple output variables through an output graph, allow us to exploit

the correlation between labels. To apply structured output learning, it

is assumed that the structure of the output graph is known apriori. For

the molecular classification problem in Publication II where the output

graph is not observed, we can extract the structure of the output graph by

examining a collection of auxiliary datasets which explicitly encode the

correlation of labels. For most real world multilabel classification prob-

lems, however, we cannot take for granted the availability of the output

56

Structured Output Prediction with Unknown Output Graphs

graph or the auxiliary data that reveals the label correlations. Therefore,

in Publication III, we explore the potential of using majority vote to com-

bine the predictions from a set of structured output learners built on a

collection of random output graphs. We also examine the classification

performance on the molecular classification problem.

5.2.1 Methods

We use MMCRF as the base classifier trained on a collection of random

output graphs. In particular, a random graph Gt is generated for each

base learner to couple the multiple labels which are the activities of the

molecule in all target cell lines. The base model MMCRF is learned with

the training data S = {(xi,yi)}mi=1 and the output graph Gt. After all base

learners have been generated, the predictions are extracted from the base

learners and are collected for a post-processing step, in which we compute

a majority vote over the graph labeling from the sign on the means of the

base classifier’s prediction

FMVE
j = argmax

y[j]∈Yj

(
1

T

T∑

i=1

1{F (t)
j (x)=y[j]}

)
, ∀j ∈ {1, · · · , k},

where T denotes the size of the ensemble which is also the number of

random output graphs, and F (t)(x) = {F (t)
j (x)}kj=1 denotes the predicted

multilabel from the t’th base learner. That is, the ensemble prediction on

each microlabel is the most frequently appearing prediction among the

base classifiers. It is also worth pointing out that MVE is not restricted

to the base learner MMCRF and can be extended with any other struc-

tured output learning models as long as the model incorporates the out-

put structure into learning and makes predictions based on the structure

of the output graph.

In addition, we design two approaches to generate the random output

graphs. The random spanning tree approach first generates a random cor-

relation matrix and extracts a spanning tree out from the matrix, which

outputs a tree structure connecting all vertices. The random pairing ap-

proach randomly draws two vertices at a time and couples the two with

an edge, which outputs a set of disconnected pairs.

57

Structured Output Prediction with Unknown Output Graphs

5.3 Random Graph Ensemble (AMM, MAM)

Section 5.2 has shown that the prediction performance in the molecular

classification problem can be improved by applying majority vote to com-

bine the predictions from multiple structured output learners built on a

collection of random output graphs. This section is based on Publication

IV in which we present two aggregation techniques to combine multiple

structured output learners. The proposed model, namely AMM and MAM,

also perform inference before or after combining the base learners. The

performance of the proposed models is evaluated on a set of heterogeneous

multilabel datasets from a variety of domains. In addition, we study the

performance of MAM in terms of the reconstruction error of the compati-

bility score.

5.3.1 Background

We still work with the assumption made for MVE in Section 5.2 in which

we assume the structure of the output graph is incorporated during learn-

ing and the prediction is made according to the structure. In addition, we

assume that the base learner for AMM and MAM is defined on a Markov

network. That is, the base learner computes a compatibility score ψ(x,y)

for (x,y) ∈ XXX × YYY based on the output graph G, indicating how well an

input x gets along with an output y. The compatibility score ψ(x,y) is

defined as

ψ(x,y) = ⟨w,φφφ(x,y)⟩ =
∑

e∈E
⟨we,φφφe(x,ye)⟩ =

∑

e∈E
ψe(x,ye),

where ψe(x,ye) denotes the edge compatibility score (edge potential) be-

tween an input example x and the edge label ye of an edge e. w is the

feature weight parameter which ensures that an input x with the correct

output y will achieve a higher compatibility score than with any incorrect

outputs.

In addition, we assume that we have access to the set of edge potentials

of the t’th base classifier

ψψψ(t)
E = (ψ(t)

e (x,ue))e∈E(t),ue∈YYYe
.

With the edge compatibility scores, we can infer the max-marginal (Wain-

wright et al., 2005) of the j’th node which is the score incurred by assign-

58

Structured Output Prediction with Unknown Output Graphs

ing a label uj ∈ Yj to the j’th node defined by

ψ̃j(x, uj) = max
y∈YYY,yj=uj

∑

e∈E
ψe(x,ye).

In words, the max-marginal is the maximum score of a multilabel consis-

tent with y[i] = ui. We use ψ̃ψψ = (ψ̃j(x, uj))j∈V,uj∈Yj to denote the collection

of max-marginals.

5.3.2 Methods

Let G = {G(1), · · · , G(T)} denote a set of random output graphs, and let

{ψ̃ψψ(1)
, · · · , ψ̃ψψ(T)} denote the max-marginal vectors from the base learn-

ers built on a collection of random output graphs. The prediction of the

average-of-max-marginal (AMM) aggregation on the j’th node is obtained

by averaging the max-marginals from all base classifiers and choose the

maximizing microlabel for the node

F AMM
j = argmax

uj∈Yj

1

T

T∑

t=1

ψ̃(t)
j,uj

(x).

The predicted multilabel by AMM is composed by the predicted microlabels

F AMM =
(
F AMM
j

)
j∈V .

AMM performs inference to find the set of max-marginals before com-

bining base classifiers. On the other hand, the maximum-of-average-

marginals (MAM) aggregation first collects the local edge potentials ψψψ(t)
E

from each base learner, averages them and performs a final inference

with the averaged edge potentials on a global consensus graph Ĝ = (Ê, V)

where Ê =
⋃T

t=1E
(t) is the union of distinct edges of the set of random

output graphs. Mathematically, MAM is defined as

FMAM(x) = argmax
y∈YYY

∑

e∈Ê

1

T

T∑

t=1

ψ(t)
e (x,ye) = argmax

y∈YYY

1

T

T∑

t=1

∑

e∈Ê

⟨w(t)
e ,φφφe(x,ye)⟩.

In addition, Publication IV, Lemma 1 simplifies the computation of MAM

in terms of dual variables and kernels.

Besides the proposed algorithms, we also present a theoretical analy-

sis to explain the improvement of MAM. The analysis extends the the-

ory of single-label ensemble (Brown and Kuncheva, 2010). In particular,

Publication IV, Theorem 1 states that the reconstructive error of MAM is

guaranteed to be less than or equal to the average reconstruction error

of base classifiers. The improvement can be decomposed into two terms,

59

Structured Output Prediction with Unknown Output Graphs

namely diversity and coherence. The former measures the variability of

the individual classifiers learned from different perspectives which shares

the same argument as the analysis of single-label ensemble (Brown and

Kuncheva, 2010). The latter measures the correlation of microlabel pre-

dictions in which the correlation has a positive effect on the performance.

5.4 Random Spanning Tree Approximation (RTA)

Publication V presents random spanning tree approximation (RTA) for

structured output learning in which the output graph is not observed but

believed to play an important role during learning. RTA is a major step for-

ward of MAM by bringing in a joint learning and inference framework such

that the base learners built from a collection of random spanning trees are

optimized simultaneously towards the same global objective. Publication

V also presents the theoretical studies which not only explain the intu-

ition behind the learning model but also guarantee the performance by

the generalization error analysis. Meanwhile, RTA lays the foundation

of tackling the intractability of the graph inference on unknown graph

structures in which the fast optimization and accurate predictions can be

achieved with attainable computational efforts.

5.4.1 Background

The applicability of structured output learning is limited due to the fact

that the output graph is assume to be known apriori. It is difficult to learn

the correlation structure of labels from data (Chickering et al., 1994) if it

is not harder than structured output learning. Instead we can resort to a

complete graph by assuming that a complete set of pairwise correlations

have enough expression power to describe the dependency of labels. With

the complete graph as the output graph, we can construct a structured

output learner and use the optimization algorithm to correctly reveal the

hidden “parameters” defined on the edges of the compete graph (e.g., edge

potentials).

Structured output learning on a complete graph is not an easy problem

as the inference is NP-hard in nature. The inference problem is often

instantiated as finding a maximum a-posteriori (MAP) configuration on a

graph structured probability distribution. In terms of the intractability is-

sue of the graph inference problem, many techniques have been proposed

60

Structured Output Prediction with Unknown Output Graphs

but with important differences. Jordan and Wainwright (2004) developed

a semi-definite programming convex relaxation for the inference on the

graph with cycles. Wainwright et al. (2005) proposed a MAP inference

with the tree-based and linear programming (LP) relaxation. Efficient in-

ference algorithms on special graphs have also been studied (Globerson

and Jaakkola, 2007).

Publication V is motivated by the well-established maximum-margin

principle as described in Section 2.2.3. The work investigates whether the

problem of inference over a complete graph in structured output learning

can be avoided by exploring the properties of the maximum-margin prin-

ciple. Starting from a sampling results, Publication V, Lemma 3 shows

that with high probability a big fraction of the margin achieved by a com-

plete graph can be obtained by a conical combination of a random sample

of spanning trees. The number of the spanning trees does not need to be

large. Besides, Publication V, Theorem 5 shows that good generalization

error can also be guaranteed when learning with, instead of a complete

graph, a random sample of spanning trees.

Thus, in addition to Publication IV, Theory 1, we further provide the

theoretical justification of combining a set of base learners trained on a

collection of random output graphs. Besides, Publication V, Theorem 5

suggests we should, instead of optimizing the margin separately on each

spanning tree similar to that in MAM, optimize the joint margin from all

spanning trees. The strategy leads to the learning model presented in the

following section.

5.4.2 Methods

Let T = {T1, · · · , Tn} denote a sample of n random spanning trees, and

{wTt |Tt ∈ T } denote the feature weight parameters to be learned on each

tree. For each example (xi,yi), the goal of the optimization is to maximize

the joint margin from all spanning trees between the correct training ex-

amples and the pseudo-examples (xi,y) defined as

Definition 15. Primal L2-norm Random Tree Approximation (RTA).

min
wTt ,ξi

1

2

n∑

t=1

||wTt ||
2 + C

m∑

i=1

ξi

s.t.
n∑

t=1

⟨wTt ,φφφTt(xi,yi)⟩ −max
y ̸=yi

n∑

t=1

⟨wTt ,φφφTt(xi,y)⟩ ≥ 1− ξi,

ξi ≥ 0 , ∀ i ∈ {1, . . . ,m},

61

Structured Output Prediction with Unknown Output Graphs

where φφφTt(x,y) is the feature map that is local on each tree Tt, ξi is the

margin slack allocated for each xi, and C is the slack parameter that con-

trols the amount of regularization. Definition 15 is an instantiation of the

regularized learning (Section 2.7) in terms of the L2-norm regularization

(2.8) and the 0/1 loss (2.2).

The key for the optimization is to solve the argmax problem efficiently.

This is an NP-hard problem in practice, as the size of the multilabel space

is exponential in the number of microlabels. In Publication V, we have

developed a K-best inference algorithm working in Θ(Knk) time per data

point, where k is the number of microlabels and K is the number of best

multilabels we compute from each random spanning tree.

It is known that the exact solution for the inference problem on an indi-

vidual tree Tt is tractable (Koller and Friedman, 2009) for which

ŷTt(x) = argmax
y∈YYY

FwTt
(x,y) = argmax

y∈YYY
⟨wTt ,φφφTt(x,y)⟩, (5.1)

can be solved in Θ(k) time by dynamic programming also known as max-

product or min-sum. However, there is no guarantee that the maximizer

of (5.1) is also the global maximizer of Definition 15 over the set of ran-

dom spanning trees. Therefore, we compute the top K-best multilabels

for each random spanning tree. In total the computation costs Θ(Knk)

time for all spanning trees. Publication V, Lemma 7 provides a method to

retrieve the best multilabel from the K-best multilabel list in linear time.

We still need to make sure that the global maximizer is within the K-best

multilabel list. Publication V, Lemma 8 guarantees that with high proba-

bility the global maximizing multilabel is in the list and K does not need

to be large.

In addition, we derived the marginalized dual representation of the pri-

mal optimization problem in Definition 15, which not only works with a

polynomial sized parameter space but also enables kernels to tackle the

complex input space.

62

6. Implementations

The main contributions of this thesis are several new structured output

learning models for multilabel classification problems. Additionally, each

proposed model has been implemented into a software package. In this

chapter, the author aims to briefly discuss the implementations and point

out the locations from which the software packages can be found.

1. RTA, developed in Publication V, is a structured output learning al-

gorithm for multilabel classification with an unknown output graph.

RTA performs joint learning and inference on a random sample of

spanning trees.

(a) The learning system is implemented in MATLAB. The inference

algorithm is implemented in C. The parallelization of the infer-

ence algorithm is implemented with OPENMP. Other parts of

RTA are mostly implemented in MATLAB.

(b) The package can be found from https://github.com/hongyusu/

RTA.

2. SPIN, developed in Publication I, is a structured output learning al-

gorithm for multilabel classification with an observed output graph.

SPIN can predict an optimal direct acyclic graph (DAG) that best re-

sponds to an input. The algorithm has been applied to the network

response prediction problem within the context of social network

analysis.

(a) The learning system of SPIN is implemented in MATLAB. The

SDP inference algorithm is implemented with CVX toolbox which

is designed for convex programming. The data preprocessing

with Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is im-

plemented in PYTHON and MATLAB.

63

Implementations

(b) The package can be found from https://github.com/hongyusu/

SPIN.

3. MVE developed in Publication III as well as AMM and MAM developed

in Publication IV are the structured output learning algorithms that

are not constrained by the availability of the output graph. The

algorithms combine a set of structured output learners built on a

collection of random output graphs.

(a) The learning systems are mostly implemented in MATLAB.

(b) The packages can be found from https://github.com/hongyusu/

RandomOutputGraphEnsemble.

64

7. Conclusion

7.1 Discussion

In this thesis, we have studied supervised learning for classification. In

particular, we focused on multilabel classification where the task is to pre-

dict the best values for multiple interdependent output variables given

an input example. As multiple output variables can be “on” or “off” si-

multaneously, the central problem in multilabel classification is how to

best exploit the dependency of labels to make accurate predictions. The

problem has previously been tackled by the flat multilabel classification

approaches which treat multiple output variables essentially as a “flat”

vector. The approaches have difficulty of modeling the correlation be-

tween labels. Structured output learning arises as a natural extension

to flat multilabel classification in which the correlation is modeled by an

output graph connecting labels.

The first outcome of the thesis is a new structured output learning model

for multilabel classification in which the output graph is known apriori.

In particular, the proposed algorithm SPIN can predict a directed acyclic

graph from an observed underlying network which best “responds” to an

input example. The empirical evaluation on the network response predic-

tion problem within the context of social network analysis shows that the

proposed model outperforms several state-of-the-art flat multilabel clas-

sification approaches. The study demonstrates that accurate predictions

can be achieved by structured output learning when the output graph is

known and utilized during learning.

Current structured output learning approaches rely on an output graph

connecting multiple output variables to exploit the correlation between

labels. Thus, the applicability of structured output learning is limited

65

Conclusion

due to the fact that the output graph needs to be known apriori. The

second outcome of the thesis is that we have developed several new mod-

els for structured output learning which are no longer constrained by the

availability of the output graph. Analog but with significant differences to

the previously established ensemble methods, the proposed models aim to

combine a set of structured output learners built on a collection of random

output graphs. In particular, MVE applies majority vote to directly com-

bine the predictions from the base learners, while AMM and MAM perform

additional inference on the output graphs before or after combining base

learners. In addition, we have developed RTA based on the theoretical

study. The proposed model performs max-margin learning on a random

sample of spanning trees. The joint learning and inference in RTA ensures

that the base learners, which are built from a set of random spanning

trees, are optimized simultaneously towards a same global objective. RTA

has also laid the foundation of tackling the intractability of the graph in-

ference on any unknown graph structures in which the fast optimization

and accurate predictions can be achieved with attainable computational

efforts.

In addition to the practical learning algorithms, the thesis also con-

tributes to the theoretical studies which not only explain the intuition

behind the formalisms but also guarantee the generalization error of the

proposed models.

7.2 Future Work

The work presented in the thesis will be extended along two main direc-

tions. First, the algorithms developed in this thesis can be applied to

other multilabel classification problems in which the output graph does

not need to be observed but is believed to play an important role during

learning. Secondly, the development of the learning algorithms and the

theoretical studies are readily to be continued. As the first research direc-

tion is application oriented, we will focus on the latter part.

To serve as a starting point, the inference algorithm for SPIN can be

further developed such that the model can be applied to large scale social

network datasets. It is also important to obtain an approximation guar-

antee for the new inference algorithm in order to ensure the quality of

the solution. Secondly, we plan to study RTA in the multilabel classifica-

tion problems where the output graph takes a more general form. The

66

Conclusion

setting is interesting as in many real world problems the underlying out-

put graph structure is usually more complex than a spanning tree or a

chain but should be much simpler than a complete graph. The exact in-

ference is also prohibitive for any polynomial time algorithms. To tackle

the problem we plan to randomly sample spanning trees from the general

graph structures rather than a complete graph. In particular, we are in-

terested in the properties of the new algorithm (e.g., the generalization

error bound, conditions for exact inference). We also need to develop the

algorithm that allows to generate spanning trees uniformly at random.

Next, we plan to investigate the possibility of learning a convex combina-

tion of a set of random spanning trees. Compared to the current conical

combination, this approach will lead to a different objective function that

is similar to the L1-norm regularized parameter combination previously

studied in multiple kernel learning (Rakotomamonjy et al., 2008). The

objective function can be expressed equivalently as learning a weighted

L2-norm regularized parameter combination. The weight can be inter-

preted as the affinity of an output graph to the current training data. We

can use the weights to select relevant output graph structures. We need

to study the corresponding optimization algorithm as the current alterna-

tive optimization developed by Rakotomamonjy et al. (2008) is not very

efficient. The theoretical analysis of RTA should also be extended to the

new algorithm.

67

Conclusion

68

Bibliography

Adar, E. and Adamic, L. A. (2005). Tracking information epidemics in blogspace.
In Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web
Intelligence, WI ’05, pages 207–214, Washington, DC, USA. IEEE Computer
Society.

Adar, E., Zhang, L., Adamic, L., and Lukose, R. (2004). Implicit structure and the
dynamics of blogspace. In Workshop on the Weblogging Ecosystem, volume 13.

Aha, D., Kibler, D., and Albert, M. (1991). Instance-based learning algorithms.
Machine Learning, 6(1):37–66.

Amin, K., Heidari, H., and Kearns, M. (2014). Learning from contagion (without
timestamps). In Proceedings of the 31th International Conference on Machine
Learning (ICML 2004), pages 823–830. JMLR.org.

Anderson, R. M. and May, R. M. (2002). Infectious Diseases of Humans: Dynamics
and Control. Oxford Press.

Argyriou, A., Evgeniou, T., and Pontil, M. (2007). Multi-task feature learning. In
Schölkopf, B., Platt, J., and Hoffman, T., editors, Advances in Neural Informa-
tion Processing Systems 19, pages 41–48. MIT Press.

Argyriou, A., Evgeniou, T., and Pontil, M. (2008a). Convex multi-task feature
learning. Machine Learning, 73(3):243–272.

Argyriou, A., Maurer, A., and Pontil, M. (2008b). An algorithm for transfer
learning in a heterogeneous environment. In Proceedings of the 2008 Euro-
pean Conference on Machine Learning and Knowledge Discovery in Databases
(ECML-PKDD 2008), pages 71–85, Berlin, Heidelberg. Springer-Verlag.

Bartlett, P. L., Collins, M., Taskar, B., and McAllester, D. A. (2005). Exponenti-
ated gradient algorithms for large-margin structured classification. In Saul,
L., Weiss, Y., and Bottou, L., editors, Advances in Neural Information Process-
ing Systems 17, pages 113–120. MIT Press.

Barutcuoglu, Z., Schapire, R. E., and Troyanskaya, O. G. (2006). Hierarchical
multi-label prediction of gene function. Bioinformatics, 22(7):830–836.

Baxter, J. (2000). A model of inductive bias learning. Journal of Artificial Intel-
ligence Research, 12(1):149–198.

Bell, R. M. and Koren, Y. (2007). Lessons from the netflix prize challenge.
SIGKDD Explor. Newsl., 9(2):75–79.

69

Bibliography

Ben-David, S. and Schuller, R. (2003). Exploiting task relatedness for multiple
task learning. In Schölkopf, B. and Warmuth, M., editors, Learning Theory and
Kernel Machines, volume 2777, pages 567–580. Springer Berlin Heidelberg.

Bengio, Y. (2009). Learning deep architectures for ai. Foundation and Trends of
Machine Learning, 2(1):1–127.

Berger, A. (1999). The improved iterative scaling algorithm: A gentle introduc-
tion. Machine Learning.

Bernazzani, L., Duce, C., Micheli, A., Mollica, V., Sperduti, A., Starita, A., and
Tine, M. (2006). Predicting physical-chemical properties of compounds from
molecular structures by recursive neural networks. Journal of Chemical In-
formation and Modeling, 46:2030–2042.

Bertsekas, D. P. (1995). Nonlinear Programming. Athena Scientific, Belmont,
MA.

Bian, W., Xie, B., and Tao, D. (2012). Corrlog: Correlated logistic models for
joint prediction of multiple labels. Journal of Machine Learning Research -
Proceedings Track, pages 109–117.

Bishop, C. M. (2007). Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer, 1st ed. 2006. corr. 2nd printing 2011 edition.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Jour-
nal of Machine Learning Research, 3:993–1022.

Boley, D. and Cao, D. (2004). Training support vector machine using adaptive
clustering. In Proceedings of the 4th SIAM International Conference on Data
Mining.

Bordes, A., Ertekin, S., Weston, J., and Bottou, L. (2005). Fast kernel classi-
fiers with online and active learning. Journal of Machine Learning Research,
6:1579–1619.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge Uni-
veristy Press, Cambridge, UK.

Breiman, L. (1996a). Bagging predictors. Machine Learning, 24(2):123–140.

Breiman, L. (1996b). Out-of-bag estimation. Technical report, Statistics Depart-
ment, University of California, Berkeley.

Brinker, K. and Hüllermeier, E. (2007). Case-based multilabel ranking. In Pro-
ceedings of the 20th International Joint Conference on Artifical Intelligence
(IJCAI 2007), pages 702–707, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

Brown, G. and Kuncheva, L. I. (2010). “good” and “bad” diversity in majority vote
ensembles. In Multiple Classifier Systems, pages 124–133. Springer.

Burbidge, R., Trotter, M., Buxton, B., and Holden, S. (2001). Drug design by
machine learning: support vector machines for pharmaceutical data analysis.
Computers and Chemistry, 26(1):5 – 14.

70

Bibliography

Byvatov, E., Fechner, U., Sadowski, J., and Schneider, G. (2003). Compar-
ison of support vector machine and artificial neural network systems for
drug/nondrug classification. Journal of Chemical Information and Computer
Science, 43:1882–1889.

Cai, L. and Hofmann, T. (2004). Hierarchical document categorization with sup-
port vector machines. In Proceedings of the Thirteenth ACM International Con-
ference on Information and Knowledge Management, CIKM ’04, pages 78–87,
New York, NY, USA. ACM.

Caruana, R. (1997). Multitask learning. Machine learning, 28(1):41–75.

Ceroni, A., Costa, F., and Frasconi, P. (2007a). Classification of small
molecules by two- and three-dimensional decomposition kernels. Bioinformat-
ics, 23:2038–2045.

Ceroni, A., Costa, F., and Frasconi, P. (2007b). Classification of small
molecules by two- and three-dimensional decomposition kernels. Bioinformat-
ics, 23(16):2038–2045.

Cesa-bianchi, N., Gentile, C., Tironi, A., and Zaniboni, L. (2005). Incremental
algorithms for hierarchical classification. In Saul, L., Weiss, Y., and Bottou,
L., editors, Advances in Neural Information Processing Systems 17, pages 233–
240. MIT Press.

Chen, S. and Rosenfeld, R. (1999). A Gaussian Prior for Smoothing Maximum
Entropy Models. PhD thesis, Computer Science Department, Carnegie Mellon
University. Technical Report CMU-CS-99-108.

Chen, S. and Rosenfeld, R. (2000). A survey of smoothing techniques for me
models. IEEE Transactions on Speech and Audio Processing, 8(1):37–50.

Cheng, W. and Hüllermeier, E. (2009). Combining instance-based learning
and logistic regression for multilabel classification. Machine Learning, 76(2-
3):211–225.

Chiang, T.-H., Lo, H.-Y., and Lin, S.-D. (2012). A ranking-based knn approach for
multi-label classification. In Hoi, S. C. H. and Buntine, W. L., editors, ACML,
volume 25 of JMLR Proceedings, pages 81–96. JMLR.org.

Chickering, D. M., Geiger, D., and Heckerman, D. (1994). Learning bayesian
networks is np-hard. Technical Report MSR-TR-94-17, Microsoft Research.

Collins, M. (2002). Discriminative training methods for hidden markov models:
Theory and experiments with perceptron algorithms. In Proceedings of the
ACL-02 Conference on Empirical Methods in Natural Language Processing,
pages 1–8. Association for Computational Linguistics.

Collins, M. and Duffy, N. (2002). New ranking algorithms for parsing and tag-
ging: Kernels over discrete structures, and the voted perceptron. In Proceed-
ings of the 40th Annual Meeting on Association for Computational Linguistics
(ACL 2002), pages 263–270, Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Collins, M. and Koo, T. (2005). Discriminative reranking for natural language
parsing. Comput. Linguist., 31(1):25–70.

71

Bibliography

Cortes, C., Kuznetsov, V., and Mohri, M. (2014a). Ensemble methods for struc-
tured prediction. In Proceedings of the 31th International Conference on Ma-
chine Learning (ICML 2004), pages 823–830. JMLR.org.

Cortes, C., Mohri, M., and Syed, U. (2014b). Deep boosting. In Proceedings of
the 31th International Conference on Machine Learning (ICML 2004), pages
823–830. JMLR.org.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning,
20(3):273–297.

Crammer, K., Singer, Y., K, J., Hofmann, T., Poggio, T., and Shawe-taylor, J.
(2003). A family of additive online algorithms for category ranking. Journal of
Machine Learning Research, 3:2003.

Daneshmand, H., Gomez-Rodriguez, M., Song, L., and Schoelkopf, B. (2014). Es-
timating diffusion network structures: Recovery conditions, sample complex-
ity and soft-thresholding algorithm. In Proceedings of the 31th International
Conference on Machine Learning (ICML 2004), pages 823–830. JMLR.org.

Darroch, J. and Ratcliff, D. (1972). Generalized iterative scaling for log-linear
models. Annals of Mathematical Statistics, 43(4):25–40.

DeCoro, C., Barutcuoglu, Z., and Fiebrink, R. (2007). Bayesian aggregation for
hierarchical genre classification. In International Symposium on Music Infor-
mation Retrieval 2007.

Decoste, D. and Schölkopf, B. (2002). Training invariant support vector ma-
chines. Machine Learning, 46(1-3):161–190.

Della Pietra, S., Della Pietra, V., and Lafferty, J. (1997). Inducing features of ran-
dom fields. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(4):380–393.

Dembczynski, K., Cheng, W., and Hüllermeier, E. (2010). Bayes optimal multil-
abel classification via probabilistic classifier chains. In Proceedings of the 27th
International Conference on Machine Learning (ICML 2010), pages 279–286.
JMLR.org.

Domingos, P. and Richardson, M. (2001). Mining the network value of cus-
tomers. In Proceedings of the Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’01, pages 57–66, New York,
NY, USA. ACM.

Drineas, P. and Mahoney, M. W. (2005). On the nyström method for approximat-
ing a gram matrix for improved kernel-based learning. Journal of Machine
Learning Research, 6:2153–2175.

Du, N., Liang, Y., Balcan, M.-F., and Song, L. (2014). Influence function learning
in information diffusion networks. In Proceedings of the 31th International
Conference on Machine Learning (ICML 2004), pages 823–830. JMLR.org.

Du, N., Song, L., Yuan, M., and Smola, A. J. (2012). Learning networks of hetero-
geneous influence. In Pereira, F., Burges, C., Bottou, L., and Weinberger, K.,
editors, Advances in Neural Information Processing Systems 25, pages 2780–
2788. Curran Associates, Inc.

72

Bibliography

Dumais, S. and Chen, H. (2000). Hierarchical classification of web content. In
Proceedings of the 23rd Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, SIGIR ’00, pages 256–263,
New York, NY, USA. ACM.

Dutt, R.and Madan, A. K. (2012). Classification models for anticancer activity.
Machine Learning, 12(23/24):2705.

Efron, B. and Tibshirani, R. (1994). An introduction to the bootstrap.

Elisseeff, A. and Weston, J. (2002). A kernel method for multi-labelled classifi-
cation. In Dietterich, T., Becker, S., and Ghahramani, Z., editors, Advances in
Neural Information Processing Systems 14, pages 681–687. MIT Press.

Esuli, A., Fagni, T., and Sebastiani, F. (2008). Boosting multi-label hierarchical
text categorization. Information Retrieval, 11(4):287–313.

Evgeniou, T., Poggio, T., Pontil, M., and Verri, A. (2002). Regularization and sta-
tistical learning theory for data analysis. Comput. Stat. Data Anal., 38(4):421–
432.

Evgeniou, T., Pontil, M., and Poggio, T. (1999). A unified framework for regular-
ization networks and support vector machines. Technical report, Cambridge,
MA, USA.

Fan, W. and Bifet, A. (2013). Mining big data: Current status, and forecast to the
future. SIGKDD Explor. Newsl., 14(2):1–5.

Fine, S. and Scheinberg, K. (2002). Efficient svm training using low-rank kernel
representations. Journal of Machine Learning Research, 2:243–264.

Fiscus, J. (1997). A post-processing system to yield reduced word error rates:
Recognizer output voting error reduction (rover). In Proceedings of the 1997
IEEE Workshop on Automatic Speech Recognition and Understanding, pages
347–354.

Freund, Y., Mansour, Y., and Schapire, R. E. (2004). Generalization bounds for
averaged classifiers. THE ANNALS OF STATISTICS, 32:1698–1722.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-
line learning and an application to boosting. J. Comput. Syst. Sci., 55(1):119–
139.

Freund, Y. and Schapire, R. E. (1999). Large margin classification using the
perceptron algorithm. Machine Learning, 37(3):277–296.

Fürnkranz, J., Hüllermeier, E., Loza Mencía, E., and Brinker, K. (2008). Multil-
abel classification via calibrated label ranking. Machine Learning, 73(2):133–
153.

Garey, M. R. and Johnson, D. S. (1990). Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA.

Gärtner, T. (2003). A survey of kernels for structured data. SIGKDD Explor.
Newsl., 5(1):49–58.

Getoor, L. (2005). Link-based classification. In Advanced Methods for Knowledge
Discovery from Complex Data, Advanced Information and Knowledge Process-
ing, pages 189–207. Springer London.

73

Bibliography

Getoor, L. and Taskar, B. (2007). Introduction to Statistical Relational Learning.
the MIT Press.

Ghamrawi, N. and McCallum, A. (2005). Collective multi-label classification.
In Proceedings of the 14th ACM International Conference on Information and
Knowledge Management, CIKM ’05, pages 195–200, New York, NY, USA.
ACM.

Globerson, A. and Jaakkola, T. S. (2007). Approximate inference using planar
graph decomposition. In Schölkopf, B., Platt, J., and Hoffman, T., editors,
Advances in Neural Information Processing Systems 19, pages 473–480. MIT
Press.

Godbole, S. and Sarawagi, S. (2004). Discriminative methods for multi-labeled
classification. In Dai, H., Srikant, R., and Zhang, C., editors, Advances in
Knowledge Discovery and Data Mining, volume 3056, pages 22–30. Springer
Berlin Heidelberg.

Goemans, M. and Williamson, D. (1995). Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming.
Journal of the ACM, 42(6):1115 – 1145.

Gomez Rodriguez, M., Leskovec, J., and Krause, A. (2010). Inferring networks of
diffusion and influence. In Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’10, pages 1019–
1028, New York, NY, USA. ACM.

Goodman, J. (2002). Sequential conditional generalized iterative scaling. In
Proceedings of the 40th Annual Meeting on Association for Computational Lin-
guistics (ACL 2002), ACL ’02, pages 9–16.

Goodman, J. (2003). Exponential priors for maximum entropy models. In Pro-
ceedings of the Annual Meeting of the Association for Computational Linguis-
tics (ACL 2003), pages 305–312.

Goodman, J. and tau Yih, W. (2006). Online discriminative spam filter training.
In CEAS’06, pages –1–1.

Gopal, S., Yang, Y., Bai, B., and Niculescu-mizil, A. (2012). Bayesian models
for large-scale hierarchical classification. In Bartlett, P., Pereira, F., Burges,
C., Bottou, L., and Weinberger, K., editors, Advances in Neural Information
Processing Systems 25, pages 2420–2428.

Goyal, A., Bonchi, F., and Lakshmanan, L. V. (2010). Learning influence prob-
abilities in social networks. In Proceedings of the Third ACM International
Conference on Web Search and Data Mining, WSDM ’10, pages 241–250, New
York, NY, USA. ACM.

Gruhl, D., Guha, R., Liben-Nowell, D., and Tomkins, A. (2004). Information dif-
fusion through blogspace. In Proceedings of the 13th International Conference
on World Wide Web (WWW 2004), pages 491–501, New York, NY, USA. ACM.

Hao, P.-Y., Chiang, J.-H., and Tu, Y.-K. (2007). Hierarchically svm classification
based on support vector clustering method and its application to document
categorization. Expert Syst. Appl., 33(3):627–635.

74

Bibliography

Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM Review,
42:599–653.

Hoerl, A. E. and Kennard, R. W. (2000). Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics, 42(1):80–86.

Huang, F.-L., Hsieh, C.-J., Chang, K.-W., and Lin, C.-J. (2009). Iterative scaling
and coordinate descent methods for maximum entropy. In Proceedings of the
ACL-IJCNLP 2009 Conference Short Papers, pages 285–288.

Jaakkola, T. S. and Haussler, D. (1999). Probabilistic kernel regression mod-
els. In Proceedings of the 7th Workshop on Artificial Intelligent and Statistics
(AISTATS 1999). Morgan Kaufmann.

Jacob, L., philippe Vert, J., and Bach, F. R. (2009). Clustered multi-task learning:
A convex formulation. In Koller, D., Schuurmans, D., Bengio, Y., and Bottou,
L., editors, Advances in Neural Information Processing Systems 21, pages 745–
752. Curran Associates, Inc.

Jin, R., Yan, R., Zhang, J., and Hauptmann, A. G. (2003). A faster iterative
scaling algorithm for conditional exponential model. In Proceedings of the 20th
International Conference on Machine Learning (ICML 2003), pages 282–289.
JMLR.org.

Joachims, T. (1998). Making large-scale svm learning practical. LS8-Report 24,
Universität Dortmund, LS VIII-Report.

Joachims, T., Finley, T., and Yu, C.-N. (2009). Cutting-plane training of structural
svms. Machine Learning, 77(1):27–59.

Jordan, M. I. and Wainwright, M. J. (2004). Semidefinite relaxations for approx-
imate inference on graphs with cycles. In Thrun, S., Saul, L., and Schölkopf,
B., editors, Advances in Neural Information Processing Systems 16, pages 369–
376. MIT Press.

Kashima, H., Tsuda, K., and Inokuchi, A. (2003). Marginalized kernels between
labeled graphs. In Proceedings of the Twentieth International Conference on
Machine Learning, pages 321–328. AAAI Press.

Kearns, M. and Valiant, L. (1989). Cryptographic limitations on learning boolean
formulae and finite automata. J. ACM, 41(1):67–95.

Keerthi, S., Duan, K., Shevade, S., and Poo, A. (2005). A fast dual algorithm for
kernel logistic regression. Machine Learning, 61(1-3):151–165.

Keerthi, S. S., Chapelle, O., and DeCoste, D. (2006). Building support vector
machines with reduced classifier complexity. Journal of Machine Learning
Research, 7:1493–1515.

Kempe, D., Kleinberg, J., and Tardos, E. (2003). Maximizing the spread of in-
fluence through a social network. In Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’03,
pages 137–146, New York, NY, USA. ACM.

King, R. D., Muggleton, S. H., Srinivasan, A., and Sternberg, M. J. (1996).
Structure-activity relationships derived by machine learning: the use of atoms
and their bond connectivities to predict mutagenicity by inductive logic pro-
gramming. Proceedings of the National Academy of Sciences, 93(1):438–442.

75

Bibliography

Kocev, D., Vens, C., Struyf, J., and Deroski, S. (2013). Tree ensembles for predict-
ing structured outputs. Pattern Recogn., 46(3):817–833.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles
and Techniques. The MIT Press.

Koller, D. and Sahami, M. (1997). Hierarchically classifying documents using
very few words. In Proceedings of the Fourteenth International Conference on
Machine Learning, pages 170–178.

Koltchinskii, V. and Panchenko, D. (2000). Empirical margin distributions and
bounding the generalization error of combined classifiers. Annals of Statistics,
30:2002.

Komarek, P. and Moore, A. (1999). Convolution kernels on discrete structures.
Technical Report UCSC-CRL-99-10, University of California at Santa Cruz.

Komarek, P. and Moore, A. (2005). Making logistic regression a core data mining
tool: A practical investigation of accuracy, speed, and simplicity. Technical
Report CMU-RI-TR-05-27, Robotics Institute.

Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001). Conditional random
fields: Probabilistic models for segmenting and labeling sequence data. In
Proceedings of the 8th International Conference on Machine Learning (ICML
2001), pages 282–289. Morgan Kaufmann Publishers Inc.

Le, Q., Sarlos, T., and Smola, A. (2013). Fastfood - approximating kernel expan-
sions in loglinear time. In Proceedings of the 30th International Conference on
Machine Learning (ICML 2013), pages 244–252. JMLR.org.

Leskovec, J., Backstrom, L., and Kleinberg, J. (2009). Meme-tracking and the
dynamics of the news cycle. In Proceedings of the 15th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD ’09, pages
497–506, New York, NY, USA. ACM.

Leskovec, J., McGlohon, M., Faloutsos, C., Glance, N., and Hurst, M. (2007).
Cascading behavior in large blog graphs: Patterns and a model. In Society of
Applied and Industrial Mathematics: Data Mining (SDM07).

Li, T., Zhu, S., and Ogihara, M. (2007). Hierarchical document classification
using automatically generated hierarchy. J. Intell. Inf. Syst., 29(2):211–230.

Liben-Nowell, D. and Kleinberg, J. (2003). The link prediction problem for social
networks. In Proceedings of the Twelfth International Conference on Informa-
tion and Knowledge Management, CIKM ’03, pages 556–559, New York, NY,
USA. ACM.

Liben-Nowell, D. and Kleinberg, J. (2008). Tracing information flow on a global
scale using Internet chain-letter data. Proceedings of the National Academy of
Sciences, 105(12):4633–4638.

Lin, C.-J., Weng, R. C., and Keerthi, S. S. (2008). Trust region newton method for
logistic regression. Journal of Machine Learning Research, 9:627–650.

Liu, T.-Y., Yang, Y., Wan, H., Zeng, H.-J., Chen, Z., and Ma, W.-Y. (2005). Sup-
port vector machines classification with a very large-scale taxonomy. SIGKDD
Explor. Newsl., 7(1):36–43.

76

Bibliography

Menchetti, S., Costa, F., and Frasconi, P. (2005). Weighted decomposition ker-
nels. In Proceedings of the 22th International Conference on Machine Learning
(ICML 2005), pages 585–592. ACM.

Minka, T. P. (2003). A comparison of numerical optimizers for logistic regression.

Mohri, M., Pereira, F., and Riley, M. (2008). Speech recognition with weighted
finite-state transducers. In Benesty, J., Sondhi, M., and Huang, Y., editors,
Springer Handbook of Speech Processing, pages 559–584. Springer Berlin Hei-
delberg.

Osuna, E., Freund, R., and Girosi, F. (1997). An improved training algorithm
for support vector machines. In Proceedings of the 1997 IEEE Workshop on
Neural Networks for Signal Processing [1997] VII, pages 276–285.

Pavlov, D., Chudova, D., and Smyth, P. (2000). Towards scalable support vector
machines using squashing. In Proceedings of the Sixth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD ’00, pages
295–299, New York, NY, USA. ACM.

Petrov, S. (2010). Products of random latent variable grammars. In Human
Language Technologies: The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguistics, HLT ’10, pages 19–
27, Stroudsburg, PA, USA. Association for Computational Linguistics.

Platt, J. (1998). Sequential minimal optimization: A fast algorithm for train-
ing support vector machines. Technical Report MSR-TR-98-14, Microsoft Re-
search.

Platt, J. C. (1999). Advances in kernel methods. chapter Fast Training of Sup-
port Vector Machines Using Sequential Minimal Optimization, pages 185–208.
MIT Press, Cambridge, MA, USA.

Pérez-Cruz, O., Figueiras-Vidal, A. R., and Artés-Rodríguez, A. (2004). Double
chunking for solving svms for very large datasets. In Learning’04, Elche, Spain
(2004).

Rakotomamonjy, A., , Bach, F., Canu, S., and Grandvalet, Y. (2008). implemkl.
Journal of Machine Learning Research 9.

Ralaivola, L., Swamidass, S., Saigo, H., and Baldi, P. (2005). Graph kernels for
chemical informatics. Neural Networks, 18:1093–1110.

Ratliff, N., Bagnell, J. A. D., and Zinkevich, M. (2007). (online) subgradient
methods for structured prediction. In Proceedings of the 11th International
Conference on Artificial Intelligence and Statistics (AISTATS 2007), volume 2.
JMLR.org.

Read, J., Pfahringer, B., Holmes, G., and Frank, E. (2009). Classifier chains
for multi-label classification. In Buntine, W., Grobelnik, M., Mladenić, D.,
and Shawe-Taylor, J., editors, Machine Learning and Knowledge Discovery in
Databases, volume 5782, pages 254–269. Springer Berlin Heidelberg.

Read, J., Pfahringer, B., Holmes, G., and Frank, E. (2011). Classifier chains for
multi-label classification. Machine Learning, 85(3):333–359.

77

Bibliography

Richardson, M., Prakash, A., and Brill, E. (2006). Beyond pagerank: Machine
learning for static ranking. In Proceedings of the 15th International Conference
on World Wide Web (WWW 2006), pages 707–715, New York, NY, USA. ACM.

Rodriguez, M. G., Balduzzi, D., and Schölkopf, B. (2011). Uncovering the tempo-
ral dynamics of diffusion networks. In Proceedings of the 28th International
Conference on Machine Learning (ICML 2011), pages 561–568. ACM.

Rogers, E. M. (2003). Diffusion of Innovations. The Free Press, 5th ed. 2003
edition.

Romera-Paredes, B., Argyriou, A., Berthouze, N., and Pontil, M. (2012). Exploit-
ing unrelated tasks in multi-task learning. In Proceedings of the 16th Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS 2012),
volume 22, pages 951–959. JMLR.org.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 65:386–408.

Rousu, J., Saunders, C., Szedmak, S., and Shawe-Taylor, J. (2006). Kernel-based
learning of hierarchical multilabel classification models. The Journal of Ma-
chine Learning Research, 7:1601–1626.

Rousu, J., Saunders, C., Szedmak, S., and Shawe-Taylor, J. (2007). Efficient
algorithms for max-margin structured classification. Predicting Structured
Data, pages 105–129.

Sagae, K. and Lavie, A. (2006). Parser combination by reparsing. In Proceed-
ings of the Human Language Technology Conference of the NAACL, Compan-
ion Volume: Short Papers, pages 129–132, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Saito, K., Nakano, R., and Kimura, M. (2008). Prediction of information diffusion
probabilities for independent cascade model. In Lovrek, I., Howlett, R., and
Jain, L., editors, Knowledge-Based Intelligent Information and Engineering
Systems, volume 5179, pages 67–75. Springer Berlin Heidelberg.

Schapire, R. and Singer, Y. (1999). Improved boosting algorithms using
confidence-rated predictions. Machine Learning, 37(3):297–336.

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning,
5(2):197–227.

Schapire, R. E., Freund, Y., Barlett, P., and Lee, W. S. (1997). Boosting the mar-
gin: A new explanation for the effectiveness of voting methods. In Proceedings
of the 14th International Conference on Machine Learning (ICML 1997), pages
322–330. Morgan Kaufmann Publishers Inc.

Schölkopf, B. and Smola, A. J. (2002). Learning with Kernels - Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Methods for Pattern Analysis.
Cambridge University Press.

Shoemaker, R. H. (2006). The NCI60 human tumour cell line anticancer drug
screen. Nat Rev Cancer, 6(10):813–823.

78

Bibliography

Si, S., jui Hsieh, C., and Dhillon, I. (2014). Memory efficient kernel approxima-
tion. In Proceedings of the 31st International Conference on Machine Learning
(ICML 2014), pages 701–709. JMLR.org.

Silla, Jr., C. N. and Freitas, A. A. (2011). A survey of hierarchical classification
across different application domains. Data Min. Knowl. Discov., 22(1-2):31–72.

Singh, N., Chaudhury, S., Liu, R., AbdulHameed, M. D. M., Tawa, G., and Wal-
lqvist, A. (2012). Qsar classification model for antibacterial compounds and
its use in virtual screening. Journal of Chemical Information and Modeling,
52(10):2559–2569.

Smola, A. J. and Schökopf, B. (2000). Sparse greedy matrix approximation for
machine learning. In Proceedings of the 17th International Conference on Ma-
chine Learning (ICML 2000), pages 911–918. Morgan Kaufmann Publishers
Inc.

Smyth, P. and Wolpert, D. (1999). Linearly combining density estimators via
stacking. Machine Learning, 36(1-2):59–83.

Strang, D. and Soule, S. A. (1998). Diffusion in Organizations and Social Move-
ments: From Hybrid Corn to Poison Pills. Annual Review of Sociology,
24(1):265–290.

Swamidass, S., Chen, J., Bruand, J., Phung, P., Ralaivola, L., and Baldi, P. (2005).
Kernels for small molecules and the prediction of mutagenicity, toxicity and
anti-cancer activity. Bioinformatics, 21:359–368.

Taskar, B., Abbeel, P., and Koller, D. (2002). Discriminative probabilistic models
for relational data. In Proceedings of the Eighteenth Conference on Uncertainty
in Artificial Intelligence (UAI 2002), pages 485–492, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

Taskar, B., Guestrin, C., and Koller, D. (2004). Max-margin markov networks. In
Thrun, S., Saul, L., and Schölkopf, B., editors, Advances in Neural Information
Processing Systems 16, pages 25–32. MIT Press.

Taskar, B., Lacoste-Julian, S., and Jordan, M. I. (2006). Structured prediction via
the extragradient method. In Weiss, Y., Schölkopf, B., and Platt, J., editors, Ad-
vances in Neural Information Processing Systems 18, pages 1345–1352. MIT
Press.

Tibshirani, R. (1994). Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society, Series B, 58:267–288.

Tibshirani, R. (1996). Bias, variance and prediction error for classification rules.

Trotter, M., Buxton, M., and Holden, S. (2001). Drug design by machine learn-
ing: support vector machines for pharmaceutical data analysis. Journal of
Computational Chemistry., 26:1–20.

Tsochantaridis, I., Hofmann, T., Joachims, T., and Altun, Y. (2004). Support
vector machine learning for interdependent and structured output spaces. In
Proceedings of the 21th International Conference on Machine Learning (ICML
2004), pages 823–830. ACM.

79

Bibliography

Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. (2005). Large mar-
gin methods for structured and interdependent output variables. Journal of
Machine Learning Research, 6:1453–1484.

Tsoumakas, G. and Katakis, I. (2007). Multi-label classification: An overview.
Int J Data Warehousing and Mining, 2007:1–13.

Tsoumakas, G., Katakis, I., and Vlahavas, I. (2010). Mining multi-label data. In
Maimon, O. and Rokach, L., editors, Data Mining and Knowledge Discovery
Handbook, pages 667–685. Springer US.

Tsoumakas, G. and Vlahavas, I. (2007). Random k-labelsets: An ensemble
method for multilabel classification. In Proceedings of the 2007 European Con-
ference on Machine Learning and Knowledge Discovery in Databases (ECML-
PKDD 2007), pages 406–417. Springer Berlin Heidelberg.

Vapnik, V. (1982). Estimation of Dependences Based on Empirical Data.
Springer-Verlag.

Vapnik, V. (1992). Principles of risk minimization for learning theory. In Moody,
J., Hanson, S., and Lippmann, R., editors, Advances in Neural Information
Processing Systems 4, pages 831–838. Morgan-Kaufmann.

Vapnik, V. N. (1998). Statistical Learning Theory. Wiley-Interscience.

Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Transac-
tions on Neural Network, 10(5):988–999.

Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R., and Borgwardt, K. M.
(2010). Graph kernels. Journal of Machine Learning Research, 11:1201–1242.

Wainwright, M., Jaakkola, T., and Willsky, A. (2005). Map estimation via agree-
ment on trees: message-passing and linear programming. IEEE Transactions
on Information Theory, 51(11):3697–3717.

Wainwright, M. J. and Jordan, M. I. (2003). Graphical models, exponential fam-
ilies, and variational inference. Foundation and Trends in Machine Learning,
1(1-2):1–305.

Wang, Q. I., Lin, D., and Schuurmans, D. (2007). Simple training of dependency
parsers via structured boosting. In Proceedings of the 20th International Joint
Conference on Artifical Intelligence, IJCAI’07, pages 1756–1762, San Fran-
cisco, CA, USA. Morgan Kaufmann Publishers Inc.

Wang, Y. and Mori, G. (2011). Hidden part models for human action recognition:
Probabilistic versus max margin. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(7):1310–1323.

Wang, Y., Xiao, J., Suzek, T. O., Zhang, J., Wang, J., and Bryant, S. H. (2009).
Pubchem: a public information system for analyzing bioactivities of small
molecules. Nucleic Acids Research, 37(suppl 2):W623–W633.

Wolpert, D. and Macready, W. (1999). An efficient method to estimate bagging’s
generalization error. Machine Learning, 35(1):41–55.

Xue, Y., Li, Z., Yap, C., Sun, L., Chen, X., and Chen, Y. (2004). Effect of molec-
ular descriptor feature selection in support vector machine classification of
pharmacokinetic and toxicological properties of chemical agents. Journal of
Chemical Information and Computer Science, 44:1630–1638.

80

Bibliography

Yan, R., Tesic, J., and Smith, J. R. (2007). Model-shared subspace boosting for
multi-label classification. In Proceedings of the 13th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD ’07, pages
834–843, New York, NY, USA. ACM.

Younes, Z., Abdallah, F., Denoeux, T., and Snoussi, H. (2011). A dependent
multilabel classification method derived from the k-nearest neighbor rule.
EURASIP J. Adv. Sig. Proc., 2011.

Yu, H., Yang, J., Han, J., and Li, X. (2005). Making svms scalable to large data
sets using hierarchical cluster indexing. Data Min. Knowl. Discov., 11(3):295–
321.

Yu, H.-F., Huang, F.-L., and Lin, C.-J. (2011). Dual coordinate descent methods
for logistic regression and maximum entropy models. Machine Learning, 85(1-
2):41–75.

Zeman, D. and Žabokrtský, Z. (2005). Improving parsing accuracy by combin-
ing diverse dependency parsers. In Proceedings of the Ninth International
Workshop on Parsing Technology, Parsing ’05, pages 171–178, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Zhang, H., Zhang, M., Tan, C. L., and Li, H. (2009). K-best combination of syn-
tactic parsers. In Proceedings of the 2009 Conference on Empirical Methods in
Natural Language Processing: Volume 3 - Volume 3, EMNLP ’09, pages 1552–
1560, Stroudsburg, PA, USA. Association for Computational Linguistics.

Zhang, K., Lan, L., Wang, Z., and Moerchen, F. (2012). Scaling up kernel svm
on limited resources: A low-rank linearization approach. In Proceedings of
the Fifteenth International Conference on Artificial Intelligence and Statistics
(AISTATS 2012), volume 22, pages 1425–1434.

Zhang, K., Tsang, I. W., and Kwok, J. T. (2008). Improved nyström low-rank
approximation and error analysis. In Proceedings of the 25th International
Conference on Machine Learning (ICML 2008), pages 1232–1239. ACM.

Zhang, M. and Zhou, Z. (2005). A k-nearest neighbor based algorithm for multi-
label classification. In Proceedings of the 2005 IEEE International Conference
on Granular Computing, volume 2, pages 718–721 Vol. 2.

Zhang, M. and Zhou, Z. (2007). Ml-knn: A lazy learning approach to multi-label
learning. Pattern Recognition, 40:2007.

Zhang, M.-L. and Zhou, Z.-H. (2006). Multilabel neural networks with applica-
tions to functional genomics and text categorization. IEEE Transactions on
Knowledge and Data Engineering, 18(10):1338–1351.

Zhang, M.-L. and Zhou, Z.-H. (2014). A review on multi-label learning algo-
rithms. IEEE Transactions on Knowledge and Data Engineering, 26(8):1819–
1837.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elas-
tic net. Journal of the Royal Statistical Society, Series B, 67:301–320.

81

Bibliography

82

Publication I

Hongyu Su, Aristides Gionis, Juho Rousu. Structured Prediction of Net-

work Response. In Proceedings of the 31th International Conference on

Machine Learning (ICML 2014), Beijing, China, 2014. Journal of Machine

Learning Research (JMLR) W&CP volume 32:442-450, June 2014.

c⃝ 2014 Copyright 2014 by the authors.

Reprinted with permission.

83

84

Structured Prediction of Network Response

Hongyu Su HONGYU.SU@AALTO.FI
Aristides Gionis ARISTIDES.GIONIS@AALTO.FI
Juho Rousu JUHO.ROUSU@AALTO.FI

Helsinki Institute for Information Technology (HIIT)
Department of Information and Computer Science, Aalto University, Finland

Abstract
We introduce the following network response
problem: given a complex network and an ac-
tion, predict the subnetwork that responds to ac-
tion, that is, which nodes perform the action and
which directed edges relay the action to the adja-
cent nodes.

We approach the problem through max-margin
structured learning, in which a compatibility
score is learned between the actions and their ac-
tivated subnetworks. Thus, unlike the most pop-
ular influence network approaches, our method,
called SPIN, is context-sensitive, namely, the
presence, the direction and the dynamics of in-
fluences depend on the properties of the actions.
The inference problems of finding the highest
scoring as well as the worst margin violating net-
works, are proven to be NP-hard. To solve the
problems, we present an approximate inference
method through a semi-definite programming re-
laxation (SDP), as well as a more scalable greedy
heuristic algorithm.

In our experiments, we demonstrate that tak-
ing advantage of the context given by the ac-
tions and the network structure leads SPIN to
a markedly better predictive performance over
competing methods.

1. Introduction
With the widespread use and extensive availability of large-
scale networks, an increasing amount of research has been
proposed to study the structure and function of networks.
In particular, network analysis has been applied to study
dynamic phenomena and complex interactions, such as

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

information propagation, opinion formation, adoption of
technological innovations, viral marketing, and disease
spreading (De Choudhury et al., 2010; Kempe et al., 2003;
Watts & Dodds, 2007).

Influence models typically consider actions performed by
the network nodes. Examples of such actions include buy-
ing a product or (re)posting a news story in one’s social
network. Often, network nodes perform such actions as a
result of influence from neighbouring nodes, and a number
of different models have been proposed to quantify influ-
ence in a network, most notably the independent-cascade
and the linear-threshold models (Kempe et al., 2003). On
the other hand, performing an action may also come as a
result to an external (out of the network) stimulus, a sit-
uation that has also been subject to modeling and analy-
sis (Anagnostopoulos et al., 2008). A typical assumption
made by existing models is that influence among nodes de-
pends only on the nodes that perform the action and not on
the action itself.

A central question in the study of network influence, is to
infer the latent structure that governs the influence dynam-
ics. This question can be formulated in different ways. In
one case no underlying network is available (for example,
news agencies that do not link each other) and one asks
to infer the hidden network structure, e.g., to discover im-
plicit edges between the network nodes (De Choudhury
et al., 2010; Du et al., 2012; Eagle et al., 2009; Gomez-
Rodriguez et al., 2010; 2011). However, this problem is
an unnecessarily hard one to solve in many applications.
On the other hand, in many applications the network is
known (e.g., “follower” links in twitter), and the research
question is to estimate the hidden variables of the influence
model (Goyal et al., 2010; Saito et al., 2008).

The present paper is motivated by the following observa-
tion: the influence between two nodes in the network does
not depend only on the nodes and their connections, but
also depends on the action under consideration. For ex-
ample, if u and v represent users in twitter, v may be in-
fluenced from u regarding topics related to science but not

85

Structured Prediction of Network Response

regarding topics related to, say, politics. Thus, in our view,
the influence model needs to be context-sensitive.

We thus consider the following network response problem:
given an action, predict which nodes in the network will
perform it and along which edges the action will spread.
We approach the problem via structured output learning
that models the activated response network as a directed
graph. We learn a function for mappings between action
descriptions and the response subnetwork. Given an ac-
tion, the model is able to predict a directed subnetwork that
is most favourable to performing the action.

2. Preliminaries
We consider a directed network G = (V,E) where the
nodes v ∈ V represent entities, and edges e = (u, v) ∈ E
represent relationships among entities. As discussed in the
introduction, for each edge (u, v) we assume that node v
can be influenced by node u. In real applications, some
networks are directed (e.g., follower networks), while other
networks are undirected (e.g., friendship networks). For
simplicity of exposition, and without loss of generality we
formulate our problem for directed networks; indeed an
undirected edge can be modeled by considering pair of di-
rected edges. In our experiments we also consider undi-
rected networks.

In addition to other nodes, we allow the nodes to be influ-
enced by external stimuli, modelled by a root node r, which
is connected to all other nodes in the network, namely
(r, v) ∈ E, for all v ∈ V \ {r}. Reversely, no node can
influence r, so (v, r) ̸∈ E, for all v ∈ V \ {r}.

The second ingredient of our model consists of the actions
performed by the network nodes. We write A to denote
the underlying action space, that is, the set of all possible
actions, and we use a to indicate a particular action in A.
We assume that actions in A are represented using a feature
map φ : A→FA to an associated inner product space FA.
For example, FA can be a vector space of dimension k,
where each action a is represented by a k-dimensional vec-
tor φ(a). In the social-network application discussed in the
introduction, where actions a correspond to news articles
posted by users, φ(a) can be the bag-of-words representa-
tion of the news article a.

We assume that the network gets exposed to an action a ∈
A, and in response a subgraph Ga = (Va, Ea) ⊆ G, called
the response network gets activated. The nodes Va ⊆ V are
the ones that get activated and Ea ⊆ E is the set of induced
edges. We assume that the root r is always activated, i.e.,
r ∈ Va. Note that even though r is directly connected to
each node v ∈ Va, in every response network Ga, some
nodes in Va may exercise on v stronger influence than the
influence that r exercises on v. The nodes that get directly

x
y

u v

w (w,a, t = 5)

(u,a, t = 1)
(v,a, t = 2)

a→ φ(a)

a

b

c

d

e

f
g

h

i

= (1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, . . .)

Ga → ψ(Ga) = (app, apn, ann, bpp, bpn, bnn, cpp, cpn, cnn, dpp, dpn, dnn, . . .)

γ(u) = (γ(u; a), γ(u; b), γ(u; c), γ(u; d), . . .) = (1,λ,λ,λ2, . . .)

Figure 1. An action a perfromed by nodes u, v, w of a directed
network at times 1, 2, 5, respectively. Nodes x and y do not per-
form the action. The action a is represented by input feature
map φ(a). The response network Ga is represented by output
feature map ψ(Ga) that encodes the propagation of the action a
with respect to edge e (details in the text). Finally, γ is a scal-
ing function (see Sec. 3.4). For instance, γ(u) represents a vector
of exponentially-decaying weights for node u with respect to all
edges.

activated by the root node r as a response to an action are
called the focal points or foci of the response network.

We assume a dataset
{
(ai, Gai)

}m

i=1
of m training exam-

ples, where each example (ai, Gai) consists of an action
ai and the output Gai encoding the response network acti-
vated by ai. Our intention is to build a model that given a
previously unobserved action a, predicts the response net-
work Ga.

3. Model for network responses
3.1. Structured-prediction model

Our method is based on embedding the input and output
into a joint feature space and learning in that space a linear
compatibility score

F (a, Ga;w) = ⟨w,ϕ(a, Ga)⟩.

The score F (a, Ga;w) is given by the inner product of
parameters w and the joint feature ϕ(a, Ga). As the
joint feature we will use the tensor product ϕ(a, Ga) =
φ(a) ⊗ ψ(Ga) of the input feature map φ(a) of action a,
and the output feature map ψ(Ga) that represents the re-
sponse network Ga to the action a. The tensor product
ϕ(a, Ga) consists of all pairs of input and output features
ϕij(a, Ga) = φi(a)ψj(Ga).

The output features will encode the activated subgraph in
the network. We use labels {p, n} to indicate whether
nodes perform an action (positive vs. negative). Simi-
larly, we use edge labels {pp, pn, nn} to indicate the role
of edges in the propagation of actions. In particular, for
each edge (u, v) = e of a response network Ga and each
label ℓ ∈ {pp, pn, nn} we define the feature ψe,ℓ(Ga) to

86

Structured Prediction of Network Response

be 1 if and only if e is of type ℓ in Ga (and 0 otherwise).
For example, ψ(u,v),pp(Ga) = 1 indicates that both nodes
u and v are activated in Ga and u precedes v in the partial
order of activation.

An example of the model is shown in Figure 1. For the sake
of brievity in the figure, we abuse notation and we use eℓ
to denote ψe,ℓ(Ga). For instance, in this example we have
app = (u, v)pp = 1 since both u and v are activated and
u precedes v in the activation order, and thus it is possible
that u has influenced v.

3.2. Maximum-margin structured learning

The feature weight parameters w of the compatibility score
function F are learned by solving a regularized structured-
output learning problem

min
w,ξ

1

2
||w||22 + C

m∑

i=1

ξi, (1)

s.t. F (ai, Gai ;w) > argmax
G′

ai
∈H(G)

(
F (ai, G

′
ai
;w)

+ℓG(G
′
ai
, Gai)

)
− ξi, ξi ≥ 0, ∀i = {1, · · · ,m}.

The impact of the constraints on the above optimization
problem is to push the compatibility score of input ai
with output Gai above the scores of all competing out-
puts G′

ai
∈ H(G) with a margin proportional to the loss

ℓG(G′
ai
, Gai) between the correct Gai and any competing

subgraph G′
ai

. H(G) is the set of directed acyclic sub-
graphs of G rooted at r. The slack variable ξi is used to
relax the constraints so that a feasible solution can always
be found. C is a slack parameter that controls the amount
of regularization in the model. The objective minimizes
an L2-norm regularizer of the weight vector and the slack
allocated to the training set. This is equivalent to maximiz-
ing the margin subject to allowing some data to be outliers.
In practice, the optimization problem (Eq. 1) is tackled by
marginal dual conditional gradient optimization (Rousu
et al., 2007).

3.3. The inference problem

In the structured prediction model, both in training and in
prediction, we need to solve the problem of finding the
highest-scoring subgraph for an action. The two problems
differ only in the definition of the score: in training we need
to iteratively find the subgraph that violates its margins the
most, whilst in prediction we need to find the subgraph with
the maximum compatibility to a given action. We explain
our inference algorithms for the latter problem and note that
the first problem is a straightforward variant.

Given feature weights w and a network G = (V,E),
the prediction for a new input action a is the maximally-

scoring response graph H∗ = (V H , EH)

H∗(a) = argmax
H∈H(G)

F (a, H;w).

Writing this problem explicitly, in terms of the parameters
and the feature maps gives

H∗(a) = argmax
H∈H(G)

⟨w,φ(a)⊗ ψ(H)⟩

= argmax
H∈H(G)

∑

e∈EH

sye(e,a), (2)

where we have substituted sye(e,a) =
∑

i wi,e,yeφi(a).
We will abbreviate sye(e,a) to sye(e), as the action a
is fixed for an individual inference problem. The out-
put response network H can be specified by a node label
yv ∈ {p, n}, where yv = p if and only if v is activated.
We write Hy to emphasize the dependence of the output
subgraph H from labelling y. The node labels yv induce
edge labels ye. The score function s(e) can be interpreted
as a score function for the edges, given by the current in-
put a and weight vector w. The variable ye indicates the
possible labels of an edge e, and for each possible label the
score function s(e) assigns a different score. Depending
on the values that ye can take, the inference problem can
be further diverged into two modes:

Activation mode. We assume ye ∈ {pp, pn} where ye =
pp implies node v is activated by u via a directed edge
e = (u, v), and ye = pn means that the activation cannot
pass through e. In activation mode, the inference problem
is transformed as finding the maximally scoring node la-
bel yv and corresponding edge label ye, consistent with an
activated subgraph Hy given a set of edge scores sye(e).

Negative-feed mode. In addition to the setting in activa-
tion mode, we also explicitly model the inactive network
by assume ye ∈ {pp, pn, nn}, where by ye = nn we de-
note our belief that both u and v should be inactive given
action a. The inference problem is then to find the max-
imally scoring node labels and induced edge labels with
regards to an activated subgraph together with the inactive
counterpart given a set of edge score sye(e).

It is not difficult to show that the inference problem (Eq. 2)
is NP-hard. The proof of the following lemma, which pro-
vides a reduction from the MAX-CUT problem, is given in
the supplementary material.

Lemma 1 Finding the graph that maximizes Eq. (2) is an
NP-hard problem.

To solve the inference problem we propose two algorithms,
described on the negative-feed mode. Similar techniques
can be adapted to the activation-mode by setting edge score
snn(e) = 0. The first algorithm is based on a semidef-
inite programming (SDP) relaxation, similar to the one

87

Structured Prediction of Network Response

used for MAX-CUT and satisfiability problems (Goemans
& Williamson, 1995). The SDP algorithm offers a constant-
factor approximation guarantee for the inference problem.
However, it requires solving semidefinite programs. Ef-
ficient solvers do exist, but the method is not scalable to
large datasets. Besides, it cannot handle the order of acti-
vations. In contrast, our second approach is a more efficient
GREEDY algorithm that models activation order in a natural
way, but it does not provide any quality guarantee.

The SDP inference. Recall that for each edge (u, v) ∈
E we are given three scores: spp(u, v), spn(u, v), and
snn(u, v). The inference problem is to assign a label p or
n for each vertex u ∈ V . If a vertex u is assigned to label
p we say that u is activated. If both vertices u and v of an
edge (u, v) ∈ E are activated, a gain spp(u, v) incurs. Re-
spectively, the assignments pn and nn yield gains spn(u, v)
and snn(u, v). The objective is to find the assignments that
maximizes the total gain.

We formulate this optimization problem as a quadratic
program. We introduce a variable xu ∈ {−1,+1}, for
each u ∈ V . We also introduce a special variable x0 ∈
{−1,+1}, which is used to distinguish the activated ver-
tices. In particular, if xu = x0 we consider that the ver-
tex u is assigned to label p, and thus it is activated, while
xu = −x0 implies that u is assigned to n and not activated.
The network-response inference problem can now be writ-
ten as (QP):

max 1

4

∑

(u,v)∈E

[spn(u, v)(1 + x0xu − x0xv − xuxv)

+snn(u, v)(1− x0xu − x0xv + xuxv)

+spp(u, v)(1 + x0xu + x0xv + xuxv)],

s.t. x0, xu, xv ∈ {−1,+1}, for all u, v ∈ V.

The intuition behind the formulation of Problem (QP) is
that there is gain spn(u, v) if x0 = xu = −xv , a gain
snn(u, v) if x0 = −xu = −xv , and a gain spp(u, v) if
x0 = xu = xv .

To solve the problem (QP), we use the similar technique in-
troduced by Goemans & Williamson (1995), such that each
variable xu is relaxed to a vector vu ∈ Rn. The relaxed
quadratic program becomes (RQP):

max 1

4

∑

(u,v)∈E

[spn(u, v)(1 + v0vu − v0vv − vuvv)

+snn(u, v)(1− v0vu − v0vv + vuvv)

+spp(u, v)(1 + v0vu + v0vv + vuvv)],

s.t. vi ∈ Rn, for all i = 0, . . . , n.

Consider an (n+1)× (n+1) matrix Y whose (u, v) entry
is yu,v = vu · vv . If V is the matrix having vu’s as its

columns, i.e., V = [v0 . . .vk], then Y = V TV , implying
that the matrix Y is semidefinite, a fact we denote by Y ≽
0. Problem (RQP) now becomes (SDP):

max 1

4

k∑

u,v=1

[spn(u, v)(1 + y0,u − y0,v − yu,v)

+snn(u, v)(1− y0,u − y0,v + yu,v)

+spp(u, v)(1 + y0,u + y0,v + yu,v)],

s.t. Y ≽ 0.

Problem (SDP) asks to find a semidefinite matrix, so that
a linear function on the entries of the matrix is optimized.
This problem can be solved by semidefinite programming
within accuracy ϵ, in time that it is polynomial on k and
1
ϵ . After solving the semidefinite program one needs to
round each vector vu to the variable xu ∈ {−1,+1} in the
following way:

1. Factorize Y with Cholesky decomposition to find V =
[v0,v1 . . .vn].

2. Select a random vector r.
3. For each u = 0, 1, . . . , n, if vu · r ≥ 0 set xu = 1,

otherwise set xu = −1.

Let Z be the value of the solution obtained by the above
algorithm. Let Z∗ be the optimal value of Problem (QP)
and ZR the optimal value of Problem (SDP). Since Prob-
lem (SDP) is a relaxation of Problem (QP) it is ZR ≥ Z∗.
Furthermore, it can be shown that for the expected value
of Z it holds E[Z] ≥ (α − ϵ)ZR, with α > 0.796 and
where expectation is taken over the choice of r. Thus the
above algorithm is a 0.796 approximation algorithm for
Problem (QP).

The GREEDY inference. The inference (Eq. 2) is defined
on all edges of the network, which can be expressed equiva-
lently as a function of activated vertices (see details in sup-
plementary)

H∗(a) = argmax
H∈H(G)

∑

vi∈V H
p

Fm(vi),

where V H
p is a set of activated vertices. Fm(vi) is the

marginal gain on each node that is comprised partially from
changing edge label from pn to pp on incoming edges
{(vp, vi) | vp ∈ parents(vi)}, and partially from chang-
ing edge label from nn to pn on outgoing edges {(vi, vc) |
vc ∈ parents(vi)} defined as

Fm(vi) =
∑

vp∈parents(vi)

[spp(vp, vi)− spn(vp, vi)]

+
∑

vc∈children(vi)

[spn(vi, vc)− snn(vi, vc)].

88

Structured Prediction of Network Response

It is difficult to maximize the sum of marginal gains as
the activated subnetwork is unknown. One can instead
compute for each vertex the maximized marginal gain
maxviFm(vi) in an iterative fashion as long as Fm(vi) ≥
0, which leads to a greedy algorithm described as follows.
The algorithm starts with an activated vertex set V H

p =

{r}. In each iteration, it chooses a vertex vi ∈ V/V H
p

and adds to V H
p such that vi is the current maximizer of

Fm(v). The procedure terminates if the maximized gain
is smaller than 0. EH can be obtained by adding edges
e = (vi, vj) ∈ E, if vi, vj ∈ V H

p and vi was added to V H
p

prior to vj . The time complexity for greedy inference al-
gorithm is O(|E| log |V |). See supplementary material for
details of the algorithm.

We note that we have not been able to show an approxi-
mation guarantee for the quality of solutions produced by
the GREEDY algorithm. A property that it is typically used
to analyse greedy methods is submodularity. However,
for this particular problem submodularity does not hold
(it only holds in the special case of MAX-CUT, i.e., when
spp(e) = snn(e) = 0 and spn(e) = 1).

3.4. Loss functions

Instead of penalizing prediction mistakes uniformly on the
network G, we wish to focus in the vicinity of the response
network. To achieve this effect we scale the loss accrued
on the nodes and edges by their distance to the children of
the root of the response network.

As the loss function in (1) we use symmetric-difference loss
(or Hamming loss), applied to the nodes and the edges of
the subgraphs separately, and scaled by function γG(vk)
according distance to the focal point vk.

ℓG(Ga, Gb) =
∑

v∈V

ℓ∆v (Ga, Gb)γG(vk; v)

+
∑

(v,v′)∈E

ℓ∆v,v′(Ga, Gb)γG(vk; v),

where ℓ∆v (Ga, Gb) = [v ∈ Va∆Vb], ℓ∆e (Ga, Gb) = [e ∈
Ea∆Eb], S∆S′ denotes the symmetric difference of two
sets S and S′. We consider the following strategies to con-
struct the scaling function γG(vk):

Exponential scaling. Mistakes are penalized by λ and λ
is weighted exponentially according to the shortest path
distance to the focal point vk. Given focal point vk, edge
(vi, vj), and distance matrix D between the nodes, the scal-
ing function is defined as

γG(vk; vi, vj) =

⎧
⎨

⎩

1 if i = 0
λD(k,i) if i ̸= 0 and D(k, i) ≤ R
λ(R+1) if D(k, i) > R

where λ > 0 is the scaling factor and R > 1 is a radius
parameter. Edges outside the radius have equal scalings.

Diffusion scaling. The diffusion kernel defines a distance-
based function between nodes vi and vj (Kondor & Laf-
ferty, 2002). The kernel value K(i, j) corresponds to the
probability of a random walk from node vi to node vj .
Given the adjacency matrix L of the network G, the dif-
fusion kernel is computed as

K = lim
s→∞

(
I +

βL

s

)s

= exp(βL),

where I is the identity matrix and β is the a parameter that
controls how much the random walks deviate from the focal
point. Given focal node vk, edge (vi, vj), and diffusion
kernel K the scaling function is defined as

γG(vk; vi, vj) =

{
1 if i = 0,
K(vk, vi) otherwise.

The scaling function keeps the loss value on the edges
connecting the focal point, and scale other edges by the
weights computed from diffusion kernel. Diffusion scaling
has the effect of shrinking the distance to nodes that con-
nects to the focal point by many paths.

4. Experimental evaluation
In this section, we evaluate the performance of SPIN and
compare it with the state-of-the-art methods through ex-
tensive experiments. We use two real-world datasets,
DBLP and Memetracker, described below. Statistics of the
datasets are given in Table 1.

DBLP1 dataset is a collection of bibliographic information
on major computer science journals and proceedings. We
extract a subset of original data by using “inproceedings”
articles from year 2000. First, we construct an undirected
DBLP network G by connecting pairs of authors who have
coauthored more that p papers (p = 5, 10, 15). After that,
we generate a set of experimental networks of different size
by performing snowball sampling (Goodman, 1961). For
each experimental network, we extract all the documents
for which at least one of their authors is a node in the
network. We apply LDA algorithm (Blei et al., 2002) on
the titles of extracted documents to generated topics. Top-
ics are associated with publications, timestamped by pub-
lication dates, and described by bag-of-word features com-
puted from LDA. In this way, a topic can be seen as an
action and we will study the influence among authors.

Memetracker2 dataset is a set of phrases propagated over
prominent online news sites in March 2009. We construct

1http://www.informatik.uni-trier.de/˜ley/
db/

2http://Memetracker.org

89

Structured Prediction of Network Response

directed networks G for Memetracker dataset by connect-
ing two websites via a directed edge if there are at least five
phrases copying from one website to the other. A posted
phrase corresponds to an action, which again is times-
tamped and represented with bag-of-word features.

4.1. Experimental setup and metrics

SPIN can be applied to predict action-specific network re-
sponse (contenxt-aware) when action representation φ(a)
is given as input. It is also capable of predicting edge in-
fluence scores in context-free mode when φ(a) is treated
as unknown. For comparison purposes, we evaluate SPIN
against the following the state-of-the-art methods:

• Support Vector Machine (SVM) is used as a single tar-
get classifier used to predict the response network via
decomposing it as a bag of nodes and edges, and pre-
dicting each element in the bag.

• Max-Margin Conditional Random Field (MMCRF)
(Rousu et al., 2007; Su et al., 2010) is a multi-label
classifier that utilizes the structure of output graph G.
The model predicts the node labels of the network.

• Expectation-Maximization for the independent cas-
cade model (ICM-EM) (Saito et al., 2008) is a context-
free model that infers the influence probability of the
network given a directed network and a set of ac-
tion cascades. Here we use the implementation from
Mathioudakis et al. (2011) of this algorithm, which is
publicly available3.

• Netrate (Gomez-Rodriguez et al., 2011) models the
network influence as temporal processes occurs at dif-
ference rate. It infers the directed edges of the global
network and estimates the transmission rate of each
edge.

To quantitatively evaluate the performance of the tested
methods in predicting node and edge labels, we adopt two
popular metrics: accuracy and F1 score, defined as

F1 =
2 · P ·R
P +R

,

where P is precision and R is recall. We also define Pre-
dicted Subgraph Coverage (PSC) as

PSC =
1

mn

m∑

i=1

∑

v∈Vi

|Gv|,

where Vi is the set of focal points given action ai, n is the
number of nodes in the network, and m is the number of
actions. PSC expresses the relative size of a correctly pre-
dicted subgraph Gv in terms of node predictions that cover
the focal points v.

3https://dl.dropboxusercontent.com/u/
21620176/public_html/spine/index.html

Dataset Training Feature Network
Example Space |V | |E|

DBLP S100 440 1190 100 204
DBLP M100 478 1127 100 151
DBLP M500 2119 3619 500 699
DBLP M700 2800 4369 699 952
DBLP M1k 3720 5281 1000 1368
DBLP M2k 6030 7183 2000 2687
DBLP L100 509 1274 100 152
DBLP L500 1869 3424 499 701
DBLP L700 2620 4300 699 960
DBLP L1k 3560 5405 1000 1368
DBLP L2k 3618 5454 1023 1402
memeS 4632 181 82 325
memeM 4804 179 182 521
memeL 4809 179 333 597

Table 1. Statistics of DBLP and Memetracker datasets.

Data Accuracy F1 Score Time (102s)
SDP Neg Act SDP Neg Act SDP Neg Act

S100 79.9 77.6 72.9 57.2 56.2 55.5 16.0 1.5 0.2
M100 75.8 73.6 68.5 51.6 53.1 54.5 15.2 1.4 0.2
L100 75.1 72.0 67.4 53.5 56.9 57.2 13.7 1.6 0.3
Geom. 76.9 74.3 69.6 52.0 55.4 55.7 15.0 1.5 0.3

Table 2. Comparison of different inference algorithms. Geom. is
geometric mean of rows.

Our metrics are computed both in global context where we
pool all the nodes and edges from the background network,
as well as in local context where we only collect the nodes
and edges within certain radius R of the focal points. The
experimental results are from a five-fold cross validation.

4.2. Experimental results

We examine whether our context-sensitive structure predic-
tor can boost the performance of predicting network re-
sponses. We compare SPIN with other methods in both
context-sensitive and context-free problems. We show that
SPIN can perform significantly better in terms of predicting
action-specific network responses.

Comparison of inference algorithms. Table 2 shows the
geometric mean of node accuracy, F1 and running time
over parameter space on three DBLP datasets, where “Neg”
and “Act” represent the GREEDY inference defined on the
negative-feed and the activation modes. SDP is also formu-
lated on the negative-feed mode. In general, the inference
algorithm based on negative-feed mode outperforms acti-
vation mode in terms of accuracy. The difference in F1

is smaller in comparison. SDP based inference surpasses
GREEDY inference in accuracy, however, by a small mar-
gin. In addition, GREEDY inference is almost 10 times
faster even on small datasets, where running time is total
time used for cross validation. For the following exper-
iments, we opted for GREEDY inference in negative-feed
mode as the inference engine of SPIN.

90

Structured Prediction of Network Response

Dataset Node Accuracy Node F1 Score Edge Acc PSC Time (103s)
SVM MMCRF SPIN SVM MMCRF SPIN SVM SPIN SVM MMCRF SPIN SVM MMCRF SPIN

memeS 73.4 68.0 72.2 39.0 39.8 47.1 62.7 45.6 23.4 25.3 33.6 6.6 2.9 4.1
memeM 82.1 79.0 81.5 29.1 30.1 38.0 61.1 68.8 18.6 18.8 28.3 13.7 3.2 7.3
memeL 89.9 88.3 89.8 26.7 27.1 35.0 45.5 80.0 17.7 18.9 27.6 19.9 5.9 11.8
M100 71.2 73.6 76.7 49.3 50.8 54.3 33.3 61.7 33.3 35.6 34.6 0.1 0.2 0.1
M500 89.0 91.4 92.0 18.8 13.5 14.6 28.2 92.6 29.3 26.4 29.5 9.0 3.8 3.2
M700 91.9 94.1 92.1 13.8 7.3 14.2 26.3 93.0 29.4 23.9 34.4 18.5 8.3 4.4
M1k 94.1 95.8 94.2 10.9 3.5 9.3 26.6 94.7 33.7 16.6 35.2 42.2 14.7 10.4
M2k 96.8 97.6 96.7 6.2 1.4 3.4 25.3 97.6 34.6 9.6 14.7 165.0 88.4 54.1
L100 69.4 72.2 75.7 51.1 53.1 57.4 31.6 62.3 30.9 31.7 33.4 0.1 0.2 0.3
L500 85.9 89.1 86.8 21.7 15.1 24.7 27.9 87.9 14.2 11.2 19.7 6.5 3.2 2.1
L700 89.7 92.4 89.7 16.2 9.4 17.3 26.5 90.4 9.5 6.7 12.5 16.0 7.8 5.3
L1k 92.4 94.4 91.5 12.4 6.4 13.9 26.4 92.3 6.1 4.4 8.4 40.3 13.7 10.4
L2k 92.5 94.5 91.9 12.3 5.4 12.7 26.5 93.2 6.0 2.9 7.2 41.9 21.9 13.1
Geom. 85.5 86.4 86.6 19.8 12.6 20.3 32.6 79.7 18.9 14.2 21.7 9.4 4.6 4.3

Table 3. Comparison of prediction performance on global context. The best in bold-face, the second best in italic.

Context-aware prediction. We apply SPIN with exponen-
tial scaling to predict context-sensitive network responses.
Comparison of prediction performance against SVM and
MMCRF is listed in Table 3. We show that SPIN can
dramatically boost the performance of all measures except
node accuracy: MMCRF wins in node accuracy, but SPIN
is the second best and the difference is small. In terms of
time consumption for training, SPIN is around three times
faster than SVM and two times faster than MMCRF on the
largest M2k dataset.

Context-free network influence prediction. Here we
compare SPIN to methods developed for influence network
prediction, namely Netrate and ICM-EM, on Memetracker
data. To make the comparison fair to the competition, we
convert the network to undirected network and replace ac-
tion features by a constant value. For SPIN, we further
represent each undirected edge by two directed edges. The
measure of success is Precision@K, where we ask for top-
K percent edge predictions from each model and compute
the precision. Table 4 shows Precision@K as function
of K, where the performance of SPIN surpasses ICM-EM
and Netrate in all spectrum of K with a noticeable margin.
ICM-EM has the least accurate predictions of the three, but
achieves by far the the best running time. SPIN and Ne-
trate solve more complex convex optimization problems,
leading more accurate predictions at the cost of more CPU
time needed for training, SPIN being the more efficient on
the largest dataset, memeL.

The good performance of SPIN compared to Netrate is
mostly explained by the fact that Netrate solves a much
harder problem in which the underlying undirected network
is assumed to be unknown, while SPIN is able to leverage
the known network structure. In the experiment reported,
the edge predictions from Netrate are filtered against the
underlying complex network, in order to excessively pe-
nalize influence predictions along non-linked nodes.

Effect of loss scaling. Figure 2 depicts the effect of pa-

−1
0

−5
0

5
10

15

Subgraph Radius

N
od

e
A

cc
ur

ac
y

Im
po

rv
em

en
t %

0 1 2 3 4 5

λ
0.3
0.5
0.7

1
3
5

7

−1
5

−1
0

−5
0

5
10

15

Subgraph Radius

N
od

e
F1

 S
co

re
 Im

pr
ov

em
en

t %

0 1 2 3 4 5

−1
0

−5
0

5
10

15

Subgraph Radius

P
S

C
 Im

pr
ov

em
en

t %

0 1 2 3 4 5

20
25

30
35

40
45

Subgraph Radius

E
dg

e
A

cc
ur

ac
y

Im
pr

ov
em

en
t %

0 1 2 3 4 5

Figure 2. The improvement of prediction performance for differ-
ent scaling factor λ with respect to SVM.

rameter λ of the exponential loss scaling to prediction per-
formance on subgraphs of different radius. SVM (dashed
line) is used as the baseline. When 0 < λ < 1, the
node prediction accuracy (top, left) and F1 (top, right) de-
crease by the increasing subgraph radius, while λ ≥ 1
leads to the opposite behavior allowing larger subgraph
to be learned. Predicted subgraph coverage decreases by
incresing λ. Edge prediction accuracy (bottom, right) in-
creases monotonically in λ implying that predicting the
longer influence paths is a hard problem for SVM. In Ta-
ble 5 we examine the performance of diffusion scaling. The
numbers reported are geometric means over the different
Memetracker and DBLP datasets. We observe a decreased
performance when increasing the parameter β, which cor-
responds to smoothing the distance matrix. This indicates

91

Structured Prediction of Network Response

Dataset Model T (103s) Precision @ K
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

memeS
SPIN 5.50 82.9 81.0 76.0 74.0 74.0 70.0 69.8 67.9 66.7 64.7

ICM-EM 0.01 60.3 63.5 65.1 62.0 62.0 61.5 62.2 60.4 60.7 61.9
NETRATE 5.83 76.2 73.8 70.4 68.7 68.7 66.8 64.9 63.4 62.9 61.9

memeM
SPIN 5.52 82.7 72.1 70.5 69.2 69.2 67.9 66.2 65.6 64.3 64.2

ICM-EM 0.02 56.3 55.3 56.8 57.4 57.4 56.3 57.5 57.8 58.3 58.5
NETRATE 13.93 61.2 64.6 62.9 62.5 62.5 62.4 61.2 60.1 58.7 58.5

memeL
SPIN 4.75 82.2 73.6 69.1 66.7 66.7 65.9 66.1 65.9 63.9 63.6

ICM-EM 0.01 52.1 55.7 54.2 56.5 56.5 56.7 57.4 58.0 57.6 57.0
NETRATE 12.63 56.5 57.8 60.0 59.3 59.3 59.4 58.9 58.4 57.5 57.0

Table 4. Model performance in context-free influence network prediction.

Loss Scaling Node Acc Node F1 Edge Acc PSC Time (103s)
Meme DBLP Meme DBLP Meme DBLP Meme DBLP Meme DBLP

Dif β = 0.1 80.8 86.5 40.0 28.6 63.0 80.5 30.2 30.3 68.3 2.7
Dif β = 0.5 66.4 86.5 42.5 28.5 40.9 80.5 33.0 30.2 50.9 4.0
Dif β = 0.8 63.5 86.5 40.9 28.5 39.3 80.5 31.2 30.2 32.6 3.2
Exp λ = 0.5 80.9 83.9 39.7 28.7 63.1 77.7 29.7 24.3 71.0 10.8

Table 5. Comparison of diffusion scaling with exponential scaling.

that emphasizing connections between long-distance nodes
makes prediction more difficult, a finding consistent with
the results on exponential scaling. Setting β = 0.1 leads
to comparable performance over exponential scaling with
λ = 0.5, with slight improvement on the DBLP datasets.

5. Discussion
We have presented a novel approach, based on structured
output learning, to the problem of modelling influence
in networks. In contrast to previous state-of-the-art ap-
proaches, such as Netrate and ICM-EM, our proposal,
named SPIN, is a context-sensitive model. SPIN does not
try to force global influence parameters, but instead it in-
corporates the action space into the learning process and
makes predictions tailored to the action under considera-
tion. Our method can provide a useful tool in market re-
search or other application scenarios when actions arise
from a high-dimensional space, and one wants to make
predictions for actions not seen before. Another benefit
of our approach, compared to other state-of-the-art meth-
ods, is that our method does not make explicit assumptions
regarding the underlying propagation model. Addition-
ally, action responses are explicitly formulated as directed
acyclic subgraphs, and the model is capable of predicting
the complete subgraph structure. We proved that the in-
ference problem of SPIN is NP-hard, and we provided an
approximation algorithm based on semidefinite program-
ming (SDP). In addition, we developed a greedy heuris-
tic algorithm for the inference problem that scales linearly
in the size of the network, with time consumption in the
same ballpark as Netrate. With extensive experiments we
show that SPIN can dramatically boost the performance of
action-based network-response prediction. SPIN can also

be applied in context-free prediction where it captures the
edge influence weight of the network.

References
Anagnostopoulos, Aris, Kumar, Ravi, and Mahdian, Mo-

hammad. Influence and correlation in social networks.
KDD, 2008.

Blei, D., Ng, A., and Jordan, M. Latent dirichlet allocation.
In Dietterich, T., Becker, S., and Ghahramani, Z. (eds.),
Advances in Neural Information Processing Systems 14.
MIT Press, 2002.

De Choudhury, Munmun, Mason, Winter A, Hofman,
Jake M, and Watts, Duncan J. Inferring relevant social
networks from interpersonal communication. WWW, pp.
301–310, 2010.

Du, Nan, Song, Le, Smola, Alex, and Yuan, Ming. Learn-
ing Networks of Heterogeneous Influence. NIPS, 2012.

Eagle, Nathan, Pentland, Alex Sandy, and Lazer, David.
Inferring friendship network structure by using mobile
phone data. Proceedings of the National Academy of
Sciences, 106(36):15274–15278, 2009.

Goemans, Michel and Williamson, David. Improved ap-
proximation algorithms for maximum cut and satisfiabil-
ity problems using semidefinite programming. JACM, 42
(6), 1995.

Gomez-Rodriguez, Manuel, Leskovec, Jure, and Krause,
Andreas. Inferring Networks of Diffusion and Influence.
KDD, 2010.

92

Structured Prediction of Network Response

Gomez-Rodriguez, Manuel, Balduzzi, David, and
Schölkopf, Bernhard. Uncovering the Temporal
Dynamics of Diffusion Networks. ICML, 2011.

Goodman, Leo A. Snowball sampling. The annals of math-
ematical statistics, 32(1):148–170, 1961.

Goyal, Amit, Bonchi, Francesco, and Lakshmanan,
Laks VS. Learning influence probabilities in social net-
works. WSDM, 2010.

Kempe, David, Kleinberg, Jon, and Tardos, Éva. Maximiz-
ing the spread of influence through a social network. In
KDD, 2003.

Kondor, I.R. and Lafferty, J. D. Diffusion kernels on graphs
and other discrete structures. In Proceedings of the
ICML, 2002.

Mathioudakis, Michael, Bonchi, Francesco, Castillo, Car-
los, Gionis, Aristides, and Ukkonen, Antti. Sparsifica-
tion of influence networks. KDD, 2011.

Rousu, J., Saunders, C., Szedmak, S., and Shawe-Taylor, J.
Efficient algorithms for max-margin structured classifi-
cation. Predicting Structured Data, pp. 105–129, 2007.

Saito, Kazumi, Nakano, Ryohei, and Kimura, Masahiro.
Prediction of information diffusion probabilities for in-
dependent cascade model. In Knowledge-Based Intelli-
gent Information and Engineering Systems (KES), 2008.

Su, Hongyu, Heinonen, Markus, and Rousu, Juho. Struc-
tured output prediction of anti-cancer drug activity. In
Proceedings of the 5th IAPR international conference on
Pattern recognition in bioinformatics, PRIB’10, 2010.

Watts, Duncan J and Dodds, Peter Sheridan. Influentials,
networks, and public opinion formation. Journal of con-
sumer research, 34(4):441–458, 2007.

93

94

Structured Prediction of Network Response
Supplementary Material

Hongyu Su hongyu.su@aalto.fi

Aristides Gionis aristides.gionis@aalto.fi

Juho Rousu juho.rousu@aalto.fi

Helsinki Institute for Information Technology (HIIT)
Department of Information and Computer Science, Aalto University, Finland

1. NP-hardness of the inference problem

Lemma 1 Finding the graph that maximizes Eq.(2) is an NP-hard problem.

Proof (Sketch) The inference problem of SPIN can be stated as searching for an optimal configuration of node
labels. The node labels {yv ∈ {p, n}}v∈V induce edge labels {ye ∈ {nn, pn, pp}}e∈E . For each edge e and its
label ye in the graph, a score sye(e) is defined. The goal is to find a set of node labels that maximizes the sum
of scores

∑
e∈E sye(e).

This inference problem can be seen as a generalization of the max-cut problem (Garey & Johnson, 1979), where
the objective is to partition the nodes of a given undirected graph into two parts so that the number of edges
cut is maximized. The max-cut problem is known to be NP-hard.

We give a reduction from the max-cut problem to the inference problem. Given an instance of max-cut, i.e.,
a undirected graph G = (V,E), we create an instance to our problem as follows. We first create a directed graph
G′ = (V,E′) by considering both directions of the edges of G, i.e., for each (u, v) ∈ E we add (u, v) and (v, u) in
E′. Then, for each directed edge e ∈ E′ we set the scores spp(e) = snn(e) = 0 and spn(e) = 1. In addition, the
two partitions in max-cut are represented via the label {p, n}. It is not difficult to see that the reduction only
requires linear time and space, and an optimal solution to the max-cut problem is also optimal to this special
case of the inference problem. "

2. Derivation and pseudo-code of greedy inference algortihm

The original inference problem is stated as maximizing the sum over the scores of consistent edge labels. To
tackle the inference problem, one has to work with all edges and labels. We show in Eq. 1 that the inference
problem can be equivalently expressed only in term of activated vertices and the associated scores by initializing
the search from a negative network. The alternative expression of the inference problem enables us to design an
iterative greedy search algorithm that works on the nodes of the network.

Pseudocode for greedy inference algorithm is shown in Algorithm 1. The algorithm starts with an activated
vertex set V H

p = {r} that only contains root node r (line 1). It also maintains a priority list of vertices by their
current scores Fm(v) (line 2). In each iteration (line 4), the algorithm pops from the top of the priority list the
vertex vi that is the current maximizer of the marginal gain

vi = argmax
vi∈V/V H

p

Fm(vi).

Then, for all neighbours of vi, the algorithm updates their scores Fm(v) and positions in the list (line 6). The

95

Structured Prediction of Network Response

procedure terminates if Fm(vi) < 0 (line 7). EH can be obtained by adding edges e = (vi, vj) ∈ E, if vi, vj ∈ V H
p

and vi was added to V H
p prior to vj (line 13).

It is easy to see that it takes at most O(log |V |) to update the score and the position of one child node of current
activated node (line 6). In addition, we notice that each update corresponds to an edge in the network. Once
the edge is used for update, it will never be used again. Thus, the complexity for greedy search is O(|E| log |V |).

H∗(a) = argmax
H∈H(G)

∑

vi∈V H
p

vj∈V H
p

spp(vi,vj)

︸ ︷︷ ︸
activated network

+
∑

vi∈V H
p

vj∈V H
n

spn(vi,vj)

︸ ︷︷ ︸
boundary

+
∑

vi∈V H
n

vj∈V H
n

snn(vi,vj)

︸ ︷︷ ︸
inactivated network

(1)

= argmax
H∈H(G)

∑

vi∈V H
p

vj∈V H
p

spp(vi,vj) +
∑

vi∈V H
p

vj∈V H
n

spn(vi,vj) +
∑

vi∈V H
n

vj∈V H
n

snn(vi,vj)−
∑

vi∈V H

vj∈V H

snn(vi,vj)

= argmax
H∈H(G)

∑

vi∈V H
p

vj∈V H
p

[spp(vi,vj)− snn(vi,vj)] +
∑

vi∈V H
p

vj∈V H
n

[spn(vi,vj)− snn(vi,vj)]

= argmax
H∈H(G)

∑

vi∈V H
p

vj∈V H
p

[spp(vi,vj)− spn(vi,vj)] +
∑

vi∈V H
p

vj∈V H
p

[spn(vi,vj)− snn(vi,vj)]

︸ ︷︷ ︸
activated network

+
∑

vi∈V H
p

vj∈V H
n

[spn(vi,vj)− snn(vi,vj)]

︸ ︷︷ ︸
boundary

= argmax
H∈H(G)

∑

vi∈V H
p

⎛

⎜⎜⎜⎜⎜⎝

∑

vp∈pa(vi)

[spp(vp,vi)− spn(vp,vi)]

︸ ︷︷ ︸
incoming edges

+
∑

vc∈chi(vi)

[spn(vi,vc)− snn(vi,vc)]

︸ ︷︷ ︸
outgoing edges

⎞

⎟⎟⎟⎟⎟⎠

= argmax
H∈H(G)

∑

vi∈V H
p

Fm(vi).

References

Garey, Michael R. and Johnson, David S. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., 1979.

96

Structured Prediction of Network Response

Algorithm 1 Greedy Inference(a,G, sue(e))

Input: Action a. Network G = (E, V). The score function sue(e) defined on edge e and label ue.
Output: A rooted DAG H = (V H , EH) that maximizes the score function

H∗(a) = argmax
H∈H(G)

∑

vi∈V H
p

Fm(vi)

1: V H
p = {r}, EH = {}, T (r) = 0, t = 1

2: Initialize a priority list V ′ = {v|v ∈ V } ordered by Fm(v).
3: while true do
4: Pop up the first element from V ′ such that

v = argmax
v∈V/V H

p

Fm(v)

5: V ′ = V ′ − {v}
6: Updated scores Fm(v) and positions for all neighbours of v.
7: if Fm(v) ≥ 0 then
8: V H

p = V H
p ∪ {v}

9: T (v) = t
10: t = t+ 1
11: else
12: break
13: for vi ∈ V H

p , vj ∈ V H
p do

14: if (vi, vj) ∈ E and T (vi) < T (vj) then
15: EH = EH ∪ {(vi, vj)}
16: H = (EH , V H)

97

Publication II

Hongyu Su, Markus Heinonen, Juho Rousu. Multilabel Classification of

Drug-like Molecules via Max-margin Conditional Random Fields. In Pro-

ceedings of the 5th International Conference on Pattern Recognition in Bioin-

formatics (PRIB 2010), Nijmegen, The Netherlands, 2010. Springer LNBI

volume 6282:265-273, September 2010.

c⃝ 2010 Copyright 2014 by the authors.

Reprinted with permission.

99

100

Structured Output Prediction of Anti-cancer
Drug Activity

Hongyu Su, Markus Heinonen, and Juho Rousu

Department of Computer Science
P.O. Box 68, 00014 University of Helsinki, Finland

{hongyu.su,markus.heinonen,juho.rousu}@cs.helsinki.fi
http://www.cs.helsinki.fi/group/sysfys

Abstract. We present a structured output prediction approach for clas-
sifying potential anti-cancer drugs. Our QSAR model takes as input a
description of a molecule and predicts the activity against a set of can-
cer cell lines in one shot. Statistical dependencies between the cell lines
are encoded by a Markov network that has cell lines as nodes and edges
represent similarity according to an auxiliary dataset. Molecules are rep-
resented via kernels based on molecular graphs. Margin-based learning
is applied to separate correct multilabels from incorrect ones. The per-
formance of the multilabel classification method is shown in our experi-
ments with NCI-Cancer data containing the cancer inhibition potential
of drug-like molecules against 59 cancer cell lines. In the experiments,
our method outperforms the state-of-the-art SVM method.

1 Introduction

Machine learning has become increasingly important in drug discovery where
viable molecular structures are searched or designed for therapeutic efficacy.
In particular, Quantitative Structure-Activity Relationship (QSAR) models, re-
lating the molecular structures to bioactivity (therapeutical effect, side-effects,
toxicity, etc.) are routinely built using state-of-the-art machine learning meth-
ods. In particular, the costly pre-clinical in vitro and in vivo testing of drug
candidates can be focused to the most promising molecules, if accurate in silico
models are available [16].

Molecular classification—the task of predicing the presence or absense of the
bioactivity of interest—has been tackled with a variety of methods, including
inductive logic programming [9] and artificial neural networks [1]. During the last
decade kernel methods [11,16,4] have emerged as an computationally effective
way to handle the non-linear properties of chemicals. In numerous studies, SVM-
based methods have obtained promising results [3,16,20]. However, classification
methods focusing on a single target variable are probably not optimally suited
to drug screening applications where large number of target cell lines are to be
handled.

In this paper we propose, to our knowledge, the first multilabel learning ap-
proach for molecular classification. Our method belongs to the structured output

T.M.H. Dijkstra et al. (Eds.): PRIB 2010, LNBI 6282, pp. 38–49, 2010.
c⃝ Springer-Verlag Berlin Heidelberg 2010

101

Structured Output Prediction of Anti-cancer Drug Activity 39

prediction family [15,17,12,13], where graphical models and kernels have been
successfully married in recent years. In our approach, the drug targets (cancer
cell lines) are organized in a Markov network, drug molecules are represented by
kernels and discriminative max-margin training is used to learn the parameters.
Alternatively, our method can be interpreted as a form of multitask learning [5]
where the Markov network couples the tasks (cell lines) and joint features are
learned for pairs of similar tasks.

2 Methods

2.1 Structured Output Learning with MMCRF

The model used is this paper is an instantiation of the structured output predic-
tion framework MMCRF [13] for associative Markov networks and can also be
seen as a sibling method to HM3[12], which is designed for hierarchies. We give
a brief outline here, the interested reader may check the details from the above
references.

The MMCRF learning algorithm takes as input a matrix K = (k(xi, xj))
m
i,j=1

of kernel values k(xi, xj) = φ(xi)Tφ(xj) between the training patterns, where
φ(x) denotes a feature description of an input pattern (in our case a poten-
tial drug molecule), and a label matrix Y = (yi)

m
i=1 containing the multilabels

yi = (y1, . . . , yk) of the training patterns. The components yj ∈ {−1,+1} of the
multilabel are called microlabels and in our case correspond to different cancer
cell lines. In addition, the algorithm assumes an associative network G = (V,E)
to be given, where node j ∈ V corresponds to the j’th component of the mul-
tilabel and the edges e = (j, j′) ∈ E correspond to a microlabel dependency
structure.

The model learned by MMCRF takes the form of a conditional random field
with exponential edge-potentials,

P (y|x) ∝
∏

e∈E

exp
(
wT

e ϕe(x,ye)
)
= exp

(
wTϕ(x,y)

)
,

where ye = (yj , yj′) denotes the pair of microlabels of the edge e = (j, j′). A
joint feature map ϕe(x,y) = φ(x) ⊗ ψe(ye) for an edge is composed via tensor
product of input φ(x) and output feature map ψ(y), thus including all pairs
of input and output features. The output feature map is composed of indicator
functions ψu

e (y) = !ye = u" where u ranges over the four possible labelings of
an edge given binary node labels. The corresponding weights are denoted by we.
The benefit of the tensor product representation is that context (edge-labeling)
sensitive weights can be learned for input features and no prior alignment of
input and output features needs to be assumed.

The parameters are learned by maximizing the minimum loss-scaled margin
between the correct training examples (xi,yi) and incorrect pseudo-examples

102

40 H. Su, M. Heinonen, and J. Rousu

(xi,y),y ̸= yi, while controlling the norm of the weight vector. The primal
soft-margin optimization problem takes the form

minimize
w,ξ≥0

1

2
||w||2 + C

m∑

i=1

ξi (1)

s.t. wTϕ(xi,yi)−wTϕ(xi,y) ≥ ℓ(yi,y) − ξi,
for all i and y,

where ξi denote the slacks allotted to each example. The effect of loss-scaling is
to push high-loss pseudo-examples further away from the correct example than
the low-loss pseudo-examples, which, intuitively, decreases the risk of incurring
high-loss. We use Hamming loss

ℓ∆(y,u) =
∑

j

!yj ̸= uj"

that is gradually increasing in the number of incorrect microlabels so that we
can make a difference between ’nearly correct’ and ’clearly incorrect’ multilabel
predictions.

The MMCRF algorithm [13] optimizes the model (1) in the so called marginal
dual form, thathas several benefits: theuse of kernels to representhigh-dimensional
inputs, and polynomial-size of the optimization problemwith respect to the size of
the output structure. Efficient optimization is achieved via the conditional gradi-
ent algorithm [2] with feasible ascent directions found by loopy belief propagation
over the Markov networkG.

2.2 Kernels for Drug-Like Molecules

A major challenge for any statistical learning model is to define a measure of sim-
ilarity. In chemical community, widely researched quantitative structure-activity
relationship (QSAR) theory asserts that compounds having similar physico-
chemical and geometric properties should have related bioactivity [7]. Various
descriptors have been used to represent molecules with fixed-length feature vec-
tors, such as atom counts, topological and shape indices, quantum-chemical and
geometric properties [19]. Kernels computed from the structured representation
of molecules extend the scope of the traditional approaches by allowing com-
plex derived features to be used (walks, subgraphs, properties) while avoiding
excessive computational cost [11].

In this paper, we experiment with a set of graph kernels designed for classi-
fication of drug-like molecules, including walk kernel [6], weighted decomposi-
tion kernel [10] and Tanimoto kernel [11]. All of them rely on representing the
molecule as a labeled graph with atoms as nodes and bonds between the atoms
as the edges.

Walk kernel. [8,6] computes the sum of matching walks (a sequence of labeled
nodes so that there exists an edge for each pair of adjacent nodes) in a pair

103

Structured Output Prediction of Anti-cancer Drug Activity 41

of graphs. The contribution of each matching walk is downscaled exponentially
according to its length. We consider finite-length walk kernel where only walks
of length p are counted. The finite walk kernel can be efficiently computed using
dynamic programming.

Weighted decomposition kernel. [4] is an extension of the substructure kernel by
weighting identical parts in a pair of graphs based on contextual information
[4]. The kernel looks at matching subgraphs (contextor) in the neighborhood of
selector atoms.

Tanimoto kernel. [11] is a kernel computed from two molecule fingerprints by
checking the fraction of features that occur in both fingerprints of all features.
Hash fingerprints enumerates all linear fragments of a given length, while sub-
structure keys correspond to molecular substructures in a predefined set designed
by domain experts. Based on good performance in preliminary studies, in this
paper we concentrate on hash fingerprints.

2.3 Markov Network Generation for Cancer Cell Lines

In order to use MMCRF to classify drug molecules we need to build a Markov
network for the cell lines used as the output, with nodes corresponding to cell
lines and edges to potential statistical dependencies. To build the network we
used auxiliary data (e.g. mRNA and protein expression, mutational status, chro-
mosomal aberrations, DNA copy number variations, etc) available on the cancer
cell lines from NCI database1. The basic approach is to construct from this data
a correlation matrix between the pairs of cell lines and extract the Markov net-
work from the matrix by favoring high-valued pairs. The following methods of
network extraction were considered:

– Maximum weight spanning tree. Take the minimum number of edges that
make a connected network whilst maximizing the edge weights.

– Correlation thresholding. Take all edges that exceed fixed threshold. This
approach typically generates a general non-tree graph.

3 Experiments

3.1 NCI-Cancer Dataset

In this paper we use the NCI-Cancer dataset obtained through PubChem Bioas-
say2 [18] data repository. The dataset initiated by National Cancer Institute
and National Institutes of Health (NCI/NIH) contains bioactivity information
of large number of molecules against several human cancer cell lines in 9 differ-
ent tissue types, including leukemia, melanoma and cancers of the lung, colon,
brain, ovary, breast, prostate, and kidney. For each molecule tested against a
certain cell line, the dataset provide a bioactivity outcome that we use as the
classes (active, inactive).

1 http://discover.nci.nih.gov/cellminer/home.do
2 http://pubchem.ncbi.nlm.nih.gov

104

42 H. Su, M. Heinonen, and J. Rousu

Number of active cell lines

F
re

qu
en

cy
 o

f m
ol

ec
ul

es

0 10 20 30 40 50 60

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Fig. 1. Skewness of the multilabel distribution

3.2 Data Preprocessing

Currently, there are 43884molecules in the PubChem Bioassay database together
with anti-cancer activities in 73 cell lines. 59 cell lines have screen experimental
results for most molecules and 4554 molecules have no missing data in these cell
lines, therefore these cell lines and molecules are selected and employed in our
experiments.

However, molecular activity data are highly biased over the cell lines. Fig-
ure 1 shows the molecular activity distribution over all 59 cell lines. Most of
the molecules are inactive in all cell lines, while a relatively large proportion of
molecules are active against almost all cell lines, which can be taken as toxics.
These molecules are less likely to be potential drug candidates than the ones in
the middle part of the histogram.

Figure 2 shows a heatmap of normalized Tanimoto kernel, where molecules
have been sorted by the number of cell lines they are active in. The heatmap
shows that the molecules in the two extremes of the multilabel distribution form
groups of high similarity whereas the molecules in the middle are much more
dissimilar both to each other and to the extreme groups. The result seems to
indicate that the majority of molecules in the dataset are either very specific or
very general in the targets they are active against. Other kernels mentioned in
section 2.2 produce a similar heatmap indicating that the phenomenon is not
kernel-specific.

Because of the above-mentioned skewness, we prepared different versions of
the dataset:

105

Structured Output Prediction of Anti-cancer Drug Activity 43

0 10 20 30 40 50

0
10

20
30

40
50

Number of active cell lines

N
um

be
r

of
 a

ct
iv

e
ce

ll
lin

es

0.6

0.7

0.8

0.9

1.0

Fig. 2. Heatmap of the kernel space for the molecules sorted by the multilabel distri-
bution

Full. This dataset contains all 4554 molecules in the NCI-Cancer dataset that
have their activity class (active vs. incative) recorded against all 59 cancer
cell lines.

No-Zero-Active. From this dataset, we removed all molecules that are not
active towards any of the cell lines (corresponding to the leftmost peak in
Figure 1). The remaining 2305 molecules are all active against at least one
cell line.

Middle-Active. Here, we followed the preprocessing suggested in [14], and se-
lected molecules that are active in more than 10 cell lines and inactive in
more than 10 cell lines. As a result, 544 molecules remained and were em-
ployed in our experiments.

3.3 Experiment Setup

We conducted experiments to compare the effect of various kernels, as well as
the performances of support vector machine (SVM) and MMCRF. We used the
SVM implementation of the LibSVM software package written in C++3. We
tested SVM with different margin C parameters, relative hard margin (C = 100)
emerging as the value used in subsequent experiments. The same value was used
for MMCRF classifier as well.

Because of the skewness of the multilabel distribution (c.f. 1) we used the
following stratified 5-fold cross-validation scheme in all experiments reported:

3 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

106

44 H. Su, M. Heinonen, and J. Rousu

we group the molecules in equivalence classes based on the number of cell lines
they are active against. Then each group is randomly split among the five folds.
This ensures that also the smaller groups have representation in all folds.

3.4 Kernel Setup

For the three kernel methods, walk kernel (WK) was constructed using param-
eters λ = 0.1 and p = 6 as recommended in [6]. The Weighted decomposition
kernel (WDK) used context radius 3 as in [4], and a single attribute (atom type)
was sufficient to give the best performance. We also used hash fragments as
molecular fingerprints generated by OpenBabel4 (using default value n = 6 for
linear structure length), which is a chemical toolbox available in public domain.
All kernels were normalized.

4 Results

4.1 Effect of Markov Network Generation Methods

We report overall prediction accuracies on the Middle-Active dataset from vari-
ous Markov networks shown in Figure 3. X-axis corresponds to different microar-
ray experiments. The accuracies from different Markov networks differ slightly.
The best accuracy was achieved by using maximum weighted spanning tree ap-
proach on RNA radiation arrays dataset, shown in Figure 4, which describes
profiles of radiation response in cell lines. This meets our expectations since
cancer cells mostly mutated from normal cells and normal cells with radiation
treatments can possibly explain the mutations.

4.2 Effect of molecule kernels

In Table 1, we report overall accuracies and microlabel F1 scores using SVM with
different kernels on the Middle-Active dataset. The results were from a five-fold
cross validation procedure. Here, the three kernel methods achieve almost the
same accuracies in SVM classifier, while Tanimoto kernel is slightly better than
others in microlabel F1 score. Thus we deemed Tanimoto kernel to be the best
kernel in this experiment and chose it for the subsequent experiments.

4.3 Effect of Dataset Versions

Figure 5 gives overall accuracy and microlabel F1 score of MMCRF versus SVM
for each cell line on the three versions of the data. Points above the diagonal
line correspond to improvements in accuracies or F1 scores by MMCRF classi-
fier. MMCRF improves the F1 score over SVM on each version of the data in
statistically significant manner, as judged by the two-tailed sign test. Accuracy
is improved in two versions, No-Zero-Actives and the Middle-Active molecules,

4 http://openbabel.org

107

Structured Output Prediction of Anti-cancer Drug Activity 45

●
●

●
●

●

●

●

0.
60

0.
62

0.
64

0.
66

0.
68

0.
70

O
ve

ra
ll

pr
ed

ic
tio

n
ac

cu
ra

cy

● Minimum spanning tree
Covariance thresholding

P
ro

te
in

cD
N

A

H
U

68
00

m
iR

N
A

R
ad

Tr
an

s

U
13

3

Fig. 3. Effects of Markov network construction methods and type of auxiliary data
(from left to right: reverse-phase lysate arrays, cDNA arrays, Affymetric HU6800 ar-
rays, miRNA arrays, RNA radiation arrays, transporter arrays, and Affymetrix U133
arrays)

Table 1. Accuracies and microlabel F1 scores of MMCRF and SVM with different
kernels

Classifier Kernel Accuracy F1 score

SVM
WK 64.6% 49.0%
WDK 63.9% 51.6%

Tanimoto 64.1% 52.7%
MMCRF Tanimoto 67.6% 56.2%

again in statistically significant manner. Among the Middle-Active dataset, the
difference in accuracy (bottom, left of Figure 5) is sometimes drastic, around 10
percentage units in favor of MMCRF for a significant fraction of the cell lines.

4.4 Agreement of MMCRF and SVM Predictions

For a closer look at the predictions of MMCRF and SVM, Table 2 depicts the
agreement of the two models among positive and negative classes. Both models
were trained on the Full dataset. Overall, the two models agree on the label
most of the time (close to 90% of positive predictions and close to 95% of the
negative predictions). MMCRF is markedly more accurate than SVM on the

108

46 H. Su, M. Heinonen, and J. Rousu

MCF7

MDA_MB_231

HS578T

BT_549

T47D

SF_268

SF_295

SF_539

SNB_19

SNB_75

U251

COLO205

HCC_2998

HCT_116

HCT_15

HT29

KM12

SW_620

CCRF_CEM

HL_60

K_562

MOLT_4

RPMI_8226

SR

LOXIMVI

MALME_3M

M14

SK_MEL_2

SK_MEL_28

SK_MEL_5

UACC_257

UACC_62

MDA_MB_435

MDA_N

A549

EKVX

HOP_62

HOP_92

NCI_H226

NCI_H23

NCI_H322M

NCI_H460

NCI_H522IGROV1

OVCAR_3

OVCAR_4

OVCAR_5

OVCAR_8

SK_OV_3
NCI_ADR_RES

PC_3DU_145

786_0

A498

ACHN

CAKI_1

RXF_393

TK_10
UO_31

Fig. 4. Markov network constructed from maximum weighted spanning tree method
on RNA radiation array data. The labels correspond to different cancer cell lines.

Table 2. Agreement of MMCRF and SVM on the positive (left) and negative (right)
classes

Positive class Negative class
SVM Correct SVM Incorrect SVM Correct SVM Incorrect

MMCRF Correct 48.6± 4.1% 7.1± 2.6% 88.0± 4.9% 2.2± 1.2%
MMCRF Incorrect 3.4± 1.3% 40.9± 3.4% 3.8± 1.7% 6.1± 3.0%

positive class while SVM is slightly more accurate among the negative class.
Qualitatively similar results are obtained when the zero-active molecules are
removed from the data (data not shown).

4.5 Computation Time

Besides predictive accuracy, training time of classifiers is important when a large
number of drug targets need to be processed. The potential benefit of multilabel
classification is the fact that only single model needs to be trained instead of a
bag of binary classifiers.

We compared the running time needed to construct MMCRF classifier (im-
plemented in native MATLAB) against libSVM classifier (C++). We conducted
the experiment on a 2.0GHz computer with 8GB memory. Figure 6 shows that
MMCRF scales better when training set increases.

109

Structured Output Prediction of Anti-cancer Drug Activity 47

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.60 0.65 0.70 0.75 0.80 0.85 0.90

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

Accuracy (all molecules)

SVM

M
M

C
R

F

p−value from sign test is 0.6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

0.40 0.45 0.50 0.55 0.60 0.65 0.70

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

F1 score (all molecules)

SVM

M
M

C
R

F
p−value from sign test is 0.009

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

0.60 0.65 0.70 0.75 0.80

0.
60

0.
65

0.
70

0.
75

0.
80

Accuracy (0−active molecules excluded)

SVM

M
M

C
R

F

p−value from sign test is 0.04

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.50 0.55 0.60 0.65 0.70 0.75 0.80

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

F1 score (0−active molecules excluded)

SVM

M
M

C
R

F

p−value from sign test is 3.0e−5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.4 0.5 0.6 0.7 0.8 0.9

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Accuracy (middle active molecules)

SVM

M
M

C
R

F

p−value from sign test is 1.245e−6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

F1 score (middle active molecules)

SVM

M
M

C
R

F

p−value from sign test is 0.018

Fig. 5. Accuracy (left) and F1 score (right) of MMCRF vs. SVM on Full data (top),
No-Zero-Active (middle) and Middle-Active molecules (bottom)

110

48 H. Su, M. Heinonen, and J. Rousu

●

●

●

●

●

●

●

●

0
10

0
20

0
30

0
40

0
50

0
60

0

Training set size

R
un

ni
ng

 ti
m

e
(s

ec
)

● SVM
MMCRF

500 1000 1500 2000 2500 3000 3500 4000

Fig. 6. Training time for SVM and MMCRF classifiers on training sets of different
sizes

5 Conclusions

We presented a multilabel classification approach to drug activity classification
using the Max-Margin Conditional Random Field algorithm. In the experiments
against a large set of cancer lines the method significantly outperformed SVM
in training time and accuracy. In particular, drastic improvements could be seen
in the setup where molecules with extreme activity (active against no or a very
small fraction, or a very large fraction of the cell lines) were excluded from the
data. The remaining middle ground of selectively active molecules is in our view
more important from drug screening applications point of view, than the two
extremes.

The MMCRF software and preprocessed versions of the data are available
from http://cs.helsinki.fi/group/sysfys/software.

Acknowledgements

This work was financially supported by Academy of Finland grant 118653 (AL-
GODAN) and in part by the IST Programme of the European Community, under
the PASCAL2 Network of Excellence, ICT-2007-216886. This publication only
reflects the authors’ views.

References

1. Bernazzani, L., Duce, C., Micheli, A., Mollica, V., Sperduti, A., Starita, A., Tine,
M.: Predicting physical-chemical properties of compounds from molecular struc-
tures by recursive neural networks. J. Chem. Inf. Model. 46, 2030–2042 (2006)

2. Bertsekas, D.: Nonlinear Programming. Athena Scientific (1999)

111

Structured Output Prediction of Anti-cancer Drug Activity 49

3. Byvatov, E., Fechner, U., Sadowski, J., Schneider, G.: Comparison of support vec-
tor machine and artificial neural network systems for drug/nondrug classification.
J. Chem. Inf. Comput. Sci. 43, 1882–1889 (2003)

4. Ceroni, A., Costa, F., Frasconi, P.: Classification of small molecules by two- and
three-dimensional decomposition kernels. Bioinformatics 23, 2038–2045 (2007)

5. Evgeniou, T., Pontil, M.: Regularized multi–task learning. In: KDD’04,
pp. 109–117. ACM Press, New York (2004)

6. Gärtner, T.: A survey of kernels for structured data. SIGKDD Explor. Newsl. 5(1),
49–58 (2003)

7. Karelson, M.: Molecular Descriptors in QSAR/QSPR.Wiley-Interscience, Hoboken
(2000)

8. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled
graphs. In: Proceedings of the 20th International Conference on Machine Learning
(ICML), Washington, DC, United States (2003)

9. King, R., Muggleton, S., Srinivasan, A., Sternberg, M.: Structure-activity relation-
ships derived by machine learning: the use of atoms and their bond connectivities
to predict mutagenicity by inductive logic programming. PNAS 93, 438–442 (1996)

10. Menchetti, S., Costa, F., Frasconi, P.: Weighted decomposition kernels. In: Inter-
national Conference on Machine Learning, pp. 585–592. ACM Press, New York
(2005)

11. Ralaivola, L., Swamidass, S., Saigo, H., Baldi, P.: Graph kernels for chemical in-
formatics. Neural Networks 18, 1093–1110 (2005)

12. Rousu, J., Saunders, C., Szedmak, S., Shawe-Taylor, J.: Kernel-Based Learning of
Hierarchical Multilabel Classification Models. JMLR 7, 1601–1626 (2006)

13. Rousu, J., Saunders, C., Szedmak, S., Shawe-Taylor, J.: Efficient algorithms for
max-margin structured classification. Predicting Structured Data, 105–129 (2007)

14. Shivakumar, P., Krauthammer, M.: Structural similarity assessment for drug sen-
sitivity prediction in cancer. Bioinformatics 10, S17 (2009)

15. Taskar, B., Guestrin, C., Koller, D.: Max-margin markov networks. In: Neural
Information Processing Systems 2003 (2003)

16. Trotter, M., Buxton, M., Holden, S.: Drug design by machine learning: support
vector machines for pharmaceutical data analysis. Comp. and Chem. 26, 1–20
(2001)

17. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector ma-
chine learning for interdependent and structured output spaces. In: ICML’04, pp.
823–830 (2004)

18. Wang, Y., Bolton, E., Dracheva, S., Karapetyan, K., Shoemaker, B., Suzek, T.,
Wang, J., Xiao, J., Zhang, J., Bryant, S.: An overview of the pubchem bioassay
resource. Nucleic Acids Research 38, D255–D266 (2009)

19. Xue, Y., Li, Z., Yap, C., et al.: Effect of molecular descriptor feature selection in
support vector machine classification of pharmacokinetic and toxicological proper-
ties of chemical agents. J. Chem. Inf. Comput. Sci. 44, 1630–1638 (2004)

20. Zernov, V., Balakin, K., Ivaschenko, A., Savchuk, N., Pletnev, I.: Drug discovery
using support vector machines. The case studies of drug-likeness, agrochemical-
likeness, and enzyme inhibition predictions. J. Chem. Inf. Comput. Sci. 43,
2048–2056 (2003)

112

Publication III

Hongyu Su, Juho Rousu. Multi-task Drug Bioactivity Classification with

Graph Labeling Ensembles. In Proceedings of the 6th International Con-

ference on Pattern Recognition in Bioinformatics (PRIB 2011), Delft, The

Netherlands, 2011. Springer LNBI volume 7035:157-167, November 2011.

c⃝ 2011 Copyright 2014 by the authors.

Reprinted with permission.

113

114

Multi-task Drug Bioactivity Classification
with Graph Labeling Ensembles

Hongyu Su and Juho Rousu

Department of Computer Science,
P.O. Box 68, 00014 University of Helsinki, Finland

{hongyu.su,juho.rousu}@cs.helsinki.fi

Abstract. We present a new method for drug bioactivity classification
based on learning an ensemble of multi-task classifiers. As the base clas-
sifiers of the ensemble we use Max-Margin Conditional Random Field
(MMCRF) models, which have previously obtained the state-of-the-art
accuracy in this problem. MMCRF relies on a graph structure coupling
the set of tasks together, and thus turns the multi-task learning problem
into a graph labeling problem. In our ensemble method the graphs of the
base classifiers are random, constructed by random pairing or random
spanning tree extraction over the set of tasks.

We compare the ensemble approaches on datasets containing the can-
cer inhibition potential of drug-like molecules against 60 cancer cell lines.
In our experiments we find that ensembles based on random graphs sur-
pass the accuracy of single SVM as well as a single MMCRF model
relying on a graph built from auxiliary data.

Keywords: drug bioactivity prediction; multi-task learning; ensemble
methods; kernel methods.

1 Introduction

Molecular classification, the task of predicting the presence or absence of the
bioactivity of interest, has been benefited from variety of methods in statistics
and machine learning [7]. In particular, kernel methods [9,16,2,7] have emerged
as an effective way to handle the non-linear properties of chemicals. However,
classification methods focusing on a single target variable are probably not op-
timally suited to drug screening applications where large number of target cell
lines are to be handled.

In [15] a multi-task (or multilabel) learning approach was proposed to clas-
sify molecules according to their activity against a set of cancer cell lines. It was
shown that the multilabel learning setup improves predictive performance over a
set of support vector machine based single target classifiers. The multilabel clas-
sifier applied, Max-Margin Conditional Random Field (MMCRF) [11] relies on
a graph structure coupling the outputs together. In [15] the graph was extracted

M. Loog et al. (Eds.): PRIB 2011, LNBI 7036, pp. 157–167, 2011.
c⃝ Springer-Verlag Berlin Heidelberg 2011

115

158 H. Su and J. Rousu

from auxiliary data, concerning sets of experiments conducted on the cancer
cell lines, by simple techniques such as correlation thresholding and maximum
weight spanning tree extraction.

In this paper, we develop ensemble learning methods for the multi-task
learning setup. In our method, MMCRF models are used as the ensemble com-
ponents. Unlike other ensemble learners for multi-task setups, our method does
not require bootstrapping of the training data or changing instance weights to
induce diversity among the ensemble components. In our case, the diversity
is provided by the randomization of the output graphs, which combined with
discriminative training of the base MMCRF classifiers, realizes the benefits typ-
ically seen from ensemble approaches. The random graph approach is compared
against single classifiers and ensembles on graphs built from auxiliary data with
different graph extraction methods, including inverse covariance learning [5]
that is theoretically superior to correlation thresholding for extracting statistical
dependencies.

Ensembles of multi-task or multilabel classifiers have been proposed in a few
papers prior to ours, but with important differences both in the methods and
the applications. In general, the previous approaches can be divided into two
groups based on the source of diversity among the base classifiers of the ensem-
ble. The first group of methods, boosting type, relies on changing the weights
of the training instances so that difficult-to-classify instances gradually receive
more and more weight. The Boostexter method [12] by the inventors of boosting
has a multilabel learning variant. Later, Esuli et al. [4] developed a hierarchi-
cal multilabel variant of AdaBoost. Neither method explicitly considers label
dependencies but the multilabel is considered essentially a flat vector. The sec-
ond group of methods, bagging, is based on bootstrap sampling the training
set several times and building the base classifiers from the bootstrap samples.
Averaging over the ensemble gives the final predictions. Schietgat et al [13] con-
centrate a bagging in multilabel gene function prediction. They build ensembles
of predictive clustering trees (PCT) by bagging, that is, bootstrap sampling of
the data several times to arrive at a set of different models. In their approach,
there is also no structure defined for the tasks, but the multilabel is essentially
treated as a flat vector. Finally, Yan et al. [18] select different random subsets
of input features and examples to induce the base classifiers.

The remainder of the article is structured as follows. In section 2 we present
the base classifier MMCRF and the multi-task ensemble learning approach. In
section 3 we validate the methods empirically, in particular we show that the
ensemble approach exceeds the accuracy of MMCRF, which to our knowledge
currently has the state-of-the-art predictive performance. In section 4 we aim to
provide intuition of the hows and whys of the behaviour of the new method by
relating the new ensemble approach to other multi-task and multilabel ensemble
approaches. In section 5 finish with concluding remarks.

116

Multi-task Drug Bioactivity Classification with Graph Labeling Ensembles 159

2 Ensemble Learning with Max-Margin Conditional
Random Field Models on Random Graphs

Ensemble learners [3,8], such as boosting [12] and bagging [1] are based on the
notion that a set of weak leaners, those that have accuracy higher than coin
tossing, may produce a strong learner with high accuracy when appropriately
combined. It has been found that the diversity among the base models is the
key property. The diversity may arise from re-weighting of examples, bootstrap
resampling of examples, from the different inductive biases of the base learners,
or in multiclass setup, or by generating a set of derived binary classification tasks
(one-vs-the rest, one vs. one, and error-correcting output codes [3]).

In this section we present our ensemble learning approach where the diver-
sity among the base learners comes from a different source, namely randomized
graph structures that are used to couple the tasks. We use a majority voting
approach over the predictions of the base classifiers, namely labelings of the ran-
domized graphs. Two basic types of graphs are used, random spanning trees and
random pairings of targets (Figure 1). As the base learner, we use the MMCRF
algorithm [11].

2

1 6

5

3 4

2

1 6

5

3 4

2

1 6

5

3 4

2

1 6

5

3 4

1 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 1 1 1 0 1 1 0 1 1 0 0 0 1

2

1 6

5

3 4

ensemble
prediction

2

1 6

5

3 4

2

1 6

5

3 4

2

1 6

5

3 4

2

1 6

5

3 4

0 0 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 0 0 1 1

2

1 6

5

3 4

ensemble
prediction

Random tree
ensemble

Random pairing
ensemble

Fig. 1. Ensemble prediction from a set of random spanning trees (top) and a set of
random pairings of tasks (bottom). The varying graph structures provide the required
diversity among the ensemble components. Majority vote decides the final predicted
label for each task.

The method for generating the ensemble is depicted in Algorithm 1. The
algorithm receives a training sample of molecules xi, computes the input kernel
K and embarks on the ensemble learning phase. For each base model, a random
graph Gt of the type specified by the user is drawn to couple the outputs yi

which are the inhibition potentials of molecule xi against 60 cancer cell lines.
The input kernel, label data and the graph are given as input to the MMCRF
(see Section 2.1) that learns the graph labeling. After the ensemble has been
generated, the ensemble prediction is extracted in post-processing: we extract
the majority vote over the graph labelings from the sign of the mean of the base
classifier predictions.

117

160 H. Su and J. Rousu

Algorithm 1 . Ensemble learning algorithm with random graph multi-task
classifiers
Input: Training sample S = {(xi,yi)}mi=1, ensemble size T , type of the graph gener-

ated graphType, n the number of nodes in the graph, type of input kernel applied
kernelType

Output: Multi-task classification ensemble
(
f (1), . . . , f (T)

)

1: K = buildKernel({xi}mi=1, kernelType)
2: t = 0
3: while t < T do
4: t = t+ 1
5: Gt = randomGraph(n, graphType)
6: f (t) = learnMMCRF (K, (yi)

m
i=1 , Gt)

7: end while
8: return f =

(
f (1), . . . , f (T)

)

2.1 Learning Graph Labeling with MMCRF

The MMCRF method used as the base learner in the multi-task ensembles is
an instantiation of the structured output prediction framework MMCRF [11]
for associative Markov networks and can also be seen as a sibling method to
HM3[10], which is designed for hierarchies. We give a brief outline here, the
interested reader may check the details from the above references.

The MMCRF learning algorithm takes as input a matrix K = (k(xi, xj))
m
i,j=1

of kernel values k(xi, xj) = φ(xi)Tφ(xj) between the training patterns, where
φ(x) denotes a feature description of an input pattern (in our case a potential
drug molecule), and a label matrix Y = (yi)

m
i=1 containing the multilabels yi =

(y1, . . . , yk) of the training patterns. The components yj ∈ {−1,+1} of the
multilabel are called microlabels, which in multi-task learning setup, correspond
to labels of different tasks. In addition, the algorithm assumes an associative
network G = (V,E) to be given, where node j ∈ V corresponds to the j’th
component of the multilabel and the edges e = (j, j′) ∈ E correspond to a
microlabel dependency structure.

The model learned by MMCRF takes the form of a conditional random field
with exponential edge-potentials,

P (y|x) ∝
∏

e∈E

exp
(
wT

e ϕe(x,ye)
)
= exp

(
wTϕ(x,y)

)
,

where ye = (yj , yj′) denotes the pair of microlabels of the edge e = (j, j′).
A joint feature map ϕ(x,y) = φ(x) ⊗ ψ(y) is composed via tensor product
of input φ(x) and output feature map ψ(y), thus including all pairs of input
and output features. The output feature map is composed of indicator functions
ψu
e (y) = !ye = u" where u ranges over the four possible labelings of an edge

given binary node labels. The corresponding weights are denoted by w = (we)e.
The benefit of the tensor product representation is that context (edge-labeling)

118

Multi-task Drug Bioactivity Classification with Graph Labeling Ensembles 161

sensitive weights can be learned for input features and no prior alignment of
input and output features needs to be assumed.

The parameters are learned by maximizing the minimum loss-scaled margin
between the correct training examples (xi,yi) and incorrect pseudo-examples
(xi,y),y ̸= yi, while controlling the norm of the weight vector. The dual soft-
margin optimization problem takes the form

min
α≥0

∑

i,y

α(i,y)ℓ(yi,y)−
1

2

∑

i,y

∑

j,y′

α(i, y)K(xi,y;xj ,y
′)α(i,y′)

s.t.
∑

y

α(i,y) ≤ C, ∀i, (1)

where K(xi,y;xj ,y′) = ∆ϕ(i,y)T∆ϕ(j,y′) = KX(xi, xj) ⊙ K∆Y (y,y′) is the
joint kernel composed of the input KX(xi, xj) and output K∆Y (yi,y′) kernels.
The underlying joint feature map is expressed by

∆ϕ(i,y) = (ϕ(xi,yi)− ϕ(x,y)) = φ(xi)⊗ (ψ(yi)− ψ(y)) ,

that is, joint feature difference vectors between the true (yi) and a competing
output (y).

As the input kernel we use the hash fingerprint Tanimoto kernel [9] that was
previously shown [15] to be a well performing kernel in this task. Hash finger-
prints enumerate all linear fragments of length n in a molecule. A hash function
assigns each fragment a hash value that determines its position in descriptor
space. Given two fingerprint vectors x and z, Tanimoto kernel is the way to
measure their similarity defined as

KX(x, z) =
|I(x) ∩ I(z)|
|I(x) ∪ I(z)| ,

where I(x) denotes the set of indices of 1-bits in x .
As the loss function we use Hamming loss

ℓ∆(y,u) =
∑

j

!yj ̸= uj"

that is gradually increasing in the number of incorrect microlabels so that we
can make a difference between ’nearly correct’ and ’clearly incorrect’ multilabel
predictions.

2.2 Graph Generation for Cancer Cell Lines

In the anti-cancer bioactivity prediction problem, a single task entails classifica-
tion of drug molecules according to whether they are active or inactive against
one of the 60 cancer cell lines. The nodes of the graph G to be labeled thus cor-
respond to cancer cell lines. The edges of the graph depict coupling of the tasks,
denoting a potential statistical dependency that is to be utilized in predicting
the graph labels (Figure 2).

To generate random graphs Gt we use two approaches.

119

162 H. Su and J. Rousu

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

LC:NCI_H23

LC:NCI_H226

LC:NCI_H322M

LC:NCI_H460

LC:HOP_62

LC:HOP_92

LC:NCI_H522

LC:A549
LC:EKVX

ME:LOXIMVI

ME:M14
ME:MALME_3M

ME:UACC_62

ME:UACC_257

ME:SK_MEL_2

ME:SK_MEL_5

ME:SK_MEL_28

PR:PC_3

PR:DU_145
CNS:SF_268

CNS:SF_295

CNS:SF_539

CNS:SNB_19

CNS:SNB_75

CNS:U251

CO:HT29
CO:COLO205

CO:HCT_15

CO:KM12
CO:HCC_2998

CO:HCT_116

CO:SW_620

BR:MCF7

ME:MDA_MB_435

ME:MDA_N

BR:BT_549
BR:T47D

OV:NCI_ADR_RES

BR:MDA_MB_231

BR:HS578T

OV:OVCAR_3

OV:IGROV1
OV:SK_OV_3OV:OVCAR_4

OV:OVCAR_5

OV:OVCAR_8

LE:RPMI_8226

LE:SR

LE:CCRF_CEM

LE:K_562

LE:MOLT_4

LE:HL_60

RE:A498
RE:CAKI_1

RE:RXF_393

RE:786_0

RE:ACHN

RE:TK_10

RE:UO_31

RE:SN12C

Fig. 2. Example of a cell line graph

– In the random spanning tree approach, we first generate a random correla-
tion matrix and extract the spanning tree out of the matrix with the above
described approach.

– In the random pairing approach, one takes each vertex in turn, randomly
draws another vertex and couples the two with an edge.

We note that the random graph approach lets us build ensembles whose size is
not limited in practice.

We compare the random graphs against the approach used by [15], namely,
graphs built from Radiation RNA Array data, available for the cancer cell lines
from NCI database1. To extract a graph out of the correlation matrix we use
the graphical lasso [5] which estimates a sparse graph model by using L1 (lasso)
regularization on inverse covariance matrix, and is theoretically a better method
than the simple thresholding of the covariance matrix, applied in [15]. Graphical
lasso assumes multivariate Gaussian distribution over cell lines with mean µ and
covariance matrix Σ. The inverse covariance matrix Σ−1 is a good indicator for
conditional independencies [6], where variable i and j are conditional indepen-
dent given other variables if the ijthe entry of Σ−1 is zero. It imposes L1 penalty
during the estimation of Σ−1 to increase the sparsity of the resulted graph. The
objective is to maximize the penalized log-likelihood

log detΣ−1 − tr(SΣ−1)− ρ||Σ−1||1,

where tr is the trace of the matrix, S is empirical covariance matrix, and ||Σ−1||1
is the L1 norm of Σ−1. Particularly in our application, we post processed the
estimated sparse graph to be a tree-liked one.

1 http://discover.nci.nih.gov/cellminer/home.do

120

Multi-task Drug Bioactivity Classification with Graph Labeling Ensembles 163

3 Experiments

3.1 Data and Preprocessing

In this paper we use the NCI-Cancer dataset obtained through PubChem Bioas-
say2 [17] data repository. The dataset, initiated by National Cancer Institute
and National Institutes of Health (NCI/NIH), contains bioactivity information
of large number of molecules against several human cancer cell lines in nine dif-
ferent tissue types including leukemia, melanoma and cancers of the lung, colon,
brain, ovary, breast, prostate, and kidney. For each molecule tested against a
certain cell line, the dataset provide a bioactivity outcome that we use as the
classes (active, inactive).

Currently, there are 43197 molecules in the PubChem Bioassay database to-
gether with their activities information in 73 cancer cell lines. 60 cell lines have
screen experimental results for most molecules and 4547 molecules have no miss-
ing data in these cell lines. Therefore these cell lines and molecules are selected
and employed in our experiments. However, molecular activity data are highly
biased over the 60 cell lines: Around 60% of molecules are inactive in all cell
lines, while still a relatively large proportion of molecules are active against all
cell lines. These molecules are less likely to be potential drug candidates than
the ones in the middle part of the histogram.

To tackle the skewness problem, Su et al. [15] prepared three different versions
of the datasets, which approach is also followed here:

Full Data. This dataset contains all 4547 molecules in the NCI-Cancer dataset
that have their activity class (active vs. inactive) recorded against all 60
cancer cell lines.

No-Zero-Active. From full data, we removed all molecules that are not active
towards any of the cell lines. The remaining 2303 molecules are all active
against at least one cell line.

Middle-Active. Here, we followed the preprocessing suggested in [14], and se-
lected molecules that are active in more than 10 cell lines and inactive in
more than 10 cell lines. As a result, 545 molecules remained and were em-
ployed in our experiments.

3.2 Compared Methods

Three kinds of multi-task classifier ensembles are compared:

– SVM: Support vector machines (SVM) are used as the single-task non-
ensemble baseline classifier.

– MMCRF-Glasso: An MMCRF model where the underlying graph connecting
the tasks is built by graphical lasso from auxiliary data.

– MMCRF-EnsRT: An ensemble of 1-500 MMCRF models, where the graph
connecting the tasks is built by a random spanning tree.

2 http://pubchem.ncbi.nlm.nih.gov

121

164 H. Su and J. Rousu

– MMCRF-EnsRP: An ensemble of 1-500 MMCRF models, where the graph
connecting the tasks is built by random pairing of the tasks.

In the tests by [15], a relatively hard margin (C = 100) emerged as the most
favorable for SVM, while MMCRF proved to be quite insensitive as regarding
margin softness. Here we used the same value for all compared classifiers.

3.3 Experiment Setup and Performance Measures

Because of the skewness of the multilabel distribution we used the following
stratified 5-fold cross-validation scheme in all experiments reported such that we
group the molecules in equivalence classes based on the number of cell lines they
are active against. Then each group is randomly split among the five folds. The
procedure ensures that also the smaller groups have representation in all folds.
Besides overall classification accuracy, we also report microlabel F1 score, the
harmonic mean of precision and recall

F1 = 2× Precision×Recall

Precision+Recall
.

In particular, we pool together individual microlabel predictions over all exam-
ples and all cell lines, and count accuracy and F1 from the pool.

We generated hash fragments features from OpenBabel3 which is a chemical
toolbox available in public domain. We used default value for enumerating all
linear structures up to length seven. Then Tanimoto kernel was built based on
hash fingerprints features and normalized.

3.4 Results

Figure 3 illustrates the performance of the compared methods on the three ver-
sions of the datasets. All models based on MMCRF are clearly more accurate
than SVM. Among single models and small ensembles, MMCRF-Glasso is the
most competitive method, showing that the auxiliary data contains information
that can be successfully used to improve predictive performance.

Both the random pairing and random tree based ensembles steadily improve
accuracy and F1 score as the number of base models increases. SVM falls behind
the random graph ensembles even on small ensemble sizes (T < 5). With larger
ensemble sizes, both types of ensembles end up superior to MMCRF-Glasso in
terms of classification accuracy. In terms of F1 score, the best method depends on
the dataset: on the Middle-Active dataset, the random tree ensemble outperform
random pairing one, and MMCRF-Glasso is slightly behind. On No-zero-Active
and Full data, random pairing ensemble ends up the best method. This result
might reflect the sizes of the datasets: the Middle-Active dataset is significantly
smaller than the other two, and perhaps the random pairing ensemble requires
more data for best results.
3 http://openbabel.org

122

Multi-task Drug Bioactivity Classification with Graph Labeling Ensembles 165
64

.0
64

.5
65

.0
65

.5
66

.0
66

.5

Middle−active data

Size of ensemble

A
cc

ur
ac

y
%

2 42 90 138 194 250 306 362 418 474

EnsRT
EnsRP
Glasso
SVM 74

.4
74

.6
74

.8
75

.0
75

.2
75

.4
75

.6

No−zero active data

Size of ensemble

A
cc

ur
ac

y
%

2 42 90 138 194 250 306 362 418 474

EnsRT
EnsRP
Glasso
SVM

85
.9

86
.0

86
.1

86
.2

86
.3

86
.4

Full data

Size of ensemble

A
cc

ur
ac

y
%

2 42 90 138 194 250 306 362 418 474

EnsRT
EnsRP
Glasso
SVM

63
.0

63
.2

63
.4

63
.6

63
.8

64
.0

Middle−active data

Size of ensemble

F1
 %

2 42 90 138 194 250 306 362 418 474

EnsRT
EnsRP
Glasso
SVM

62
.5

63
.0

63
.5

64
.0

64
.5

65
.0

No−zeroactive data

Size of ensemble

F1
 %

2 42 90 138 194 250 306 362 418 474

EnsRT
EnsRP
Glasso
SVM

54
55

56
57

58
59

Full data

Size of ensemble

F1
 %

2 42 90 138 194 250 306 362 418 474

EnsRT
EnsRP
Glasso
SVM

Fig. 3. Accuracy against number of individual classifiers in ensemble methods from
different version of datasets. The red line corresponds to random tree ensemble, and
blue line is random pairing ensemble. The performance of single models (SVM and
MMCRF-Glasso) are depicted by the horizontal lines.

Table 1 shows the prediction performance from SVM, Glasso, EnsRP and
EnsRT from three versions of the dataset. We performed two-tailed sign test to
identify whether the differences in accuracy and F1 score in individual cell lines
are statistically significant. P -values for the difference over the worst classifier
and the ones towards the best classifier are shown as asterisks and crosses. The
result shows that, in terms of accuracy and F1 the multi-task methods outper-
form SVM in all versions of datasets in a statistically significant manner. EnsRT
outperforms Glasso in terms of accuracy in statistically very significant manner.

4 Discussion

The results of this paper show that ensemble methods can be effectively com-
bined with a graph-based multi-task learner such as MMCRF. From machine
learning point of view, perhaps the most surprising result obtained here is that
in an ensemble, the base graph labeling models can be successfully learnt on
random graphs, as opposed to using some auxiliary data or prior knowledge to
extract graphs that aim to reflect statistical dependencies.

The present ensemble method differs from previous approaches in that the
diversity among the base classifiers arises from the different random output

123

166 H. Su and J. Rousu

Table 1. Overall accuracy and microlabel F1 scores. P -values for the differences over
the worst classifier in each version of the dataset are marked with asterisks. P -values
for the differences towards the best classifier are marked with crosses. Single, double
and triple symbols correspond to p-value below 0.05, 0.01 and 0.001.

Dataset
Accuracy F1

SVM Glasso EnsRP EnsRT SVM Glasso EnsRP EnsRT

Middle-Active 64.5%† † † 66.2%***
†† 66.5%***

† 66.6%*** 63.4%† 63.7% 63.9%* 63.9%*

No-Zero-Active 74.5%† † † 75.4%***
† † † 75.4%***

† † † 75.7%*** 62.9%† † † 64.6%*** 64.7%*** 64.6%***

Full 86.1%† † † 86.2%***
† † † 86.3%*** 86.4%*** 54.8%† † † 59.0%*** 59.2%*** 59.0%***

† † †

structures, we do not reweight training examples as in boosting and we do not
resample the data like in bagging methods. At the same time, each weak learner
is trained to discriminate between different multilabels as well as possible.

Another way to understand the phenomenon is to see the edges of the task
network as ’experts’, and the collection of edges adjacent to a node as a ’expert
committee’ voting on the node label, each from a different context. The random
pairing of tasks then induces a random set of experts. Random tree of tasks, in
addition, makes the experts to negotiate on all node labels in order to keep the
tree labeled consistently. Our experiments suggest that enforcing this consistency
also may be beneficial.

5 Conclusions

We presented an ensemble approach for multi-task classification of drug bioac-
tivity. The base classifiers of the ensemble, learned by Max-Margin Conditional
Random Field algorithm (MMCRF), predict a labeling of a graph coupling the
tasks together. The predictive performance of two types of ensembles, one based
on random pairing of tasks, another based on a random spanning tree of tasks,
surpasses that of SVM as well as single MMCRF model where the underlying
graph has been built from auxiliary data using graphical lasso.

Acknowledgements. The work was financially supported by Helsinki Doctoral
Programme in Computer Science (Hecse), Academy of Finland grant 118653
(ALGODAN), and in part by the IST Programme of the European Community,
under the PASCAL2 Network of Excellence, ICT-2007-216886. This publication
only reflects the authors’ views.

References

1. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)
2. Ceroni, A., Costa, F., Frasconi, P.: Classification of small molecules by two- and

three-dimensional decomposition kernels. Bioinformatics 23, 2038–2045 (2007)
3. Dietterich, T.: Ensemble methods in machine learning. Multiple classifier systems,

1–15 (2000)

124

Multi-task Drug Bioactivity Classification with Graph Labeling Ensembles 167

4. Esuli, A., Fagni, T., Sebastiani, F.: Boosting multi-label hierarchical text catego-
rization. Information Retrieval 11(4), 287–313 (2008)

5. Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical
lasso. Biostatistics 9(3), 432–441 (2008)

6. Meinshausen, N., Bühlmann, P., Zürich, E.: High dimensional graphs and variable
selection with the lasso. Annals of Statistics 34, 1436–1462 (2006)

7. Obrezanova, O., Segall, M.D.: Gaussian processes for classification: Qsar modeling
of admet and target activity. Journal of Chemical Information and Modeling 50(6),
1053–1061 (2010)

8. Opitz, D., Maclin, R.: Popular ensemble methods: an empirical study. Journal of
Artificial Intelligence Research 11, 169–198 (1999)

9. Ralaivola, L., Swamidass, S., Saigo, H., Baldi, P.: Graph kernels for chemical in-
formatics. Neural Networks 18, 1093–1110 (2005)

10. Rousu, J., Saunders, C., Szedmak, S., Shawe-Taylor, J.: Kernel-Based Learning of
Hierarchical Multilabel Classification Models. The Journal of Machine Learning
Research 7, 1601–1626 (2006)

11. Rousu, J., Saunders, C., Szedmak, S., Shawe-Taylor, J.: Efficient algorithms for
max-margin structured classification. Predicting Structured Data, 105–129 (2007)

12. Schapire, R.E., Singer, Y.: Boostexter: A boosting-based system for text catego-
rization. Machine Learning 39(2/3), 135–168 (2000)

13. Schietgat, L., Vens, C., Struyf, J., Blockeel, H., Kocev, D., Džeroski, S.: Predicting
gene function using hierarchical multi-label decision tree ensembles. BMC bioin-
formatics 11(1), 2 (2010)

14. Shivakumar, P., Krauthammer, M.: Structural similarity assessment for drug sen-
sitivity prediction in cancer. Bioinformatics 10, S17 (2009)

15. Su, H., Heinonen, M., Rousu, J.: Structured Output Prediction of Anti-cancer Drug
Activity. In: Dijkstra, T.M.H., Tsivtsivadze, E., Marchiori, E., Heskes, T. (eds.)
PRIB 2010. LNCS, vol. 6282, pp. 38–49. Springer, Heidelberg (2010)

16. Trotter, M., Buxton, M., Holden, S.: Drug design by machine learning: support
vector machines for pharmaceutical data analysis. Comp. and Chem. 26, 1–20
(2001)

17. Wang, Y., Bolton, E., Dracheva, S., Karapetyan, K., Shoemaker, B., Suzek, T.,
Wang, J., Xiao, J., Zhang, J., Bryant, S.: An overview of the pubchem bioassay
resource. Nucleic Acids Research 38, D255–D266 (2009)

18. Yan, R., Tesic, J., Smith, J.: Model-shared subspace boosting for multi-label clas-
sification. In: Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 834–843. ACM (2007)

125

Publication IV

Hongyu Su, Juho Rousu. Multilabel Classification through Random Graph

Ensembles. Machine Learning, DOI:10.1007/s10994-014-5465-9, 26 Pages,

September 2014.

c⃝ 2014 Copyright 2014 by the authors.

Reprinted with permission.

127

128

Mach Learn
DOI 10.1007/s10994-014-5465-9

Multilabel classification through random graph
ensembles

Hongyu Su · Juho Rousu

Received: 16 January 2014 / Accepted: 14 July 2014
© The Author(s) 2014

Abstract We present new methods for multilabel classification, relying on ensemble learning
on a collection of random output graphs imposed on the multilabel, and a kernel-based
structured output learner as the base classifier. For ensemble learning, differences among the
output graphs provide the required base classifier diversity and lead to improved performance
in the increasing size of the ensemble. We study different methods of forming the ensemble
prediction, including majority voting and two methods that perform inferences over the graph
structures before or after combining the base models into the ensemble. We put forward a
theoretical explanation of the behaviour of multilabel ensembles in terms of the diversity and
coherence of microlabel predictions, generalizing previous work on single target ensembles.
We compare our methods on a set of heterogeneous multilabel benchmark problems against
the state-of-the-art machine learning approaches, including multilabel AdaBoost, convex
multitask feature learning, as well as single target learning approaches represented by Bagging
and SVM. In our experiments, the random graph ensembles are very competitive and robust,
ranking first or second on most of the datasets. Overall, our results show that our proposed
random graph ensembles are viable alternatives to flat multilabel and multitask learners.

Keywords Multilabel classification · Structured output · Ensemble methods · Kernel
methods · Graphical models

1 Introduction

Multilabel and multitask classification rely on representations and learning methods that
allow us to leverage the dependencies between the different labels. When such dependencies

Editors: Cheng Soon Ong, Tu Bao Ho, Wray Buntine, Bob Williamson, and Masashi Sugiyama.

H. Su () · J. Rousu
Helsinki Institute for Information Technology HIIT, Department of Information and Computer Science,
Aalto University, Konemiehentie 2, 02150 Espoo, Finland
e-mail: hongyu.su@aalto.fi

J. Rousu
e-mail: juho.rousu@aalto.fi

123

129

Mach Learn

are given in form of a graph structure such as a sequence, a hierarchy or a network, structured
output prediction (Taskar et al. 2004; Tsochantaridis et al. 2004; Rousu et al. 2006) becomes
a viable option, and has achieved a remarkable success. For multilabel classification, limiting
the applicability of the structured output prediction methods is the very fact they require the
predefined output structure to be at hand, or alternatively auxiliary data where the structure
can be learned from. When these are not available, flat multilabel learners or collections of
single target classifiers are thus often resorted to.

In this paper, we study a different approach, namely using ensembles of graph labeling
classifiers, trained on randomly generated output graph structures. The methods are based on
the idea that variation in the graph structures shifts the inductive bias of the base learners and
causes diversity in the predicted multilabels. Each base learner, on the other hand, is trained
to predict as good as possible multilabels, which makes them satisfy the weak learning
assumption, necessary for successful ensemble learning.

Ensembles of multitask or multilabel classifiers have been proposed, but with important
differences. The first group of methods, boosting type, rely on changing the weights of the
training instances so that difficult to classify instances gradually receive more and more
weights. The AdaBoost boosting framework has spawned multilabel variants (Schapire and
Singer 2000; Esuli et al. 2008). In these methods the multilabel is considered essentially as
a flat vector. The second group of methods, Bagging, are based on bootstrap sampling the
training set several times and building the base classifiers from the bootstrap samples. Thirdly,
randomization has been used as the means of achieving diversity by Yan et al. (2007) who
select different random subsets of input features and examples to induce the base classifiers,
and by Su and Rousu (2011) who use majority voting over random graphs in drug bioactivity
prediction context. Here we extend the last approach to two other types of ensembles and
a wider set of applications, with gain in prediction performances. A preliminary version of
this article appeared as Su and Rousu (2013).

The remainder of the article is structured as follows. In Sect. 2 we present the structured
output model used as the graph labeling base classifier. In Sect. 3 we present three aggregation
strategies based on random graph labeling. In Sect. 4 we present empirical evaluation of the
methods. In Sect. 5 we present concluding remarks.

2 Multilabel classification through graph labeling

We start by detailing the graph labeling classification methods that are subsequently used as
the base classifier. We examine the following multilabel classification setting. We assume
data from a domain X ×Y , where X is a set and Y = Y1 × · · ·×Yk is the set of multilabels,
represented by a Cartesian product of the sets Y j = {1, . . . , l j }, j = 1, . . . , k. In particular,
setting k = 1, l1 = 2 (Y = {1, 2}) corresponds to binary classification problem. A vector y =
(y1, . . . , yk) ∈ Y is called the multilabel and the components y j are called the microlabels.
We assume that a training set {(xi , yi)}m

i=1 ⊂ X × Y has been given. A pair (xi , y) where xi
is a training pattern and y ∈ Y is arbitrary, is called a pseudo-example, to denote the fact that
the pair may or may not be generated by the distribution generating the training examples.
The goal is to learn a model F : X $→ Y so that the expected loss over predictions on future
instances is minimized, where the loss function is chosen suitably for multilabel learning
problems. By 1{·} we denote the indicator function 1{A} = 1, if A is true, 1{A} = 0 otherwise.

Here, we consider solving multilabel classification with graph labeling classifiers that, in
addition to the training set, assumes a graph G = (V, E) with nodes V = {1, . . . , k} corre-
sponding to microlabels and edges E ⊆ V × V denoting potential dependencies between the

123

130

Mach Learn

microlabels. For any edge e = (j, j ′) ∈ E , we denote by ye = (y j , y j ′) the edge label of e
in multilabel y, induced by concatenating the microlabels corresponding to end points of e,
with corresponding domain of edge labels Ye = Y j × Y j ′ . By yie we denote the label of the
edge e in the i’th training example. Hence, for a fixed multilabel y, we can compute corre-
sponding node label y j of node j ∈ V and edge label ye of edge e ∈ E . We also use separate
notation for node and edge labels that are free, that is, not bound to any particular multilabel.
We denote by u j a possible label of node j , and ue a possible labels of edge e. Naturally,
u j ∈ Y j and ue ∈ Ye. See supplementary material for a comprehensive list of notations.

2.1 Graph labeling classifier

As the graph labeling classifier in this work we use max-margin structured output prediction,
with the aim to learn a compatibility score for pairs (x, y) ∈ X × Y , indicating how well
an input goes together with an output. Naturally, such a score for coupling an input x with
the correct multilabel y should be higher than the score of the same input with an incorrect
multilabel y′. The compatibility score between an input x and a multilabel y takes the form

ψ(x, y) = ⟨w,ϕ(x, y)⟩ =
∑

e∈E

⟨we,ϕe(x, ye)⟩ =
∑

e∈E

ψe(x, ye), (1)

where by ⟨·, ·⟩ we denote the inner product and parameter w contains the feature weights
to be learned. ψe(x, ye) is a shorthand for the compatibility score, or the potential, between
the input x and an edge label ye, defined as ψe(x, ye) = ⟨we,ϕe(x, ye)⟩, where we is the
element of w that associates to edge e.

The joint feature map

ϕ(x, y) = φ(x) ⊗ ϒ(y) = φ(x) ⊗ (ϒe(ye))e∈E = (ϕe(x, ye))e∈E

is given by a tensor product of an input feature φ(x) and the feature space embedding
of the multilabel ϒ(y) = (ϒe(ye))e∈E , consisting of edge label indicators ϒe(ye) =(
1{ye=ue}

)
ue∈Ye

. The benefit of the tensor product representation is that context (edge label)
sensitive weights can be learned for input features and no prior alignment of input and output
features needs to be assumed.

The parameters w of the model are learned through max-margin optimization, where the
primal optimization problem takes the form (e.g. Taskar et al. 2004; Tsochantaridis et al.
2004; Rousu et al. 2006)

min
w,ξ

1
2
||w||2 + C

m∑

i=1

ξi

s.t. ⟨w,ϕ(xi , yi)⟩ ≥ max
y∈Y

(⟨w,ϕ(xi , y)⟩ + ℓ(yi , y)) − ξi ,

ξi ≥ 0, ∀i ∈ {1, . . . , m}, (2)

where ξi denotes the slack allotted to each example, ℓ(yi , y) is the loss function between
pseudo-label and correct label, and C is the slack parameter that controls the amount of
regularization in the model. The primal form can be interpreted as maximizing the minimum
margin between the correct training example and incorrect pseudo-examples, scaled by the
loss function. The intuition behind loss-scaled margin is that example with nearly correct
multilabel would require smaller margin than with multilabel that is quite different from the
correct one. Denoting 'ϕ(xi , y) = ϕ(xi , yi) − ϕ(xi , y), the Lagrangian of the problem is
given by

123

131

Mach Learn

L(w, ξ, α, ρ) = 1
2
||w||2 + C

m∑

i=1

ξi −
∑

i,y

α(i, y) (⟨w,'ϕ(xi , y)⟩ + ℓ(yi , y)) −
∑

i

ξiρi ,

where by setting derivatives to zero with respect to w we obtain

w =
∑

i,y

α(i, y)'ϕ(xi , y), (3)

and the zero derivatives for ξ give the box constraint
∑

y α(i, y) ≤ C for all i , while the dual
variables ρi are canceled out. Maximization with respect to α’s gives the dual optimization
problem as

max
α≥0

αT ℓ − 1
2
αT Kα

s.t.
∑

y
α(i, y) ≤ C,∀i ∈ {1, . . . , m}, (4)

where α = (α(i, y))i,y denotes the vector of dual variables and ℓ = (ℓ(yi , y))i,y is the vector
of losses for each pseudo-example (xi , y). The joint kernel

K (xi , y; x j , y′) = ⟨ϕ(xi , yi) − ϕ(xi , y), ϕ(x j , y j) − ϕ(x j , y′)⟩
= ⟨φ(xi), φ(x j)⟩φ · ⟨(ϒ(yi) − ϒ(y), ϒ(y j) − ϒ(y′)⟩ϒ
= Kφ(xi , x j) ·

(
Kϒ (yi , y j) − Kϒ (yi , y′) − Kϒ (y, y j) + Kϒ (y, y′)

)

= Kφ(xi , x j) · K'ϒ (yi , y; y j , y′)

is composed by product of input kernel Kφ(xi , x j) = ⟨xi , x j ⟩φ and output kernel

K'ϒ (yi , y; y j , y′) =
(
Kϒ (yi , y j) − Kϒ (yi , y′) − Kϒ (y, y j) + Kϒ (y, y′)

)
,

where Kϒ (y, y′) = ⟨ϒ(y′), ϒ(y)⟩.

2.2 Factorized dual form

The dual optimization problem (4) is a challenging one to solve due to the exponential-sized
dual variable space, thus efficient algorithms are required. A tractable form is obtained via
factorizing the problem according to the graph structure. Following Rousu et al. (2007), we
transform (4) into the factorized dual form, where the edge-marginals of dual variables are
used in place of the original dual variables

µ(i, e, ue) =
∑

y∈Y
1{ϒe(y)=ue}α(i, y), (5)

where e = (j, j ′) ∈ E is an edge in the output graph and ue ∈ Y j × Y j ′ is a possible label
for the edge (j, j ′).

The output kernel decomposes by the edges of the graph as

Kϒ (y, y′) = ⟨ϒ(y′), ϒ(y)⟩ =
∑

e

Kϒ,e(ye, y′
e),

123

132

Mach Learn

where Kϒ,e(u, u′) = ⟨ϒe(u), ϒe(u′)⟩ϒ . Given the joint features defined by the tensor prod-
uct, the joint kernel also decomposes as

K (xi , y; x j , y′) = Kφ(x, x ′)K'ϒ (yi , y; y j , y′) =
=

∑

e

Kφ(x, x ′)K'ϒ,e(ye, y′
e) =

∑

e

Ke(x, ye; x ′, y′
e),

where we have denoted

K'ϒ,e(yie, ye; y je, y′
e) =

(
Kϒ,e(yie, y je) − Kϒ,e(yie, y′

e) − Kϒ,e(ye, y je) + Kϒ,e(ye, y′
e)

)
.

Using the above, the quadratic part of the objective factorizes as follows

αT Kα =
∑

e

∑

i, j

∑

y,y′
α(i, y)Ke(xi , ye; x j , y′

e)α(j, y′)

=
∑

e

∑

i, j

∑

u,u′
Ke(xi , u; x j , u′)

∑

y:ye=u

∑

y′:y′
e=u′

α(i, y)α(j, y′)

=
∑

e

∑

i, j

∑

u,u′
µ(i, e, u)Ke(xi , u; x j , u′)µ(j, e, u′)

= µT KEµ, (6)

where KE = diag (Ke, e ∈ E) is a block diagonal matrix with edge-specific kernel blocks Ke
and µ = (µ(i, e, u))i,e,u is the vector of marginal dual variables. We assume a loss function
that can be expressed in a decomposed form as

ℓ(y, y′) =
∑

e

ℓe(ye, y′
e),

a property that is satisfied by the Hamming loss family, counting incorrectly predicted nodes
(i.e. microlabel loss) or edges, and are thus suitable for our purpose. With a decomposable
loss function, the linear part of the objective satisfies

m∑

i=1

∑

y∈Y
α(i, y)ℓ(yi , y) =

m∑

i=1

∑

y
α(i, y)

∑

e

ℓe(yie, ye) =

=
m∑

i=1

∑

e∈E

∑

u∈Ye

∑

y:ye=u

α(i, y)ℓe(yie, u)

=
m∑

i=1

∑

e∈E

∑

u∈Ye

µ(e, u)ℓe(yie, u) =
m∑

i=1

µT
i ℓi = µT ℓE , (7)

where ℓE = (ℓi)
m
i=1 = (ℓe(i, u))m

i=1,e∈E,u∈Ye
is the vector of losses. Given the above, we

can state the dual problem (4) in equivalent form (c.f. Taskar et al. 2004; Rousu et al. 2007)
as

max
µ∈M

µT ℓ − 1
2
µT KEµ, (8)

123

133

Mach Learn

where the constraint set is the marginal polytope (c.f. Rousu et al. 2007; Wainwright et al.
2005)

M = {µ|∃α ∈ A s.t. µ(i, e, ue) =
∑

y∈Y
1{yie=ue}α(i, y),∀i, ue, e}

of the dual variables, the set of all combinations of marginal dual variables (5) of training
examples that correspond to some α in the original dual feasible set A = {α|α(i, y) ≥
0,

∑
y α(i, y) ≤ C,∀i} in (4). Note that the above definition of M automatically takes care

of the consistency constraints between marginal dual variables (c.f. Rousu et al. 2007).
The factorized dual problem (8) is a quadratic program with a number of variables linear

in both the size of the output network and the number of training examples. There is an
exponential reduction in the number of dual variables from the original dual (4), however,
with the penalty of more complex feasible polytope M. For solving (8) we use MMCRF
(Rousu et al. 2007) that relies on a conditional gradient method. Update directions are found
in linear time via probabilistic inference (explained in the next section), making use of the the
exact correspondence of maximum margin violating multilabel in the primal (2) and steepest
feasible gradient of the dual objective (4).

2.3 Inference

In both training and prediction, efficient inference is required over the multilabel spaces.
In training any of the models (2, 4, 8), one needs to iteratively solve the loss-augmented
inference problem

ȳ(xi) = argmax
y∈Y

(⟨w,ϕ(xi , y)⟩ + ℓ(yi , y))

= argmax
y∈Y

∑

e

⟨we,ϕe(xi , ye)⟩ + ℓe(ye, yie) (9)

that finds for each example the multilabel that violates its margins the most (i.e. the worst
margin violator) given the current w. Depending on the optimization algorithm, the worst-
margin violator may be used to grow a constraint set (column-generation methods), or to
define an update direction (structured perceptron, conditional gradient).

In the prediction phase, the inference problem to be solved is simply to find the highest
scoring multilabel for each example:

ŷ(x) = argmax
y∈Y

⟨w,ϕ(x, y)⟩ = argmax
y∈Y

∑

e

⟨we,ϕe(x, y)⟩ (10)

Both of the above inference problems can be solved in the factorized dual, thus allowing
us to take advantage of kernels for complex and high-dimensional inputs, as well as the
linear-size dual variable space.

Next, we put forward a lemma that shows explicitly how the compatibility score
ψe(x, ye) = ⟨we,ϕe(x, ye)⟩ of labeling an edge e as ye given input x can be expressed
in terms of kernels and marginal dual variables. We note that the property is already used in
marginal dual based structured output methods such as MMCRF, however, below we make
the property explicit, to facilitate the description of the ensemble learning methods.

Lemma 1 Let w be the solution to (2), ϕ(x, y) be the joint feature map, and let G = (V, E)

be the graph defining the output graph structure, and let us denote

He(xi , ue; x, ye) = Kφ(x, xi) ·
(
Kϒ,e(yie, ye) − Kϒ,e(ue, ye)

)
.

123

134

Mach Learn

Then, we have

ψe(x, ye) = ⟨we,ϕe(x, ye)⟩ =
∑

i,ue

µ(i, e, ue) · He(xi , ue; x, ye),

where µ is the marginal dual variable learned by solving optimization problem (8).

Proof Using (3) and (5), and elementary tensor algebra, the compatibility score of a example
(x, y′) is given by

⟨w,ϕ(x, y′)⟩ =
∑

i

∑

y
α(i, y)⟨'ϕ(xi , y), ϕ(x, y′)⟩

=
∑

i

∑

e

∑

ue

∑

y:ye=ue

α(i, y)⟨'ϕe(xi , ue), ϕe(x, y′
e)⟩

=
∑

e

∑

i

∑

ue

µ(i, e, ue)⟨φ(xi) ⊗ (ϒe(yie) − ϒe(ue)), φ(x) ⊗ ϒe(y′
e)⟩

=
∑

e

∑

i

∑

ue

µ(i, e, ue)Kφ(xi , x)⟨ϒe(yie) − ϒe(ue), ϒe(y′
e)⟩

=
∑

e

∑

i

∑

ue

µ(i, e, ue)Kφ(xi , x) ·
(
Kϒ,e(yie, y′

e) − Kϒ,e(ue, y′
e)

)

=
∑

e

∑

i,ue

µ(i, e, ue) · He(xi , ue; x, y′
e).

The loss-augmented inference problem can thus be equivalently expressed in the factorized
dual by

ȳ(x) = argmax
y∈Y

∑

e

ψe(x, ye) + ℓe(ye, yie)

= argmax
y∈Y

∑

e,i,ue

µ(i, e, ue)He(i, ue; x, ye) + ℓe(ye, yie). (11)

Similarly, the inference problem (10) solved in prediction phase can be solved in the factorized
dual by

ŷ(x) = argmax
y∈Y

∑

e

ψe(x, ye) = argmax
y∈Y

∑

e

⟨we,ϕe(x, ye)⟩

= argmax
y∈Y

∑

e,i,ue

µ(i, e, ue)He(i, ue; x, ye). (12)

To solve (11) or (12) any commonly used inference technique for graphical models can
be applied. In this paper we use MMCRF that relies on the message-passing method, also
referred as loopy belief propagation (LBP). We use early stopping in inference of LBP, so
that the number of iterations is limited by the diameter of the output graph G.

3 Learning graph labeling ensembles

In this section we consider generating ensembles of multilabel classifiers, where each base
model is a graph labeling classifier. Algorithm 1 depicts the general form of the learning
approach. We assume a function to output a random graph G(t) for each stage of the ensemble,

123

135

Mach Learn

a base learner F (t)(·) to learn the graph labeling model, and an aggregation function A(·) to
compose the ensemble model. The prediction of the model is then obtained by aggregating
the base model predictions

F(x) = A(F (1)(x), . . . , F (T)(x)).

Given a set of base models trained on different graph structures we expect the predicted
labels of the ensemble have diversity which is known to be necessary for ensemble learning.
At the same time, since the graph labeling classifiers aim to learn accurate multilabels, we
expect the individual base classifiers to be reasonably accurate, irrespective of the slight
changes in the underlying graphs. Indeed, in this work we use randomly generated graphs to
emphasize this point. We consider the following three aggregation methods:

– In majority-voting-ensemble, each base learner gives a prediction of the multilabel. The
ensemble prediction is obtained by taking the most frequent value for each microlabel.
Majority voting aggregation is admissible for any multilabel classifier.

Second, we consider two aggregation strategies that assume the base classifier has a
conditional random field structure:

– In average-of-maximum-marginals aggregation, each base learner infers local maximum
marginal scores for each microlabel. The ensemble prediction is taken as the value with
highest average local score.

– In maximum-of-average-marginals aggregation, the local edge potentials of each base
model are first averaged over the ensemble and maximum global marginal scores are
inferred from the averages.

In the following, we detail the above aggregation strategies.

3.1 Majority voting ensemble (MVE)

The first ensemble model we consider is the majority voting ensemble (MVE), which was
introduced in drug bioactivity prediction context by Su and Rousu (2011). In MVE, the
ensemble prediction on each microlabel is the most frequently appearing prediction among
the base classifiers

F MVE
j (x) = argmax

y j ∈Y j

(
1
T

T∑

i=1

1{F (t)
j (x)=y j }

)

,

where F (t)(x) = (F (t)
j (x))k

j=1 is the predicted multilabel in the t’th base classifier. When
using (8) as the base classifier, predictions F (t)(x) are obtained via solving the inference
problem (12). We note, however, in principle, any multilabel learner will fit into the MVE

Input: Training sample S = {(xi , yi)}m
i=1, ensemble size T , graph generating oracle function

outputGraph : t ∈ {1, . . . , T } $→ Gk , aggregation function A(·) : F × · · · × F $→ Y
Output: Multilabel classification ensemble F(·) : X $→ Y
1: for t ∈ {1, . . . , T } do
2: G(t) = outputGraph(t)
3: Ft (·) = learnGraphLabelingClassifier((xi)

m
i=1 , (yi)

m
i=1 , G(t))

4: end for
5: F(·) = A(F(1)(·), . . . , F(T)(·))

Algorithm 1: Graph Labeling Ensemble Learning

123

136

Mach Learn

framework as long as it adapts to a collection of output graphs G = {G(1), · · · , G(T)} and
generates multilabel predictions accordingly from each graph.

3.2 Average-of-max-marginal aggregation (AMM)

Next, we consider an ensemble model where we perform inference over the graph to extract
information on the learned compatibility scores in each base model. Thus, we assume that
we have access to the compatibility scores between the inputs and edge labels

*
(t)
E (x) = (ψ (t)

e (x, ue))e∈E (t),ue∈Ye
.

In the AMM model, our goal is to infer for each microlabel u j of each node j its max-marginal
(Wainwright et al. 2005), that is, the maximum score of a multilabel that is consistent with
y j = u j

ψ̃ j (x, u j) = max
{y∈Y:y j =u j }

∑

e

ψe(x, ye). (13)

One readily sees (13) as a variant of the inference problem (12), with similar solution tech-
niques. The maximization operation fixes the label of the node y j = u j and queries the
optimal configuration for the remaining part of output graph. In message-passing algorithms,
only slight modification is needed to make sure that only the messages consistent with the
microlabel restriction are considered. To obtain the vector *̃(x) = (ψ̃ j (x, u j)) j,u j the same
inference is repeated for each target-microlabel pair (j, u j), hence it has quadratic time
complexity in the number of edges in the output graph.

Given the max-marginals of the base models, the AMM ensemble is constructed as follows.
Let G = {G(1), · · · , G(T)} be a set of output graphs, and let {*̃(1)(x), · · · , *̃(T)(x)} be the
max-marginal vectors of the base classifiers trained on the output graphs. The ensemble
prediction for each target is obtained by averaging the max-marginals of the base models and
choosing the maximizing microlabel for the node:

F AMM
j (x) = argmax

u j ∈Y j

1
|T |

T∑

t=1

ψ̃
(t)
j,u j

(x),

and the predicted multilabel is composed from the predicted microlabels

F AMM(x) =
(

F AMM
j (x)

)

j∈V
.

An illustration of AMM ensemble scheme is shown in Fig. 1. Edge information on indi-
vidual base learner are not preserved during AMM ensemble, which is shown as dash line
in Fig. 1. In principle, AMM ensemble can give different predictions compared to MVE,
since the most frequent label may not be the ensemble prediction if it has lower average
max-marginal score.

3.3 Maximum-of-average-marginals aggregation (MAM)

The next model, the maximum-of-average-marginals (MAM) ensemble, first collects the
local compatibility scores *

(t)
E (x) from individual base learners, averages them and finally

performs inference on the global consensus graph with averaged edge potentials. The model
is defined as

123

137

Mach Learn

V1

V2 V3

V1

V2 V3

V1

V2 V3

V1

V2 V3

AMM

G(1) G(2) G(3)

ψ̃
(1)
1,u1

(x) ψ̃
(2)
1,u1

(x) ψ̃
(3)
1,u1

(x)
∑T

t=1 ψ̃
(t)
1,u1

(x)

Fig. 1 An example of AMM scheme, where three base models are learned on the output graph
G(1), G(2), G(3). Given an example x , each base model computes for node v1 local max-marginals ψ̃

(t)
1,u1

for all u1 ∈ {+,−}. The AMM collects local max-marginals
∑T

t=1 ψ̃
(t)
1,u1

(x), and outputs F1(x) = + if
∑T

t=1 ψ̃
(t)
1,+(x) ≥ ∑T

t=1 ψ̃
(t)
1,−(x), otherwise outputs F1(x) = −

V1

V2 V3

V1

V2 V3

V1

V2 V3

V1

V2 V3

MAM

e2 e2 e2 e2

e1 e1 e1 e1e3 e3 e3 e3
G(1) G(2) G(3) G

ψ
(1)
e2 (x,ue) ψ

(2)
e2 (x,ue) ψ

(3)
e2 (x,ue)

∑T
t=1 ψ

(t)
e2 (x,ue)

Fig. 2 An example of MAM scheme, where three base models are learned on the output graph
G(1), G(2), G(3). Given an example x , each base model computes for edge e2 local edge potentials ψ

(t)
e2 (x, ue)

for all ue = {−−,−+,+−, ++}. For graph G(3) where e2 /∈ E(3), we first impute corresponding marginal
dual variable of e2 on G(3)according to local consistency constraints. Similar computations are required for
edge e1 and e3. The finial prediction is through inference over averaged edge potentials on consensus graph G

F MAM(x) = argmax
y∈Y

∑

e∈E

1
T

T∑

t=1

ψ (t)
e (x, ye) = argmax

y∈Y

1
T

T∑

t=1

∑

e∈E

⟨w(t)
e ,ϕe(x, ye)⟩.

With the factorized dual representation, this ensemble scheme can be implemented simply
and efficiently in terms of marginal dual variables and the associated kernels, which saves
us from explicitly computing the local compatibility scores from each base learner. Using
Lemma (1), the above can be equivalently expressed as

F MAM(x) = argmax
y∈Y

1
T

T∑

t=1

∑

i,e,ue

µ(t)(i, e, ue) · He(i, ue; x, ye)

= argmax
y∈Y

∑

i,e,ue

µ̄(i, e, ue)He(i, ue; x, ye),

where we denote by µ̄(i, e, ue) = 1
T

∑T
t=1 µ(t)(i, e, ue) the marginal dual variable averaged

over the ensemble.
We note that µ(t) is originally defined on edge set E (t), µ(t) from different random output

graph are not mutually consistent. In practice, we first construct a consensus graph G =
(E, V) by pooling edge sets E (t), then complete µ(t) on E where missing components are
imputed via exploring local consistency conditions and solving constrained least square
problem. Thus, the ensemble prediction can be computed in marginal dual form without
explicit access to input features, and the only input needed from the different base models
are the values of the marginal dual variables. An example that illustrates the MAM ensemble
scheme is shown in Fig. 2.

123

138

Mach Learn

3.4 The MAM ensemble analysis

Here, we present theoretical analysis of the improvement of the MAM ensemble over the
mean of the base classifiers. The analysis follows the spirit of the single-label ensemble
analysis by Brown and Kuncheva (2010), generalizing it to the multilabel MAM ensemble.

Assume there is a collection of T individual base learners, indexed by t ∈ {1, · · · , T },
that output compatibility scores ψ

(t)
e (x, ue) for all t ∈ {1, . . . , T }, e ∈ E (t), and ue ∈ Ye.

For the purposes of this analysis, we express the compatibility scores in terms of the nodes
(microlabels) instead of the edges and their labels. We denote by

ψ j (x, y j) =
∑

e=(j, j ′),
e∈N (j)

1{y j =u j }
1
2
ψe(x, ue)

the sum of compatibility scores of the set of edges N (j) incident to node j with consistent
label ye = (y j , y j ′), y j = u j . Then, the compatibility score for the input and the multilabel
in (1) can be alternatively expressed as

ψ(x, y) =
∑

e∈E

ψe(x, ye) =
∑

j∈V

ψ j (x, y j).

The compatibility score from MAM ensemble can be similarly represented in terms of
the nodes by

ψ MAM(x, y) = 1
T

∑

t

ψ (t)(x, y) =
∑

e∈E

ψ̄e(x, ye) =
∑

j∈V

ψ̄ j (x, y j),

where we have denoted ψ̄ j (x, y j) = 1
T

∑
t ψ

(t)
j (x, y j) and ψ̄e(x, ye) = 1

T

∑
t ψ

(t)
e (x, ye).

Assume now the ground truth, the optimal compatibility score of an example and multilabel
pair (x, y), is given by ψ∗(x, y) = ∑

j∈V ψ∗
j (x, y j). We study the reconstruction error of

the compatibility score distribution, given by the squared distance of the estimated score
distributions from the ensemble and the ground truth. The reconstruction error of the MAM
ensemble can be expressed as

'R
MAM(x, y) =

(
ψ∗(x, y) − ψ MAM(x, y)

)2
,

and the average reconstruction error of the base learners can be expressed as

'R
I (x, y) = 1

T

∑

t

(
ψ∗(x, y) − ψ (t)(x, y)

)2
.

We denote by * j (x, y j) a random variable of the compatibility scores obtained by the
base learners and {ψ (1)

j (x, y j), · · · ,ψ
(T)
j (x, y j)} as a sample from its distribution. We have

the following result:

Theorem 1 The reconstruction error of compatibility score distribution given by MAM
ensemble 'R

MAM(x, y) is guaranteed to be no greater than the average reconstruction error
given by individual base learners 'R

I (x, y).
In addition, the gap can be estimated as

'R
I (x, y) − 'R

MAM(x, y) = V ar(
∑

j∈V

* j (x, y j)) ≥ 0.

123

139

Mach Learn

The variance can be further expanded as

V ar

⎛

⎝
∑

j∈V

* j (x, y j)

⎞

⎠ =
∑

j∈V

V ar(* j (x, y j))

︸ ︷︷ ︸
diversi t y

+
∑

p,q∈V,
p ̸=q

Cov(*p(x, yp), *q(x, yq))

︸ ︷︷ ︸
coherence

.

Proof By expanding and simplifying the squares we get

'R
I (x, y)−'R

MAM(x, y) = 1
T

∑

t

(
ψ∗(x, y) − ψ (t)(x, y)

)2
−

(
ψ∗(x, y) − ψ MAM(x, y)

)2

= 1
T

∑

t

⎛

⎝
∑

j∈V

ψ∗
j (x, y j) −

∑

j∈V

ψ
(t)
j (x, y j)

⎞

⎠
2

−

⎛

⎝
∑

j∈V

ψ∗
j (x, y j) −

∑

j∈V

1
T

∑

t

ψ
(t)
j (x, y j)

⎞

⎠
2

= 1
T

∑

t

⎛

⎝
∑

j∈V

ψ
(t)
j (x, y j)

⎞

⎠
2

−

⎛

⎝ 1
T

∑

t

∑

j∈V

ψ
(t)
j (x, y j)

⎞

⎠
2

= V ar(
∑

j∈V

* j (x, y j))

≥ 0.

The expression of variance can be further expanded as

V ar

⎛

⎝
∑

j∈V

* j (x, y j)

⎞

⎠ =
∑

p,q∈V

Cov(*p(x, yp), *q(x, yq))

=
∑

j∈V

V ar(* j (x, y j)) +
∑

p,q∈V,
p ̸=q

Cov(*p(x, yp), *q(x, yq)).

The Theorem 1 states that the reconstruction error from MAM ensemble is guaranteed to
be less than or equal to the average reconstruction error from the individuals. In particular,
the improvement can be further addressed by two terms, namely diversity and coherence. The
classifier diversity measures the variance of predictions from base learners independently on
each single labels. It has been previously studied in single-label classifier ensemble context
by Krogh and Vedelsby (1995). The diversity term prefers the variabilities of individuals that
are learned from different perspectives. It is a well known factor to improve the ensemble
performance. The coherence term, that is specific to the multilabel classifiers, indicates that
the more the microlabel predictions vary together, the greater advantage multilabel ensem-
ble gets over the base learners. This supports our intuitive understanding that microlabel
correlations are keys to successful multilabel learning.

123

140

Mach Learn

Table 1 Statistics of multilabel
datasets used in our experiments.
For NCI60 and Fingerprint
dataset where there is no explicit
feature representation, the rows
of kernel matrix is assumed as
feature vector

Dataset Statistics

Instances Labels Features Cardinality Density

Emotions 593 6 72 1.87 0.31

Yeast 2417 14 103 4.24 0.30

Scene 2407 6 294 1.07 0.18

Enron 1702 53 1001 3.36 0.06

Cal500 502 174 68 26.04 0.15

Fingerprint 490 286 490 49.10 0.17

NCI60 4547 60 4547 11.05 0.18

Medical 978 45 1449 1.14 0.03

Circle10 1000 10 3 8.54 0.85

Circle50 1000 50 3 35.63 0.71

4 Experiments

4.1 Datasets

We experiment on a collection of ten multilabel datasets from different domains, includ-
ing chemical, biological, and text classification problems. The NCI60 dataset contains 4547
drug candidates with their cancer inhibition potentials in 60 cell line targets. The Finger-
print dataset links 490 molecular mass spectra together to 286 molecular substructures used
as prediction targets. Four text classification datasets1 are also used in our experiment. In
addition, two artificial Circle dataset are generated according to Bian et al. (2012) with dif-
ferent amount of labels. An overview of the datasets is shown in Table 1, where cardinality
is defined as the average number of positive microlabels for each example

cardinali t y = 1
m

m∑

i=1

|{ j |yi j = 1}|,

and density is the average number of labels for each example divided by the size of label
space defined as

densi t y = cardinali t y
k

.

4.2 Kernels

We use kernel methods to describe the similarity between complex data objects in some
experiment datasets. We calculate linear kernel on datasets where instants are described by
feature vectors. For text classification datasets, we first compute weighted features with term
frequency inverse document frequency model (TF-IDF) (c.f. Rajaraman and Ullman 2011).
TF-IDF weights reflect how important a word is to a document in a collection of corpus
defined as the ratio between the word frequency in a document and the word frequency in
the a collection of corpus. We compute linear kernel of the weighted features.

1 Available at http://mulan.sourceforge.net/datasets.html.

123

141

Mach Learn

As the input kernel of the Fingerprint dataset where we have for each instant a mass
spectrometry (MS) data, we calculated quadratic kernel over the ’bag’ of mass/charge peak
intensities. As the input kernel of the cancer dataset where each object is described as a
molecular graph, we used the hash fingerprint Tanimoto kernel (Ralaivola et al. 2005) that
enumerates all linear fragments up to length n in a molecule x . A hash function assigns each
fragment a hash value that determines its position in descriptor space φ(x). Given two binary
bit vectors φ(x) and φ(y) as descriptors, Tanimoto kernel is defined as

K (x, y) = |I (φ(x)) ∩ I (φ(y))|
|I (φ(x)) ∪ I (φ(y))| ,

where I (φ(x)) denotes the set of indices of 1-bits in φ(x).
In practice, some learning algorithms required kernelized input while others need feature

representation of input data. Due to the intractability of using explicit features for complex
data and in order to achieve a fair comparison, we take precomputed kernel matrix as rows
of feature vectors for the learning algorithms that required input of feature vectors.

4.3 Obtaining random output graphs

The structure of the output graph is significant both in term of efficiency of learning and
inference, and the predictive performance. We consider the following two approaches to
generate random output graphs.

– In the random pair approach, one takes each vertex in turn, randomly draw another vertex
and couples the two with an edge.

– In the random spanning tree approach, one first draws a random k × k weight matrix W
with non-negative edge weights and then extracts a maximum weight spanning tree out
of the matrix, using wi j as the weight for edge connecting labels i and j .

The random pair approach generally produces a set of disconnected graphs, which may
not let the base learner to fully benefit from complex multilabel dependencies. On the other
hand, the learning of the base classifier is potentially made more efficient due to the graph
simplicity. The random spanning tree approach connects all targets so that complex multilabel
dependencies can be learned. Also, the tree structure facilitates efficient inference.

4.4 Compared classification methods

For comparison, we choose the following established classification methods form different
perspectives towards multilabel classification, accounting for single-label and multilabel, as
well as ensemble and standalone methods:

– MMCRF (Rousu et al. 2007) is used both as a standalone multilabel classifier and the
base classifier in the ensembles. Individual MMCRF models are trained with two kinds
of output graphs, random tree and random pair graph.

– SVM is a discriminative learning method that has become very popular over recent
years, described in several textbooks (Cristianini and Shawe-Taylor 2000; Schölkopf
and Smola 2001). For multilabel classification task, we split the multilabel task into a
collection of single-label classification problems. Then we apply SVM on each single
problem and compute the predictions. The drawback of SVM on multilabel classification
task is the computation becomes infeasible as the number of the labels increases. Beside,
this approach assumes independency between labels, it does not get any benefit from
dependencies defined by complex structures of the label space. SVM serves as the single-
label non-ensemble baseline learner.

123

142

Mach Learn

– MTL is a multi-task feature learning methods developed in Argyriou et al. (2008), which
is used as multilabel baseline learner. The underlying assumption of MTL is that the task
specific functions are related such that they share a small subset of features.

– Adaboost is an ensemble method that has been extensively studied both empirically and
theoretically since it was developed in Freund and Schapire (1997). The idea behind
the model is that a distribution is assigned over data points. In each iteration, a weak
hypothesis is calculated based on current distribution, and the distribution is updated
according to the performance of the weak hypothesis. As a results, the difficult examples
will receive more weight (probability mass) after the update, and will be emphasized by
the base learner in the next round.
In addition, Adaboost for multilabel classification using Hamming loss (AdaboostMH),
is designed for incorporating multilabel learner into Adaboost framework (Schapire and
Singer 1998). The only difference is the distribution is assigned to each example and
microlabel pair and updated accordingly. In our study, we use real-valued decision tree
with at most 100 leaves as base learner of AdaboostMH, and generate an ensemble with
180 weak hypothesises.

– Bagging (bootstrapping aggregation) was introduced in Breiman (1996) as an ensemble
method of combining multiple weak leaners. It creates individual weak hypothesises for
its ensemble by calling base learner repeatedly on the random subsets of the training set.
The training set for the weak learner in each round is generated by randomly sampling
with replacement. As a result, many original training examples may be repeated many
times while others may be left out. In our experiment, we randomly select 40% of the
data as input to SVM to compute a weak hypothesis, and repeat the process until we
collect an ensemble of 180 weak hypotheses.

4.5 Parameter selection and evaluation measures

We first sample 10 % data uniform at random from each experimental dataset for the purpose
of parameter selection. SVM, MMCRF and MAM ensemble each have a margin softness
parameter C , which potentially needs to be tuned. We tested the value of parameter C from
a set {0.01, 0.1, 0.5, 1, 5, 10} based on tuning data, then keep the best ones for the following
validation step. We also perform extensive selection on γ parameters in MTL model in the
same range as margin softness parameters.

We observe that most of the multilabel datasets are highly biased with regards to multilabel
density. Therefore, we use the following stratified 5-fold cross validation scheme in the
experiments reported, such that we group examples in equivalence classes based on the
number of positive labels they have. Each equivalence class is then randomly split into five
local folds, after that the local folds are merged to create five global folds. The proposed
procedure ensures that also the smaller classes have representations in all folds.

To quantitatively evaluate the performance of different classifiers, we adopt several per-
formance measures. We report multilabel accuracy which counts the proportion of multilabel
predictions that have all of the microlabels being correct, microlabel accuracy as the pro-
portion of microlabel being correct, and microlabel F1 score that is the harmonic mean of
microlabel precision and recall F1 = 2 · Pre×Rec

Pre+Rce .

4.6 Comparison of different ensemble approaches

We evaluate our proposed ensemble approaches by learning ensemble with 180 base learners.
The learning curves as the size of ensemble on varying datasets are shown in Figs. 3, 4, and

123

143

Mach Learn

0
50

10
0

15
0

77.578.078.579.079.580.0

E
m

ot
io

ns

E
ns

em
bl

e
S

iz
e

Microlabel Accuracy %

0
50

10
0

15
0

79.279.479.679.880.080.2

Y
ea

st

E
ns

em
bl

e
S

iz
e

Microlabel Accuracy %

0
50

10
0

15
0

93.293.493.693.8

E
nr

on

E
ns

em
bl

e
S

iz
e

Microlabel Accuracy %

0
50

10
0

15
0

82.082.583.083.584.0

S
ce

ne

E
ns

em
bl

e
S

iz
e

Microlabel Accuracy %

0
50

10
0

15
0

84.885.085.285.485.685.886.0

N
C

I6
0

E
ns

em
bl

e
S

iz
e

Microlabel Accuracy %

0
50

10
0

15
0

89.6889.7289.7689.80

Fi
ng

er
pr

in
t

E
ns

em
bl

e
S

iz
e

Microlabel Accuracy %

0
50

10
0

15
0

97.8097.8597.9097.95

M
ed

ic
al

E
ns

em
bl

e
S

iz
e

Microlabel Accuracy %

0
50

10
0

15
0

96.696.897.097.297.497.697.8

C
ir

cl
e1

0

E
ns

em
bl

e
S

iz
e

Microlabel Accuracy %

0
50

10
0

15
0

96.096.597.097.598.0

C
ir

cl
e5

0

E
ns

em
bl

e
S

iz
e

Microlabel Accuracy %

0
50

10
0

15
0

84.585.085.586.0

C
al

50
0

E
ns

em
bl

e
S

iz
e

Microlabel Accuracy %

0
50

10
0

15
0

88.088.488.889.2

A
ve

ra
ge

 P
er

fo
rm

an
ce

E
ns

em
bl

e
S

iz
e

Microlabel Accuracy %

R
an

do
m

 tr
ee

M
V

E
A

M
M

M
A

M
M

M
C

R
F

F
ig

.3
E

ns
em

bl
e

le
ar

ni
ng

cu
rv

e
(m

ic
ro

la
be

la
cc

ur
ac

y)
pl

ot
te

d
as

th
e

si
ze

of
en

se
m

bl
e.

A
ve

ra
ge

pe
rf

or
m

an
ce

ov
er

da
ta

se
ts

is
sh

ow
n

as
th

e
la

st
pl

ot

123

144

Mach Learn

0
50

10
0

15
0

242526272829

E
m

ot
io

ns

E
ns

em
bl

e
S

iz
e

Multilabel Accuracy %

0
50

10
0

15
0

1213141516

Ye
as

t

E
ns

em
bl

e
S

iz
e

Multilabel Accuracy %

0
50

10
0

15
0

6.57.07.58.0

E
nr

on

E
ns

em
bl

e
S

iz
e

Multilabel Accuracy %

0
50

10
0

15
0

1416182022242628

S
ce

ne

E
ns

em
bl

e
S

iz
e

Multilabel Accuracy %

0
50

10
0

15
0

3032343638

N
C

I6
0

E
ns

em
bl

e
S

iz
e

Multilabel Accuracy %

0
50

10
0

15
0

1.01.11.21.31.41.51.6

Fi
ng

er
pr

in
t

E
ns

em
bl

e
S

iz
e

Multilabel Accuracy %

0
50

10
0

15
0

35.536.036.537.037.538.0

M
ed

ic
al

E
ns

em
bl

e
S

iz
e

Multilabel Accuracy %

0
50

10
0

15
0

7476788082

C
ir

cl
e1

0

E
ns

em
bl

e
S

iz
e

Multilabel Accuracy %

0
50

10
0

15
0

30354045505560

C
ir

cl
e5

0

E
ns

em
bl

e
S

iz
e

Multilabel Accuracy %

0
50

10
0

15
0

−1.0−0.50.00.51.0

C
al

50
0

E
ns

em
bl

e
S

iz
e

Multilabel Accuracy %

0
50

10
0

15
0

242526272829

A
ve

ra
ge

 P
er

fo
rm

an
ce

E
ns

em
bl

e
S

iz
e

Multilabel Accuracy %

R
an

do
m

 tr
ee

M
V

E
A

M
M

M
A

M
M

M
C

R
F

F
ig

.4
E

ns
em

bl
e

le
ar

ni
ng

cu
rv

e
(m

ul
til

ab
el

ac
cu

ra
cy

)p
lo

tte
d

as
th

e
si

ze
of

en
se

m
bl

e.
A

ve
ra

ge
pe

rf
or

m
an

ce
ov

er
da

ta
se

ts
is

sh
ow

n
as

th
e

la
st

pl
ot

123

145

Mach Learn

5 for microlabel accuracy, multilabel accuracy, and microlabel F1 score, respectively. The
base learners are trained with random tree as output graph structure.

There is a clear trend of improving microlabel accuracy for proposed ensemble approaches
as more individual base models are combined. On most datasets and algorithms the ensemble
accuracy increases fast and levels off rather quickly, the most obvious exception being the
Circle10 dataset where improvement can be still seen beyond ensemble size 180. In addition,
all three proposed ensemble learners (MVE, AMM, MAM) outperform their base learner
MMCRF (horizontal dash lines) with consistent and noticeable margins, which is best seen
from the learning curves of the average performance.

Similar patterns of learning curves are also observed in microlabel F1 (Fig. 4) and multil-
abel accuracy (Fig. 5), with a few exceptions. The Fingerprint and Cal500 datasets prove to
be difficult to learn in that very few multilabels are perfectly predicted, this is not surprising
as these datasets have a large number of microlabels. The datasets also have the largest pro-
portion of positive microlabels, which is reflected in the low F1 score. Scene dataset is the
only exception where increasing the number of base learners seems to hurt the ensemble per-
formance in microlabel F1 and multilabel accuracy. In fact Scene is practically a single-label
multiclass dataset, having very few examples with more than one positive microlabel. This
contradicts the implicit assumption of graph based learners that there are rich dependency
structures between different labels that could be revealed by the different random graphs.
Among the extreme label sparsity, the ensemble learners appear to predict more negative
labels for each example which leads to decreased performances in F1 and multilabel accu-
racy space. We also observe large fluctuations in the initial part of MVE learning curves of
Fingerprint and Cal500 datasets in F1 score space, implying MVE is not as stable as AMM
and MAM approaches.

In particular, the performance of MAM ensemble surpasses MVE and AMM in eight out of
ten datasets, the exceptions being Scene and Medical, making it the best among all proposed
ensemble approaches. Consequently, we choose MAM for the further studies described in
the following sections.

4.7 Effect of the structure of output graph

To find out which is the more beneficial output graph structure, we carry out empirical studies
on MAM ensemble with random tree and random pair graph as output graph structure. Table 2
illustrates the performance of two output structures in terms of microlabel accuracy, multilabel
accuracy and microlabel F1 score. The results show that random tree and random pair graph
are competitive output graph structures in terms of microlabel accuracy and F1 score, with
random tree achieves slightly better results. In addition, we observe noticeable difference
in multilabel accuracy, where random tree behaves better than random pair graph. One way
to understand this is to realize that random tree is able to connect all output labels so that
learning and inference can work over the the whole label space. On the other hand, random
pair approach divides the label space into isolated pairs where there is no cross-talk between
pairs.

We continue by studying learning curves of average performance of MAM ensemble on
two different output structures. Fig. 6 illustrates that MAM ensemble with random tree as
output structure consistently outperforms random pair in accuracy space. The performance
differences in F1 space are not clear where we see the random pair approach fluctuating
around random tree curve. Base on the experiments, we deem random tree the better of the
two output graph structures.

123

146

Mach Learn

0
50

10
0

15
0

63.564.064.565.065.566.0

E
m

ot
io

ns

E
ns

em
bl

e
S

iz
e

Microlabel F1 %

0
50

10
0

15
0

62.563.063.564.064.5

Ye
as

t

E
ns

em
bl

e
S

iz
e

Microlabel F1 %

0
50

10
0

15
0

49.550.050.551.0

E
nr

on

E
ns

em
bl

e
S

iz
e

Microlabel F1 %

0
50

10
0

15
0

2530354045

S
ce

ne

E
ns

em
bl

e
S

iz
e

Microlabel F1 %

0
50

10
0

15
0

56.056.557.0

N
C

I6
0

E
ns

em
bl

e
S

iz
e

Microlabel F1 %

0
50

10
0

15
0

66.766.866.967.067.1

Fi
ng

er
pr

in
t

E
ns

em
bl

e
S

iz
e

Microlabel F1 %

0
50

10
0

15
0

50.551.051.552.052.5

M
ed

ic
al

E
ns

em
bl

e
S

iz
e

Microlabel F1 %

0
50

10
0

15
0

98.098.298.498.6

C
ir

cl
e1

0

E
ns

em
bl

e
S

iz
e

Microlabel F1 %

0
50

10
0

15
0

97.598.098.5

C
ir

cl
e5

0

E
ns

em
bl

e
S

iz
e

Microlabel F1 %

0
50

10
0

15
0

353637383940

C
al

50
0

E
ns

em
bl

e
S

iz
e

Microlabel F1 %

0
50

10
0

15
0

61.061.562.062.563.063.5

A
ve

ra
ge

 P
er

fo
rm

an
ce

E
ns

em
bl

e
S

iz
e

Microlabel F1 %

R
an

do
m

 tr
ee

M
V

E
A

M
M

M
A

M
M

M
C

R
F

F
ig

.5
E

ns
em

bl
e

le
ar

ni
ng

cu
rv

e
(m

ic
ro

la
be

l
F 1

sc
or

e)
pl

ot
te

d
as

th
e

si
ze

of
en

se
m

bl
e.

A
ve

ra
ge

pe
rf

or
m

an
ce

ov
er

da
ta

se
ts

is
sh

ow
n

as
th

e
la

st
pl

ot

123

147

Mach Learn

Table 2 Prediction performance of MAM ensemble with random tree and random pair graph in terms of
microlabel accuracy, multilabel accuracy, and microlabel F1 score

Dataset Microlabel Acc % Multilabel Acc % Microlabel F1 %

Pair Tree Pair Tree Pair Tree

Emotions 80.4 ± 2.4 80.3 ± 1.4 27.8 ± 3.4 29.2 ± 4.2 65.7 ± 4.3 66.3 ± 2.3

Yeast 80.2 ± 0.7 80.3 ± 0.5 15.9 ± 1.1 16.7 ± 0.4 63.5 ± 1.4 63.7 ± 1.1

Scene 84.0 ± 0.5 84.0 ± 0.1 16.4 ± 1.9 15.0 ± 0.9 28.9 ± 2.5 27.4 ± 2.4

Enron 94.1 ± 0.1 94.0 ± 0.2 7.7 ± 1.0 8.1 ± 2.3 51.1 ± 1.9 51.1 ± 1.3

Cal500 86.2 ± 0.1 86.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 35.2 ± 0.8 35.6 ± 0.4

Fingerprint 89.8 ± 0.5 89.8 ± 0.3 1.2 ± 0.6 1.4 ± 0.6 66.9 ± 2.5 67.0 ± 1.9

NCI60 85.9 ± 0.8 86.0 ± 0.9 37.9 ± 1.2 38.9 ± 1.2 57.1 ± 3.8 57.1 ± 3.2

Medical 97.9 ± 0.2 97.9 ± 0.1 37.6 ± 4.3 37.6 ± 2.5 52.2 ± 4.6 52.2 ± 3.2

Circle10 97.5 ± 0.4 97.8 ± 0.4 79.0 ± 2.0 83.2 ± 3.5 98.5 ± 0.2 98.7 ± 0.3

Circle50 97.6 ± 0.3 98.4 ± 0.3 47.6 ± 5.9 59.4 ± 5.6 98.3 ± 0.2 98.9 ± 0.2

4.8 Multilabel prediction performance

In the following experiments we examine whether our proposed ensemble model (MAM)
can boost the prediction performance in multilabel classification problems. Therefore, we
compare our model with other advanced methods including both single-label and multilabel
classifiers, both standalone and ensemble frameworks. Table 3 shows the performance of
difference methods in terms of microlabel accuracy, multilabel accuracy and microlabel F1
score, where the best performance in each dataset is emphasised in boldface and the second
best is shown in italics.

We observe from Table 3 that MAM receives in general higher evaluation scores than the
competitors. In particular, it achieves nine times as top two performing methods in microlabel
accuracy, eight times in multilabel accuracy, and eight times in microlabel F1 score. The only
datasets where MAM is consistently outside the top two is the Scene dataset. As discussed
above, the dataset is practically a single-label multiclass dataset. On this dataset the single
target classifiers SVM and Bagging outperform all compared multilabel classifiers.

In these experiments, MMCRF also performs robustly, being in top two on half of the
datasets with respect to microlabel and multilabel accuracy. However, it quite consistently
trails to MAM in all three evaluation scores, the Scene dataset again being the exception. We
also notice that the standalone single target classifier SVM is competitive against most multi-
label methods, performs better than Bagging, AdaBoost and MTL with respect to microlabel
and microlabel accuracy.

4.9 Statistical evaluation

To statistically evaluate the performance of different methods over multiple datasets, we
first apply paired t-test on the values shown in Table 3. In particular, we compute a test
statistic (with a p-value) for each ordered pair of methods to assess whether the average
performance of the first is better than the second in a statistically significant manner. The
result, shown in Table 4, indicates that, in terms of microlabel accuracy, MAM significantly
outperforms MMCRF, AdaBoost and Bagging and almost significantly outperforms MTL,
while the performance is not significantly different from SVM. In multilabel accuracy, MAM

123

148

Mach Learn

0
50

10
0

15
0

88.488.688.889.089.289.4

A
ve

ra
ge

 P
er

fo
rm

an
ce

E
ns

em
bl

e
S

iz
e

Microlabel Accuracy %

M
A

M
 T

re
e

M
A

M
 P

ai
r

0
50

10
0

15
0

242526272829

A
ve

ra
ge

 P
er

fo
rm

an
ce

E
ns

em
bl

e
S

iz
e

Multilabel Accuracy %

M
A

M
 T

re
e

M
A

M
 P

ai
r

0
50

10
0

15
0

61.261.461.661.862.0

A
ve

ra
ge

 P
er

fo
rm

an
ce

E
ns

em
bl

e
S

iz
e

Microlabel F1 %

M
A

M
 T

re
e

M
A

M
 P

ai
r

F
ig

.6
Pe

rf
or

m
an

ce
of

M
A

M
en

se
m

bl
e

w
ith

ra
nd

om
tr

ee
an

d
ra

nd
om

pa
ir

as
ou

tp
ut

gr
ap

h.
Pe

rf
or

m
an

ce
is

av
er

ag
ed

ov
er

10
da

ta
se

ts
an

d
pl

ot
te

d
as

th
e

si
ze

of
en

se
m

bl
e

123

149

Mach Learn

Table 3 Prediction performance of methods in terms of microlabel accuracy (top), microlabel F1 score
(middle), and multilabel accuracy (bottom). ‘–’ represents no positive predictions. ‘Avg. Rank’ is the average
rank of the performance over datasets

Dataset SVM Bagging AdaBoost MTL MMCRF MAM

Microlabel accuracy %

Emotions 77.3±1.9 74.1±1.8 76.8±1.6 79.8±1.8 79.0±0.9 80.3±1.4

Yeast 80.0±0.7 78.4±0.9 74.8±0.7 79.3±0.5 79.5±0.6 80.3±0.5

Scene 90.2±0.3 87.8±0.5 84.3±0.9 88.4±0.5 83.4±0.3 84.0±0.1

Enron 93.6±0.2 93.7±0.1 86.2±0.3 93.5±0.2 93.7±0.2 94.0±0.2

Cal500 86.3±0.3 86.0±0.2 74.9±0.7 86.2±0.3 85.3±0.3 86.2±0.2

Fingerprint 89.7±0.3 85.0±0.4 84.1±0.7 82.7±0.6 89.8±0.6 89.8±0.3

NCI60 84.7±0.7 79.5±0.4 79.3±0.8 84.0±0.6 85.5±1.3 86.0±0.9

Medical 97.4±0.0 97.4±0.1 91.4±0.3 97.4±0.1 97.9±0.1 97.9±0.1

Circle10 94.8±0.9 92.9±0.7 98.0±0.3 93.7±0.7 97.1±0.3 97.8±0.4

Circle50 94.1±0.5 91.7±0.5 96.6±0.3 93.8±0.5 96.7±0.3 98.4±0.3

Avg. Rank 3.0 4.5a 4.8a 4.0a 3.0 1.8

Microlabel F1 score %

Emotions 57.1±4.4 61.5±3.1 66.2±2.9 64.6±3.0 64.3±1.2 66.3±2.3

Yeast 62.6±1.1 65.5±1.4 63.5±1.2 60.2±1.2 62.6±1.2 63.7±1.1

Scene 68.3±1.4 69.9±1.4 64.8±2.1 61.5±2.1 34.0±2.7 27.4±2.4

Enron 29.4±1.5 38.8±1.0 42.3±1.1 – 50.0±1.0 51.1±1.3

Cal500 31.4±0.6 40.1±0.8 44.3±1.5 28.6±1.3 35.5±0.4 35.6±0.4

Fingerprint 66.3±0.7 64.4±0.5 62.8±1.2 0.4±0.3 66.9±0.8 67.0±1.9

NCI60 45.9±3.6 53.9±1.2 32.9±2.7 32.9±3.4 56.1±3.7 57.1±3.2

Medical – – 33.7±1.2 – 51.6±2.7 52.2±3.2

Circle10 97.0±0.6 96.0±0.4 98.8±0.2 96.4±0.4 98.3±0.2 98.7±0.3

Circle50 96.0±0.3 94.5±0.3 97.6±0.2 95.7±0.3 97.7±0.3 98.9±0.2

Avg. Rank 4.2a 3.8b 3.0 5.2a 3.0 1.9

Multilabel accuracy %

Emotions 21.2±3.4 20.9±2.6 23.8±2.3 25.5±3.5 25.8±3.1 29.2±4.2

Yeast 14.0±2.8 13.1±1.9 7.5±1.3 11.3±1.0 13.4±1.5 16.7±0.4

Scene 52.8±1.4 46.5±1.9 34.7±2.2 44.8±3.6 19.3±1.2 15.0±0.9

Enron 0.4±0.3 0.1±0.2 0.0±0.0 0.4±0.4 7.1±2.8 8.1±2.3

Cal500 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Fingerprint 1.0±0.7 0.0±0.0 0.0±0.0 0.0±0.0 1.2±0.5 1.4±0.6

NCI60 43.1±1.3 21.1±0.9 2.5±0.6 47.0±2.0 34.1±1.4 38.9±1.2

Medical 8.2±2.1 8.2±2.7 5.1±2.0 8.2±2.3 36.5±3.3 37.6±2.5

Circle10 69.1±3.8 64.8±3.3 86.0±2.7 66.8±3.4 76.4±2.1 83.2±3.5

Circle50 29.7±2.0 21.7±3.9 28.9±3.4 27.7±3.3 34.6±4.5 59.4±5.5

Avg. Rank 3.1 4.7a 4.5a 3.9b 2.9 2.0

The average rank is marked with a (resp. b) if the algorithm performs significantly different at p-value = 0.05
(resp. at p-value = 0.1) from the top performing one according to two-tailed Bonferroni–Dunn test

123

150

Mach Learn

Table 4 Paired t-test to assess whether the method from group A outperforms the one from group B in a
significant manner. By ‘†, ∗, ‡’ we denote the performance in microlabel accuracy, microlabel F1 score, and
multilabel accuracy, respectively

Group A Group B

SVM Bagging AdaBoost MTL MMCRF MAM

SVM − ††, ‡ †† ∗ − −
Bagging ∗∗ − − ∗∗ − −
Adaboost − − − ∗∗ − −
MTL − † †† − − −
MMCRF − †† †† ∗∗ − −
MAM − ††, ‡ ††, ‡ †, ∗∗ ††, ‡ −

By double marks (e.g. ‘††’) we denote p-value = 0.05, and by single mark (e.g. ‘†’) we denote p-value = 0.1.
By ‘−’ we denote not significant given above p-values

outperforms Bagging, Adaboost and MMCRF in almost significant manner. SVM, MTL and
MMCRF perform similarly to each other, and are better than Bagging and Adaboost with
respect to microlabel accuracy. In addition, in microlabel F1 score, we notice that all methods
are competitive against MTL, and SVM performs better than Bagging.

As suggested by Demšar (2006), several critical assumptions might be violated when
performing paired t-test to compare classifiers over multiple datasets. Similarly, other com-
monly used statistical tests might also be ill-posed in this scope (e.g. sign test, Wilcoxon
signed-ranks test, ANOVA with post-hoc Tukey test). We therefore follow the test procedure
proposed in Demšar (2006). First, we compute the rank of each model based on the perfor-
mance on different datasets, where the best performing algorithm getting the rank of one. In
case of ties, averaged ranks are then assigned. Then we use Friedman test (Friedman 1937)
which compares the average rank of each algorithm, and under null hypothesis, states that
all algorithms are equivalent with equal average ranks. P-values calculated from Friedman
test for microlabel accuracy, microlabel F1 score, and multilabel accuracy are 0.001, 0.002
and 0.005, respectively. As a result, we reject the null-hypothesis and proceed with post-hoc
two-tailed Bonferroni-Dunn test (Dunn 1961), where all other methods are compared against
the top performing control (MAM). We compute the critical difference C D = 2.2 at p-value
= 0.05, and C D = 1.9 at p-value = 0.1 (see details in supplementary material). The perfor-
mance of an algorithm is significantly different from the control if the corresponding average
ranks differ by at least C D. The corresponding rank is marked with ‘b’ (at p-value = 0.1)
or ‘a’ (at p-value = 0.05) in Table 3. We observe from the results that in microlabel accu-
racy and multilabel accuracy, the performance differences of SVM and MMCRF to MAM
fail to be statistically significant. On the other hand, Bagging, Adaboost and MTL perform
significantly worse than MAM in terms of microlabel accuracy and multilabel accuracy. In
addition, with respect to microlabel F1 score, the performances of MMCRF and Adaboost
are not significantly different from MAM, while SVM, Bagging and MTL perform worse
than MAM in a significant manner.

Overall, the results indicate that ensemble by MAM is a robust and competitive alternative
for multilabel classification.

4.10 Effect of diversity and coherence

To explain the performance of MAM as well as to empirically validate the diversity and
coherence arguments stated in Theorem 1, we conduct the following experiment.

123

151

Mach Learn

E
m

ot
io

ns

C
oh

er
en

ce

Diversity

1
3

5
7

9
11

123457
Ye

as
t

C
oh

er
en

ce

Diversity

4
6

7
9

10
12

67891011

E
nr

on

C
oh

er
en

ce

Diversity

7
20

34
47

60
74

3711162024

S
ce

ne

C
oh

er
en

ce

Diversity

1
6

12
17

23
28

13681113

N
C

I6
0

C
oh

er
en

ce

Diversity

21
3

76
0

13
06

18
53

24
00

29
46

82254425596767939

Fi
ng

er
pr

in
t

C
oh

er
en

ce

Diversity

1
10

3
20

6
30

8
41

1
51

3

1611172227

M
ed

ic
al

C
oh

er
en

ce

Diversity

1
4

8
12

15
19

1246810

C
ir

cl
e1

0

C
oh

er
en

ce

Diversity

2
30

58
86

11
3

14
1

33974110146181

C
ir

cl
e5

0

C
oh

er
en

ce

Diversity

21
8

71
6

12
15

17
13

22
12

27
10

88234380525671817

C
al

50
0

C
oh

er
en

ce

Diversity

11
26

13
48

15
70

17
92

20
14

22
36

110121132143154165

Performance
LowHigh

F
ig

.7
Pe

rf
or

m
an

ce
of

M
A

M
en

se
m

bl
e

pl
ot

te
d

in
di

ve
rs

ity
an

d
co

he
re

nc
e

sp
ac

e.
C

ol
or

of
th

e
bl

oc
ks

de
pi

ct
s

av
er

ag
e

pe
rf

or
m

an
ce

in
te

rm
of

m
ic

ro
la

be
la

cc
ur

ac
y

co
m

pu
te

d
fr

om
th

e
da

ta
po

in
ts

in
th

e
bl

oc
k.

W
hi

te
ar

ea
m

ea
ns

th
er

e
is

no
ex

am
pl

es
w

ith
co

rr
es

po
nd

in
g

di
ve

rs
ity

an
d

co
he

re
nc

e.
C

ol
or

s
ar

e
no

rm
al

iz
ed

fo
r

da
ta

se
ts

so
th

at
w

or
st

an
d

be
st

pe
rf

or
m

an
ce

s
ar

e
sh

ow
n

as
lig

ht
bl

ue
an

d
re

d

123

152

Mach Learn

We train a MAM ensemble model for each dataset consist of 30 base learners with a
random spanning tree as output graph structure. For each example-label pair (xi , yi) and
the corresponding set of microlabels yi = {yi,1, · · · , yi,l}, we then calculate from each base
learner t a set of node compatibility scores {ψ t (xi , yi,1), · · · ,ψ t (xi , yi,l)}. Next, the node
compatibility scores from different base learners are pooled together to get * j (xi , yi, j) =
{ψ1(xi , yi, j), · · · ,ψ30(xi , yi, j)} for all j ∈ {1, · · · , l}. Diversity and coherence of pair
(xi , yi) can be calculated from {* j (xi , yi, j)}l

j=1 according to

Diversi t y =
∑

j∈{1···l}
V ar(* j (xi , yi j)),

Coherence =
∑

p,q∈{1···l},
p ̸=q

Cov(*p(xi , yip), *q(xi , yiq)),

which locates pair (xi , yi) in the diversity-coherence space. We also compute the microlabel
accuracy from the microlabels in yi based on the prediction from MAM ensemble. The
accuracy of different diversity-coherence region in the space is computed as the average
microlabel accuracy of examples in that region. The results are shown in Fig. 7.

We observe from the results a pattern of increasing prediction performance from lower
left corner to upper right corner. In particular, microlabel accuracy are lower for examples
with both low diversity and coherence computed based on current set of base learners, shown
as the light blue blocks in lower left corner. On the other hand, we achieve higher prediction
accuracy on examples with high diversity and coherence, which are shown as red blocks in
the upper right corner. In addition, fixing one factor while increasing the other usually leads
to improved performance.

The observations demonstrates both diversity and coherence have positive effects on the
performance of MAM ensemble. They reflect different aspects of the ensemble. To improve
the quality of the prediction, one should aim to increase either the diversity of the base learner
on a single microlabel or the coherence among microlabel pairs.

5 Conclusions

In this paper we have put forward new methods for multilabel classification, relying on
ensemble learning on random output graphs. In our experiments, models thus created have
favourable predictive performances on a heterogeneous collection of multilabel datasets,
compared to several established methods. The theoretical analysis of the MAM ensemble
highlights the covariance of the compatibility scores between the inputs and microlabels
learned by the base learners as the quantity explaining the advantage of the ensemble pre-
diction over the base learners.

We note in passing that it is straightforward to generalize the theoretical analysis to any
multilabel classifiers that give scores to microlabels; there is no dependency on random graph
classifiers in the analysis.

The empirical evaluation supports the theoretical analysis, explaining the performance of
the proposed ensemble models. Our results indicate that structured output prediction methods
can be successfully applied to problems where no prior known output structure exists, and
thus widen the applicability of the structured output prediction.

123

153

Mach Learn

Acknowledgments The work was financially supported by Helsinki Doctoral Programme in Computer Sci-
ence (Hecse), Academy of Finland grant 118653 (ALGODAN), IST Programme of the European Community
under the PASCAL2 Network of Excellence, ICT-2007-216886. This publication only reflects the authors’
views.

References

Argyriou, A., Evgeniou, T., & Pontil, M. (2008). Convex multi-task feature learning. Machine Learning, 73(3),
243–272.

Bian, W., Xie, B., & Tao, D. (2012). Corrlog: Correlated logistic models for joint prediction of multiple
labels. In: Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics
(AISTATS-12), vol. 22, pp. 109–117.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123–140.
Brown, G., & Kuncheva, LI. (2010). Good and bad diversity in majority vote ensembles. In: Multiple classifier

systems (pp. 124–133). Berlin: Springer.
Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernel-based

learning methods (1st ed.). Cambridge: Cambridge University Press.
Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of Machine

Learning Research, 7, 1–30.
Dunn, O. J. (1961). Multiple comparisons among means. Journal of the American Statistical Association,

56(293), 52–64.
Esuli, A., Fagni, T., & Sebastiani, F. (2008). Boosting multi-label hierarchical text categorization. Information

Retrieval, 11(4), 287–313.
Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application

to boosting. Journal of Computer and System Sciences, 55(1), 119–139.
Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance.

Journal of the American Statistical Association, 32(200), 675–701.
Krogh, A., & Vedelsby, J. (1995). Neural network ensembles, cross validation, and active learning. In: Advances

in neural information processing systems (pp. 231–238). Cambridge, MA: MIT Press.
Rajaraman, A., & Ullman, J. (2011). Mining of massive datasets. Cambridge: Cambridge University Press.
Ralaivola, L., Swamidass, S., Saigo, H., & Baldi, P. (2005). Graph kernels for chemical informatics. Neural

Networks, 18, 1093–1110.
Rousu, J., Saunders, C., Szedmak, S., & Shawe-Taylor, J. (2006). Kernel-based learning of hierarchical mul-

tilabel classification models. The Journal of Machine Learning Research, 7, 1601–1626.
Rousu, J., Saunders, C., Szedmak, S., & Shawe-Taylor, J. (2007). Efficient algorithms for max-margin struc-

tured classification. In Predicting structured data, pp. 105–129.
Schapire, R., & Singer, Y. (1998). Improved boosting algorithms using confidence-rated predictions. In:

Proceedings of the Annual Conference on Computational Learning Theory (pp. 80–91). New York: ACM
Press.

Schapire, R. E., & Singer, Y. (2000). Boostexter: A boosting-based system for text categorization. Machine
Learning, 39(2/3), 135–168.

Schölkopf, B., & Smola, A. (2001). Learning with Kernels. Cambridge, MA: MIT Press.
Su, H., & Rousu, J. (2001). Multi-task drug bioactivity classification with graph labeling ensembles. In

Proceedings of the 6th International Conference on Pattern Recognition in Bioinformatics (PRIB2011),
Lecture Note in Computer Science (LNCS), (Vol. 7035, pp.157–167).

Su, H., & Rousu, J. (2013). Multilabel classification through random graph ensembles. In: Proceedings, 5th
Asian conference on machine learning (ACML2013), Journal of Machine Learning Research W&CP, vol.
29, pp. 404–418.

Taskar, B., Guestrin, G., & Koller, D. (2004). Max-Margin Markov networks. In S. Thrun, L. K. Saul, & B.
Schölkopf (Eds.), Advances in neural information processing systems, (Vol. 16, pp. 25–32). MIT Press.

Tsochantaridis, I., Hofmann, T., Joachims, T., & Altun, Y. (2004). Support vector machine learning for inter-
dependent and structured output spaces. In: Proceedings of the twenty-first international conference on
machine learning ICML’04, pp. 823–830.

Wainwright, M., Jaakkola, T., & Willsky, A. (2005). MAP estimation via agreement on trees: message-passing
and linear programming. IEEE Transactions on Information Theory, 51(11), 3697–3717.

Yan, R., Tesic, J., & Smith, J. (2007). Model-shared subspace boosting for multi-label classification. In:
Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining,
(pp. 834–843). ACM

123

154

Publication V

Mario Marchand, Hongyu Su, Emilie Morvant, Juho Rousu, John Shawe-

Taylor. Multilabel Structured Output Learning with Random Spanning Trees

of Max-Margin Markov Networks. In Advances in Neural Information Pro-

cessing Systems 27 (NIPS 2014), 873-881, December 2014.

c⃝ 2014 Copyright 2014 by the authors.

Reprinted with permission.

155

156

Multilabel Structured Output Learning with Random
Spanning Trees of Max-Margin Markov Networks

Mario Marchand
Département d’informatique et génie logiciel

Université Laval
Québec (QC), Canada

mario.marchand@ift.ulaval.ca

Hongyu Su
Helsinki Institute for Information Technology
Dept of Information and Computer Science

Aalto University, Finland
hongyu.su@aalto.fi

Emilie Morvant∗
LaHC, UMR CNRS 5516

Univ. of St-Etienne, France
emilie.morvant@univ-st-etienne.fr

Juho Rousu
Helsinki Institute for Information Technology
Dept of Information and Computer Science

Aalto University, Finland
juho.rousu@aalto.fi

John Shawe-Taylor
Department of Computer Science

University College London
London, UK

j.shawe-taylor@ucl.ac.uk

Abstract

We show that the usual score function for conditional Markov networks can be
written as the expectation over the scores of their spanning trees. We also show
that a small random sample of these output trees can attain a significant fraction
of the margin obtained by the complete graph and we provide conditions under
which we can perform tractable inference. The experimental results confirm that
practical learning is scalable to realistic datasets using this approach.

1 Introduction

Finding an hyperplane that minimizes the number of misclassifications is NP-hard. But the support
vector machine (SVM) substitutes the hinge for the discrete loss and, modulo a margin assumption,
can nonetheless efficiently find a hyperplane with a guarantee of good generalization. This paper
investigates whether the problem of inference over a complete graph in structured output prediction
can be avoided in an analogous way based on a margin assumption.

We first show that the score function for the complete output graph can be expressed as the expec-
tation over the scores of random spanning trees. A sampling result then shows that a small random
sample of these output trees can attain a significant fraction of the margin obtained by the complete
graph. Together with a generalization bound for the sample of trees, this shows that we can obtain
good generalization using the average scores of a sample of trees in place of the complete graph.
We have thus reduced the intractable inference problem to a convex optimization not dissimilar to
a SVM. The key inference problem to enable learning with this ensemble now becomes finding the
maximum violator for the (finite sample) average tree score. We then provide the conditions under
which the inference problem is tractable. Experimental results confirm this prediction and show that

∗Most of this work was carried out while E. Morvant was affiliated with IST Austria, Klosterneurburg.

1
157

practical learning is scalable to realistic datasets using this approach with the resulting classification
accuracy enhanced over more naive ways of training the individual tree score functions.

The paper aims at exploring the potential ramifications of the random spanning tree observation
both theoretically and practically. As such, we think that we have laid the foundations for a fruitful
approach to tackle the intractability of inference in a number of scenarios. Other attractive features
are that we do not require knowledge of the output graph’s structure, that the optimization is convex,
and that the accuracy of the optimization can be traded against computation. Our approach is firmly
rooted in the maximum margin Markov network analysis [1]. Other ways to address the intractability
of loopy graph inference have included using approximate MAP inference with tree-based and LP
relaxations [2], semi-definite programming convex relaxations [3], special cases of graph classes for
which inference is efficient [4], use of random tree score functions in heuristic combinations [5].
Our work is not based on any of these approaches, despite superficial resemblances to, e.g., the
trees in tree-based relaxations and the use of random trees in [5]. We believe it represents a distinct
approach to a fundamental problem of learning and, as such, is worthy of further investigation.

2 Definitions and Assumptions

We consider supervised learning problems where the input space X is arbitrary and the output space
Y consists of the set of all ℓ-dimensional multilabel vectors (y1, . . . , yℓ)

def
= y where each yi ∈

{1, . . . , ri} for some finite positive integer ri. Each example (x,y) ∈ X ×Y is mapped to a joint
feature vector φφφ(x,y). Given a weight vector w in the space of joint feature vectors, the predicted
output yw(x) at input x ∈ X , is given by the output y maximizing the score F (w, x,y), i.e.,

yw(x)
def
= argmax

y∈Y
F (w, x,y) ; where F (w, x,y)

def
= ⟨w,φφφ(x,y)⟩ , (1)

and where ⟨·, ·⟩ denotes the inner product in the joint feature space. Hence, yw(x) is obtained by
solving the so-called inference problem, which is known to be NP-hard for many output feature
maps [6, 7]. Consequently, we aim at using an output feature map for which the inference prob-
lem can be solved by a polynomial time algorithm such as dynamic programming. The margin
Γ(w, x,y) achieved by predictor w at example (x,y) is defined as,

Γ(w, x,y)
def
= min

y′ ̸=y
[F (w, x,y)− F (w, x,y′)] .

We consider the case where the feature map φφφ is a potential function for a Markov network defined
by a complete graph G with ℓ nodes and ℓ(ℓ− 1)/2 undirected edges. Each node i of G represents
an output variable yi and there exists an edge (i, j) of G for each pair (yi, yj) of output variables.
For any example (x,y) ∈ X × Y , its joint feature vector is given by

φφφ(x,y) =
(
φφφi,j(x, yi, yj)

)
(i,j)∈G

=
(
ϕϕϕ(x)⊗ψψψi,j(yi, yj)

)
(i,j)∈G

,

where ⊗ is the Kronecker product. Hence, any predictor w can be written as w = (wi,j)(i,j)∈G

where wi,j is w’s weight on φφφi,j(x, yi, yj). Therefore, for any w and any (x,y), we have

F (w, x,y) = ⟨w,φφφ(x,y)⟩ =
∑

(i,j)∈G

⟨wi,j ,φφφi,j(x, yi, yj)⟩ =
∑

(i,j)∈G

Fi,j(wi,j , x, yi, yj) ,

where we denote by Fi,j(wi,j , x, yi, yj) = ⟨wi,j ,φφφi,j(x, yi, yj) the score of labeling the edge (i, j)
by (yi, yj) given input x.

For any vector a, let ∥a∥ denote its L2 norm. Throughout the paper, we make the assumption that
we have a normalized joint feature space such that ∥φφφ(x,y)∥ = 1 for all (x,y) ∈ X × Y and
∥φφφi,j(x, yi, yj)∥ is the same for all (i, j) ∈ G. Since the complete graph G has

(ℓ
2

)
edges, it follows

that ∥φφφi,j(x, yi, yj)∥2 =
(ℓ
2

)−1
for all (i, j) ∈ G.

We also have a training set S def
= {(x1,y1), . . . , (xm,ym)} where each example is generated in-

dependently according to some unknown distribution D. Mathematically, we do not assume the
existence of a predictor w achieving some positive margin Γ(w, x,y) on each (x,y) ∈ S. Indeed,

2
158

for some S, there might not exist any w where Γ(w, x,y) > 0 for all (x,y) ∈ S. However, the
generalization guarantee will be best when w achieves a large margin on most training points.

Given any γ > 0, and any (x,y) ∈ X ×Y , the hinge loss (at scale γ) incurred on (x,y) by a unit L2

norm predictor w that achieves a (possibly negative) margin Γ(w, x,y) is given by Lγ(Γ(w, x,y)),
where the so-called hinge loss function Lγ is defined as Lγ(s)

def
= max (0, 1− s/γ) ∀s ∈ R . We

will also make use of the ramp loss function Aγ defined by Aγ(s)
def
= min(1,Lγ(s)) ∀s ∈ R .

The proofs of all the rigorous results of this paper are provided in the supplementary material.

3 Superposition of Random Spanning Trees

Given a complete graph G of ℓ nodes (representing the Markov network), let S(G) denote the set of
all ℓℓ−2 spanning trees of G. Recall that each spanning tree of G has ℓ − 1 edges. Hence, for any
edge (i, j) ∈ G, the number of trees in S(G) covering that edge (i, j) is given by ℓℓ−2(ℓ−1)/

(ℓ
2

)
=

(2/ℓ)ℓℓ−2. Therefore, for any function f of the edges of G we have
∑

T∈S(G)

∑

(i,j)∈T

f ((i, j)) = ℓℓ−2 2

ℓ

∑

(i,j)∈G

f((i, j)) .

Given any spanning tree T of G and given any predictor w, let wT denote the projection of w on the
edges of T . Namely, (wT)i,j = wi,j if (i, j) ∈ T , and (wT)i,j = 0 otherwise. Let us also denote
by φφφT (x,y), the projection of φφφ(x,y) on the edges of T . Namely, (φφφT (x,y))i,j = φφφi,j(x, yi, yj)

if (i, j) ∈ T , and (φφφT (x,y))i,j = 0 otherwise. Recall that ∥φφφi,j(x, yi, yj)∥2 =
(ℓ
2

)−1 ∀(i, j) ∈ G.
Thus, for all (x,y) ∈ X × Y and for all T ∈ S(G), we have

∥φφφT (x,y)∥2 =
∑

(i,j)∈T

∥φφφi,j(x, yi, yj)∥2 =
ℓ− 1(ℓ

2

) =
2

ℓ
.

We now establish how F (w, x,y) can be written as an expectation over all the spanning trees of G.

Lemma 1. Let ŵT
def
= wT /∥wT ∥, φ̂φφT

def
= φφφT /∥φφφT ∥. Let U(G) denote the uniform distribution on

S(G). Then, we have

F (w, x,y) = E
T∼U(G)

aT ⟨ŵT , φ̂φφT (x,y)⟩, where aT
def
=

√
ℓ

2
∥wT ∥ .

Moreover, for any w such that ∥w∥ = 1, we have: E
T∼U(G)

a2T = 1, and E
T∼U(G)

aT ≤ 1 .

Let T def
= {T1, . . . , Tn} be a sample of n spanning trees of G where each Ti is sampled independently

according to U(G). Given any unit L2 norm predictor w on the complete graph G, our task is to
investigate how the margins Γ(w, x,y), for each (x,y) ∈ X×Y , will be modified if we approximate
the (true) expectation over all spanning trees by an average over the sample T .

For this task, we consider any (x,y) and any w of unit L2 norm. Let FT (w, x,y) denote the
estimation of F (w, x,y) on the tree sample T ,

FT (w, x,y)
def
=

1

n

n∑

i=1

aTi⟨ŵTi , φ̂φφTi
(x,y)⟩ ,

and let ΓT (w, x,y) denote the estimation of Γ(w, x,y) on the tree sample T ,

ΓT (w, x,y)
def
= min

y′ ̸=y
[FT (w, x,y)− FT (w, x,y′)] .

The following lemma states how ΓT relates to Γ.
Lemma 2. Consider any unit L2 norm predictor w on the complete graph G that achieves a margin
of Γ(w, x,y) for each (x,y) ∈ X × Y , then we have

ΓT (w, x,y) ≥ Γ(w, x,y)− 2ϵ ∀(x,y) ∈ X × Y ,

whenever we have |FT (w, x,y)− F (w, x,y)| ≤ ϵ for all (x,y) ∈ X × Y .

3
159

Lemma 2 has important consequences whenever |FT (w, x,y)− F (w, x,y)| ≤ ϵ for all (x,y) ∈
X × Y . Indeed, if w achieves a hard margin Γ(w, x,y) ≥ γ > 0 for all (x,y) ∈ S, then we have
that w also achieves a hard margin of ΓT (w, x,y) ≥ γ−2ϵ on each (x,y) ∈ S when using the tree
sample T instead of the full graph G. More generally, if w achieves a ramp loss of Aγ(Γ(w, x,y))
for each (x,y) ∈ X ×Y , then w achieves a ramp loss of Aγ(ΓT (w, x,y)) ≤ Aγ (Γ(w, x,y)− 2ϵ)
for all (x,y) ∈ X × Y when using the tree sample T instead of the full graph G. This last property
follows directly from the fact that Aγ(s) is a non-increasing function of s.

The next lemma tells us that, apart from a slow ln2(
√
n) dependence, a sample of n ∈ Θ(ℓ2/ϵ2)

spanning trees is sufficient to assure that the condition of Lemma 2 holds with high probability for all
(x,y) ∈ X × Y . Such a fast convergence rate was made possible by using PAC-Bayesian methods
which, in our case, prevented us of using the union bound over all possible y ∈ Y .
Lemma 3. Consider any ϵ > 0 and any unit L2 norm predictor w for the complete graph G acting
on a normalized joint feature space. For any δ ∈ (0, 1), let

n ≥ ℓ2

ϵ2

(
1

16
+

1

2
ln

8
√
n

δ

)2

. (2)

Then with probability of at least 1 − δ/2 over all samples T generated according to U(G)n, we
have, simultaneously for all (x,y) ∈ X × Y , that |FT (w, x,y)− F (w, x,y)| ≤ ϵ.

Given a sample T of n spanning trees of G, we now consider an arbitrary set W def
= {ŵT1 , . . . , ŵTn}

of unit L2 norm weight vectors where each ŵTi operates on a unit L2 norm feature vector φ̂φφTi
(x,y).

For any T and any such set W , we consider an arbitrary unit L2 norm conical combination of each
weight in W realized by a n-dimensional weight vector q def

= (q1, . . . , qn), where
∑n

i=1 q
2
i = 1 and

each qi ≥ 0. Given any (x,y) and any T , we define the score FT (W,q, x,y) achieved on (x,y)
by the conical combination (W,q) on T as

FT (W,q, x,y)
def
=

1√
n

n∑

i=1

qi⟨ŵTi , φ̂φφTi
(x,y)⟩ , (3)

where the
√
n denominator ensures that we always have FT (W,q, x,y) ≤ 1 in view of the fact

that
∑n

i=1 qi can be as large as
√
n. Note also that FT (W,q, x,y) is the score of the feature vector

obtained by the concatenation of all the weight vectors in W (and weighted by q) acting on a feature
vector obtained by concatenating each φ̂φφTi

multiplied by 1/
√
n. Hence, given T , we define the

margin ΓT (W,q, x,y) achieved on (x,y) by the conical combination (W,q) on T as

ΓT (W,q, x,y)
def
= min

y′ ̸=y
[FT (W,q, x,y)− FT (W,q, x,y′)] . (4)

For any unit L2 norm predictor w that achieves a margin of Γ(w, x,y) for all (x,y) ∈ X × Y , we
now show that there exists, with high probability, a unit L2 norm conical combination (W,q) on T
achieving margins that are not much smaller than Γ(w, x,y).
Theorem 4. Consider any unit L2 norm predictor w for the complete graph G, acting on a normal-
ized joint feature space, achieving a margin of Γ(w, x,y) for each (x,y) ∈ X × Y . Then for any
ϵ > 0, and any n satisfying Lemma 3, for any δ ∈ (0, 1], with probability of at least 1 − δ over all
samples T generated according to U(G)n, there exists a unit L2 norm conical combination (W,q)
on T such that, simultaneously for all (x,y) ∈ X × Y , we have

ΓT (W,q, x,y) ≥ 1√
1 + ϵ

[Γ(w, x,y)− 2ϵ] .

From Theorem 4, and since Aγ(s) is a non-increasing function of s, it follows that, with proba-
bility at least 1 − δ over the random draws of T ∼ U(G)n, there exists (W,q) on T such that,
simultaneously for all ∀(x,y) ∈ X × Y , for any n satisfying Lemma 3 we have

Aγ(ΓT (W,q, x,y)) ≤ Aγ
(
[Γ(w, x,y)− 2ϵ] (1 + ϵ)−1/2

)
.

Hence, instead of searching for a predictor w for the complete graph G that achieves a small ex-
pected ramp loss E(x,y)∼DAγ(Γ(w, x,y), Theorem 4 tells us that we can settle the search for a

4
160

unit L2 norm conical combination (W,q) on a sample T of randomly-generated spanning trees of
G that achieves small E(x,y)∼DAγ(ΓT (W,q, x,y)). But recall that ΓT (W,q, x,y)) is the margin
of a weight vector obtained by the concatenation of all the weight vectors in W (weighted by q) on
a feature vector obtained by the concatenation of the n feature vectors (1/

√
n)φ̂φφTi

. It thus follows
that any standard risk bound for the SVM applies directly to E(x,y)∼DAγ(ΓT (W,q, x,y)). Hence,
by adapting the SVM risk bound of [8], we have the following result.
Theorem 5. Consider any sample T of n spanning trees of the complete graph G. For any γ > 0
and any 0 < δ ≤ 1, with probability of at least 1 − δ over the random draws of S ∼ Dm,
simultaneously for all unit L2 norm conical combinations (W,q) on T , we have

E
(x,y)∼D

Aγ(ΓT (W,q, x,y)) ≤ 1

m

m∑

i=1

Aγ(ΓT (W,q, xi,yi)) +
2

γ
√
m

+ 3

√
ln(2/δ)

2m
.

Hence, according to this theorem, the conical combination (W,q) having the best generalization
guarantee is the one which minimizes the sum of the first two terms on the right hand side of
the inequality. Note that the theorem is still valid if we replace, in the empirical risk term, the
non-convex ramp loss Aγ by the convex hinge loss Lγ . This provides the theoretical basis of the
proposed optimization problem for learning (W,q) on the sample T .

4 A L2-Norm Random Spanning Tree Approximation Approach

If we introduce the usual slack variables ξk
def
= γ · Lγ(ΓT (W,q, xk,yk), Theorem 5 suggests that

we should minimize 1
γ

∑m
k=1 ξk for some fixed margin value γ > 0. Rather than performing this

task for several values of γ, we show in the supplementary material that we can, equivalently, solve
the following optimization problem for several values of C > 0.
Definition 6. Primal L2-norm Random Tree Approximation.

min
wTi ,ξk

1

2

n∑

i=1

||wTi ||
2
2 + C

m∑

k=1

ξk

s.t.
n∑

i=1

⟨wTi , φ̂φφTi
(xk,yk)⟩ −max

y ̸=yk

n∑

i=1

⟨wTi , φ̂φφTi
(xk,y)⟩ ≥ 1− ξk,

ξk ≥ 0 , ∀ k ∈ {1, . . . ,m},

where {wTi |Ti ∈ T } are the feature weights to be learned on each tree, ξk is the margin slack
allocated for each xk, and C is the slack parameter that controls the amount of regularization.

This primal form has the interpretation of maximizing the joint margins from individual trees be-
tween (correct) training examples and all the other (incorrect) examples.

The key for the efficient optimization is solving the ’argmax’ problem efficiently. In particular, we
note that the space of all multilabels is exponential in size, thus forbidding exhaustive enumeration
over it. In the following, we show how exact inference over a collection T of trees can be imple-
mented in Θ(Knℓ) time per data point, where K is the smallest number such that the average score
of the K’th best multilabel for each tree of T is at most FT (x,y)

def
= 1

n

∑n
i=1⟨wTi , φ̂φφTi

(x,y)⟩.
Whenever K is polynomial in the number of labels, this gives us exact polynomial-time inference
over the ensemble of trees.

4.1 Fast inference over a collection of trees

It is well known that the exact solution to the inference problem

ŷTi(x) = argmax
y∈Y

FwTi
(x,y)

def
= argmax

y∈Y
⟨wTi , φ̂φφTi

(x,y)⟩, (5)

on an individual tree Ti can be obtained in Θ(ℓ) time by dynamic programming. However, there is
no guarantee that the maximizer ŷTi of Equation (5) is also a maximizer of FT . In practice, ŷTi

5
161

can differ for each spanning tree Ti ∈ T . Hence, instead of using only the best scoring multil-
abel ŷTi from each individual Ti ∈ T , we consider the set of the K highest scoring multilabels
YTi,K = {ŷTi,1, · · · , ŷTi,K} of FwTi

(x,y). In the supplementary material we describe a dynamic
programming to find the K highest multilabels in Θ(Kℓ) time. Running this algorithm for all of the
trees gives us a candidate set of Θ(Kn) multilabels YT ,K = YT1,K ∪ · · · ∪ YTn,K . We now state a
key lemma that will enable us to verify if the candidate set contains the maximizer of FT .
Lemma 7. Let y⋆

K = argmax
y∈YT ,K

FT (x,y) be the highest scoring multilabel in YT ,K . Suppose that

FT (x,y
⋆
K) ≥ 1

n

n∑

i=1

FwTi
(x,yTi,K)

def
= θx(K).

It follows that FT (x,y⋆
K) = maxy∈Y FT (x,y).

We can use any K satisfying the lemma as the length of K-best lists, and be assured that y⋆
K is a

maximizer of FT .

We now examine the conditions under which the highest scoring multilabel is present in our can-
didate set YT ,K with high probability. For any x ∈ X and any predictor w, let ŷ def

= yw(x)
def
=

argmax
y∈Y

F (w, x,y) be the highest scoring multilabel in Y for predictor w on the complete graph G.

For any y ∈ Y , let KT (y) be the rank of y in tree T and let ρT (y)
def
= KT (y)/|Y| be the normalized

rank of y in tree T . We then have 0 < ρT (y) ≤ 1 and ρT (y′) = miny∈Y ρT (y) whenever y′ is a
highest scoring multilabel in tree T . Since w and x are arbitrary and fixed, let us drop them momen-
tarily from the notation and let F (y)

def
= F (w, x,y), and FT (y)

def
= FwT (x,y). Let U(Y) denote the

uniform distribution of multilabels on Y . Then, let µT
def
= Ey∼U(Y)FT (y) and µ

def
= ET∼U(G)µT .

Let T ∼ U(G)n be a sample of n spanning trees of G. Since the scoring function FT of each tree
T of G is bounded in absolute value, it follows that FT is a σT -sub-Gaussian random variable for
some σT > 0. We now show that, with high probability, there exists a tree T ∈ T such that ρT (ŷ)
is decreasing exponentially rapidly with (F (ŷ)− µ)/σ, where σ2 def

= ET∼U(G)σ
2
T .

Lemma 8. Let the scoring function FT of each spanning tree of G be a σT -sub-Gaussian random
variable under the uniform distribution of labels; i.e., for each T on G, there exists σT > 0 such
that for any λ > 0 we have

E
y∼U(Y)

eλ(FT (y)−µT) ≤ e
λ2

2 σ2
T .

Let σ2 def
= E

T∼U(G)
σ2
T , and let α def

= Pr
T∼U(G)

(
µT ≤ µ ∧ FT (ŷ) ≥ F (ŷ) ∧ σ2

T ≤ σ2
)

. Then,

Pr
T ∼U(G)n

(
∃T ∈ T : ρT (ŷ) ≤ e−

1
2

(F (ŷ)−µ)2

σ2

)
≥ 1− (1− α)n .

Thus, even for very small α, when n is large enough, there exists, with high probability, a tree T ∈ T
such that ŷ has a small ρT (ŷ) whenever [F (ŷ)− µ]/σ is large for G. For example, when |Y| = 2ℓ

(the multiple binary classification case), we have with probability of at least 1− (1−α)n, that there
exists T ∈ T such that KT (ŷ) = 1 whenever F (ŷ)− µ ≥ σ

√
2ℓ ln 2.

4.2 Optimization

To optimize the L2-norm RTA problem (Definition 6) we convert it to the marginalized dual form
(see the supplementary material for the derivation), which gives us a polynomial-size problem (in
the number of microlabels) and allows us to use kernels to tackle complex input spaces efficiently.
Definition 9. L2-norm RTA Marginalized Dual

max
µµµ∈Mm

1

|ET |
∑

e,k,ue

µ(k, e,ue)−
1

2

∑

e,k,ue,
k′,u′

e

µ(k, e,ue)K
e
T (xk,ue;x

′
k,u

′
e)µ(k

′, e,u′
e) ,

where ET is the union of the sets of edges appearing in T , and µµµ ∈Mm are the marginal dual
variables µµµ

def
= (µ(k, e,ue))k,e,ue , with the triplet (k, e,ue) corresponding to labeling the edge

6
162

DATASET
MICROLABEL LOSS (%) 0/1 LOSS (%)

SVM MTL MMCRF MAM RTA SVM MTL MMCRF MAM RTA
EMOTIONS 22.4 20.2 20.1 19.5 18.8 77.8 74.5 71.3 69.6 66.3

YEAST 20.0 20.7 21.7 20.1 19.8 85.9 88.7 93.0 86.0 77.7
SCENE 9.8 11.6 18.4 17.0 8.8 47.2 55.2 72.2 94.6 30.2
ENRON 6.4 6.5 6.2 5.0 5.3 99.6 99.6 92.7 87.9 87.7
CAL500 13.7 13.8 13.7 13.7 13.8 100.0 100.0 100.0 100.0 100.0

FINGERPRINT 10.3 17.3 10.5 10.5 10.7 99.0 100.0 99.6 99.6 96.7
NCI60 15.3 16.0 14.6 14.3 14.9 56.9 53.0 63.1 60.0 52.9

MEDICAL 2.6 2.6 2.1 2.1 2.1 91.8 91.8 63.8 63.1 58.8
CIRCLE10 4.7 6.3 2.6 2.5 0.6 28.9 33.2 20.3 17.7 4.0
CIRCLE50 5.7 6.2 1.5 2.1 3.8 69.8 72.3 38.8 46.2 52.8

Table 1: Prediction performance of each algorithm in terms of microlabel loss and 0/1 loss. The best
performing algorithm is highlighted with boldface, the second best is in italic.

e=(v, v′) ∈ ET of the output graph by ue=(uv, uv′)∈Yv×Yv′ for the training example xk. Also,
Mm is the marginal dual feasible set and
Ke

T (xk,ue;xk′ ,u′
e)

def
=

NT (e)
|ET |2 K(xk, xk′)

〈
ψψψe(ykv, ykv′)−ψψψe(uv, uv′),ψψψe(yk′v, yk′v′)−ψψψe(u

′
v, u

′
v′)

〉

is the joint kernel of input features and the differences of output features of true and competing
multilabels (yk,u), projected to the edge e. Finally, NT (e) denotes the number of times e appears
among the trees of the ensemble.

The master algorithm described in the supplementary material iterates over each training example
until convergence. The processing of each training example xk proceeds by finding the worst vio-
lating multilabel of the ensemble defined as

ȳk
def
= argmax

y ̸=yk

FT (xk,y) , (6)

using the K-best inference approach of the previous section, with the modification that the correct
multilabel is excluded from the K-best lists. The worst violator ȳk is mapped to a vertex

µ̄µµ(xk) = C · ([ȳe = ue])e,ue
∈Mk

corresponding to the steepest feasible ascent direction (c.f, [9]) in the marginal dual feasible set Mk

of example xk, thus giving us a subgradient of the objective of Definition 9. An exact line search is
used to find the saddle point between the current solution and µ̄µµ.

5 Empirical Evaluation

We compare our method RTA to Support Vector Machine (SVM) [10, 11], Multitask Feature Learn-
ing (MTL) [12], Max-Margin Conditional Random Fields (MMCRF) [9] which uses the loopy be-
lief propagation algorithm for approximate inference on the general graph, and Maximum Average
Marginal Aggregation (MAM) [5] which is a multilabel ensemble model that trains a set of random
tree based learners separately and performs the final approximate inference on a union graph of the
edge potential functions of the trees. We use ten multilabel datasets from [5]. Following [5], MAM
is constructed with 180 tree based learners, and for MMCRF a consensus graph is created by pool-
ing edges from 40 trees. We train RTA with up to 40 spanning trees and with K up to 32. The linear
kernel is used for methods that require kernelized input. Margin slack parameters are selected from
{100, 50, 10, 1, 0.5, 0.1, 0.01}. We use 5-fold cross-validation to compute the results.

Prediction performance. Table 1 shows the performance in terms of microlabel loss and 0/1 loss.
The best methods are highlighted in ’boldface’ and the second best in ’italics’ (see supplementary
material for full results). RTA quite often improves over MAM in 0/1 accuracy, sometimes with
noticeable margin except for Enron and Circle50. The performances in microlabel accuracy are
quite similar while RTA is slightly above the competition. This demonstrates the advantage of RTA
that gains by optimizing on a collection of trees simultaneously rather than optimizing on individual
trees as MAM. In addition, learning using approximate inference on a general graph seems less

7
163

�

� � � � � �

0
20

40
60

80
10

0
|T| = 5

K (% of |Y|)

Y*
 b

ei
ng

 v
er

ifi
ed

 (%
 o

f d
at

a)

�

�

Emotions
Yeast
Scene
Enron
Cal500
Fingerprint
NCI60
Medical
Circle10
Circle50

1 3 10 32 100 316 10001 3 10 32 100 316 10001 3 10 32 100 316 10001 3 10 32 100 316 10001 3 10 32 100 316 10001 3 10 32 100 316 10001 3 10 32 100 316 10001 3 10 32 100 316 10001 3 10 32 100 316 1000

� � �

�

� �

�

1 3 10 32 100 316 1000

�

� � � � � �

0
20

40
60

80
10

0

|T| = 10

K (% of |Y|)

Y*
 b

ei
ng

 v
er

ifi
ed

 (%
 o

f d
at

a)

1 3 10 32 100 316 10001 3 10 32 100 316 10001 3 10 32 100 316 10001 3 10 32 100 316 10001 3 10 32 100 316 10001 3 10 32 100 316 10001 3 10 32 100 316 10001 3 10 32 100 316 10001 3 10 32 100 316 1000

� � �
�

�

� �

1 3 10 32 100 316 1000

�

� � � � � �

0
20

40
60

80
10

0

|T| = 40

K (% of |Y|)

Y*
 b

ei
ng

 v
er

ifi
ed

 (%
 o

f d
at

a)

1 3 10 32 100 316 10001 3 10 32 100 316 10001 3 10 32 100 316 10001 3 10 32 100 316 10001 3 10 32 100 316 10001 3 10 32 100 316 10001 3 10 32 100 316 10001 3 10 32 100 316 10001 3 10 32 100 316 1000

� � � � �
�

�

1 3 10 32 100 316 1000

Figure 1: Percentage of examples with provably optimal y∗ being in the K-best lists plotted as a
function of K, scaled with respect to the number of microlabels in the dataset.

favorable as the tree-based methods, as MMCRF quite consistently trails to RTA and MAM in
both microlabel and 0/1 error, except for Circle50 where it outperforms other models. Finally, we
notice that SVM, as a single label classifier, is very competitive against most multilabel methods for
microlabel accuracy.

Exactness of inference on the collection of trees. We now study the empirical behavior of the
inference (see Section 4) on the collection of trees, which, if taken as a single general graph, would
call for solving an NP-hard inference problem. We provide here empirical evidence that we can
perform exact inference on most examples in most datasets in polynomial time.
We ran the K-best inference on eleven datasets where the RTA models were trained with different
amounts of spanning trees |T |={5, 10, 40} and values for K={2, 4, 8, 16, 32, 40, 60}. For each pa-
rameter combination and for each example, we recorded whether the K-best inference was provably
exact on the collection (i.e., if Lemma 7 was satisfied). Figure 1 plots the percentage of examples
where the inference was indeed provably exact. The values are shown as a function of K, expressed
as the percentage of the number of microlabels in each dataset. Hence, 100% means K = ℓ, which
denotes low polynomial (Θ(nℓ2)) time inference in the exponential size multilabel space.

We observe, from Figure 1, on some datasets (e.g., Medical, NCI60), that the inference task is very
easy since exact inference can be computed for most of the examples even with K values that are
below 50% of the number of microlabels. By setting K = ℓ (i.e., 100%) we can perform exact
inference for about 90% of the examples on nine datasets with five trees, and eight datasets with
40 trees. On two of the datasets (Cal500, Circle50), inference is not (in general) exact with low
values of K. Allowing K to grow superlinearly on ℓ would possibly permit exact inference on these
datasets. However, this is left for future studies.

Finally, we note that the difficulty of performing provably exact inference slightly increases when
more spanning trees are used. We have observed that, in most cases, the optimal multilabel y∗ is
still on the K-best lists but the conditions of Lemma 7 are no longer satisfied, hence forbidding us
to prove exactness of the inference. Thus, working to establish alternative proofs of exactness is a
worthy future research direction.

6 Conclusion

The main theoretical result of the paper is the demonstration that if a large margin structured output
predictor exists, then combining a small sample of random trees will, with high probability, generate
a predictor with good generalization. The key attraction of this approach is the tractability of the
inference problem for the ensemble of trees, both indicated by our theoretical analysis and supported
by our empirical results. However, as a by-product, we have a significant added benefit: we do not
need to know the output structure a priori as this is generated implicitly in the learned weights
for the trees. This is used to significant advantage in our experiments that automatically leverage
correlations between the multiple target outputs to give a substantive increase in accuracy. It also
suggests that the approach has enormous potential for applications where the structure of the output
is not known but is expected to play an important role.

8
164

References
[1] Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin markov networks. In S. Thrun,

L.K. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing Systems 16,
pages 25–32. MIT Press, 2004.

[2] Martin J. Wainwright, Tommy S. Jaakkola, and Alan S. Willsky. MAP estimation via agree-
ment on trees: message-passing and linear programming. IEEE Transactions on Information
Theory, 51(11):3697–3717, 2005.

[3] Michael I. Jordan and Martin J Wainwright. Semidefinite relaxations for approximate inference
on graphs with cycles. In S. Thrun, L.K. Saul, and B. Schölkopf, editors, Advances in Neural
Information Processing Systems 16, pages 369–376. MIT Press, 2004.

[4] Amir Globerson and Tommi S. Jaakkola. Approximate inference using planar graph decom-
position. In B. Schölkopf, J.C. Platt, and T. Hoffman, editors, Advances in Neural Information
Processing Systems 19, pages 473–480. MIT Press, 2007.

[5] Hongyu Su and Juho Rousu. Multilabel classification through random graph ensembles. Ma-
chine Learning, dx.doi.org/10.1007/s10994-014-5465-9, 2014.

[6] Robert G. Cowell, A. Philip Dawid, Steffen L. Lauritzen, and David J. Spiegelhalter. Proba-
bilistic Networks and Expert Systems. Springer, New York, 1999.

[7] Thomas Gärtner and Shankar Vembu. On structured output training: hard cases and an efficient
alternative. Machine Learning, 79:227–242, 2009.

[8] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, 2004.

[9] J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor. Efficient algorithms for max-margin
structured classification. Predicting Structured Data, pages 105–129, 2007.

[10] Kristin P. Bennett. Combining support vector and mathematical programming methods for
classifications. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel
Methods—Support Vector Learning, pages 307–326. MIT Press, Cambridge, MA, 1999.

[11] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines and
Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge, U.K., 2000.

[12] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex multi-task feature
learning. Machine Learning, 73(3):243–272, 2008.

[13] Yevgeny Seldin, François Laviolette, Nicolò Cesa-Bianchi, John Shawe-Taylor, and Peter
Auer. PAC-Bayesian inequalities for martingales. IEEE Transactions on Information Theory,
58:7086–7093, 2012.

[14] Andreas Maurer. A note on the PAC Bayesian theorem. CoRR, cs.LG/0411099, 2004.
[15] David McAllester. PAC-Bayesian stochastic model selection. Machine Learning, 51:5–21,

2003.
[16] Juho Rousu, Craig Saunders, Sandor Szedmak, and John Shawe-Taylor. Kernel-based learn-

ing of hierarchical multilabel classification models. Journal of Machine Learning Research,
7:1601–1626, December 2006.

9
165

166

Multilabel Structured Output Learning with Random Spanning Trees of
Max-Margin Markov Networks (supplementary material) by: Mario
Marchand, Hongyu Su, Emilie Morvant, Juho Rousou, and John
Shawe-Taylor

Lemma 1

Let ŵT
def
= wT /∥wT ∥, φ̂φφT

def
= φφφT /∥φφφT ∥. Let U(G) denote the uniform distribution on S(G). Then,

we have

F (w, x,y) = E
T∼U(G)

aT ⟨ŵT , φ̂φφT (x,y)⟩, where aT
def
=

√
ℓ

2
∥wT ∥ .

Moreover, for any w such that ∥w∥ = 1, we have

E
T∼U(G)

a2T = 1 ; E
T∼U(G)

aT ≤ 1 .

Proof.

F (w, x,y) = ⟨w,φφφ(x,y)⟩

=
∑

(i,j)∈G

⟨wi,j ,φφφi,j(x, yi, yj)⟩ =
1

ℓℓ−2

ℓ

2

∑

T∈S(G)

∑

(i,j)∈T

⟨wi,j ,φφφi,j(x, yi, yj)⟩

=
ℓ

2
E

T∼U(G)
⟨wT ,φφφT (x,y)⟩ =

ℓ

2
E

T∼U(G)
∥wT ∥∥φφφT (x,y)∥⟨ŵT , φ̂φφT (x,y)⟩

= E
T∼U(G)

√
ℓ

2
∥wT ∥⟨ŵT , φ̂φφT (x,y)⟩ = E

T∼U(G)
aT ⟨ŵT , φ̂φφT (x,y)⟩ ,

where

aT
def
=

√
ℓ

2
∥wT ∥ .

Now, for any w such that ∥w∥ = 1, we have

E
T∼U(G)

a2T =
ℓ

2
E

T∼U(G)
∥wT ∥2 =

ℓ

2

1

ℓℓ−2

∑

T∈S(G)

∥wT ∥2 =
ℓ

2

1

ℓℓ−2

∑

T∈S(G)

∑

(i,j)∈T

∥wi,j∥2

=
∑

(i,j)∈G

∥wi,j∥2 = ∥w∥2 = 1 .

Since the variance of aT must be positive, we have, for any w of unit L2 norm, that

E
T∼U(G)

aT ≤ 1 .

Lemma 2

Consider any unit L2 norm predictor w on the complete graph G that achieves a margin of
Γ(w, x,y) for each (x,y) ∈ X × Y , then we have

ΓT (w, x,y) ≥ Γ(w, x,y)− 2ϵ ∀(x,y) ∈ X × Y ,

whenever for all (x,y) ∈ X × Y , we have

|FT (w, x,y)− F (w, x,y)| ≤ ϵ .

10
167

Proof. From the condition of the lemma, we have simultaneously for all (x,y) ∈ X × Y and
(x,y′) ∈ X × Y , that

FT (w, x,y) ≥ F (w, x,y)− ϵ AND FT (w, x,y′) ≤ F (w, x,y′) + ϵ .

Therefore,
FT (w, x,y)− FT (w, x,y′) ≥ F (w, x,y)− F (w, x,y′)− 2ϵ .

Hence, for all (x,y) ∈ X × Y , we have

ΓT (w, x,y) ≥ Γ(w, x,y)− 2ϵ .

Lemma 3

Consider any ϵ > 0 and any unit L2 norm predictor w for the complete graph G acting on a
normalized joint feature space. For any δ ∈ (0, 1), let

n ≥ ℓ2

ϵ2

(
1

16
+

1

2
ln

8
√
n

δ

)2

. (2)

Then with probability of at least 1 − δ/2 over all samples T generated according to U(G)n, we
have, simultaneously for all (x,y) ∈ X × Y , that

|FT (w, x,y)− F (w, x,y)| ≤ ϵ .

Proof. Consider an isotropic Gaussian distribution of joint feature vectors of variance σ2, centred
on φφφ(x,y), with a density given by

Qφφφ(ζζζ)
def
=

(
1√
2πσ

)N

exp−∥ζ
ζζ −φφφ∥2

2σ2
,

where N is the dimension of the feature vectors. When the feature space is infinite-dimensional, we
can consider Q to be a Gaussian process. The end results will not depend on N .

Given the fixed w stated in the theorem, let us define the risk R(Qφφφ,wT) of Qφφφ on the tree T by
E

ζζζ∼Qφφφ

⟨wT ,ζζζ⟩. By the linearity of ⟨·, ·⟩, we have

R(Qφφφ,wT)
def
= E

ζζζ∼Qφφφ

⟨wT ,ζζζ⟩ = ⟨wT , E
ζζζ∼Qφφφ

ζζζ⟩ = ⟨wT ,φφφ⟩ ,

which is independent of σ.

Gibbs’ risk R(Qφφφ) and its empirical estimate RT (Qφφφ) are defined as

R(Qφφφ)
def
= E

T∼U(G)
R(Qφφφ,wT) = E

T∼U(G)
⟨wT ,φφφ⟩

RT (Qφφφ)
def
=

1

n

n∑

i=1

R(Qφφφ,wTi) =
1

n

n∑

i=1

⟨wTi ,φφφ⟩ .

Consequently, from the definitions of F and FT , we have

F (w, x,y) =
ℓ

2
R(Qφφφ(x,y))

FT (w, x,y) =
ℓ

2
RT (Qφφφ(x,y)) .

Recall that φφφ is a normalized feature map that applies to all (x,y) ∈ X × Y . Therefore, if we have
with probability ≥ 1− δ/2 that, simultaneously for all φφφ of unit L2 norm,

ℓ

2
|RT (Qφφφ)−R(Qφφφ)| ≤ ϵ , (7)

11
168

then, with the same probability, we will have simultaneously ∀(x,y) ∈ X × Y , that
|FT (w, x,y)− F (w, x,y)| ≤ ϵ ,

and, consequently, the lemma will be proved.

To prove that we satisfy Equation (7) with probability ≥ 1 − δ/2 simultaneously for all φφφ of unit
L2 norm, let us adapt some elements of PAC-Bayes theory to our case. Note that we cannot use the
usual PAC-Bayes bounds, such as those proposed by [13] because, in our case, the loss ⟨wT ,ζζζ⟩ of
each individual “predictor” ζζζ is unbounded.

The distribution Qφφφ defined above constitutes the posterior distribution. For the prior P , let us use
an isotropic Gaussian with variance σ2 centered at the origin. Hence P = Q0. In that case we have

KL(Qφφφ∥P) =
∥φφφ∥2

2σ2
=

1

2σ2
.

Given a tree sample T of n spanning trees, let

∆w
def
=

1

n

n∑

k=1

wTk − E
T∼U(G)

wT ,

and consider the Gaussian quadrature

I def
= E

ζζζ∼P
e
√
n|⟨∆w,ζζζ⟩|

= e
1
2nσ

2∥∆w∥2

(
1 + Erf

[√
n

2
∥∆w∥σ

])

≤ 2e
1
2nσ

2∥∆w∥2

.

We can then use this result for I to upper bound the Laplace transform L in the following way.

L def
= E

T ∼U(G)n
E

ζζζ∼P
e
√
n|⟨∆w,ζζζ⟩|

≤ 2 E
T ∼U(G)n

e
1
2nσ

2∥∆w∥2

= 2 E
T ∼U(G)n

e
1
2nσ

2 ∑
(i,j)∈G ∥(∆w)i,j∥2

.

Since
E

T∼U(G)
wT =

2

ℓ
w ,

we can write

∥(∆w)i,j∥2 =

∥∥∥∥∥
1

n

n∑

k=1

(wTk)i,j −
2

ℓ
wi,j

∥∥∥∥∥

2

.

Note that for each (i, j) ∈ G, any sample T , and each Tk ∈ T , we can write

(wTk)i,j = wi,jZ
k
i,j .

where Zk
i,j = 1 if (i, j) ∈ Tk and Zk

i,j = 0 if (i, j) /∈ Tk. Hence, we have

∥(∆w)i,j∥2 = ∥wi,j∥2
(
1

n

n∑

k=1

Zk
i,j −

2

ℓ

)2

.

Hence, for σ2 ≤ 4 and p
def
= 2/ℓ, we have

L ≤ 2 E
T ∼U(G)n

e
1
2nσ

2 ∑
(i,j)∈G ∥wi,j∥2(1

n

∑n
k=1 Zk

i,j− 2
ℓ)

2

≤ 2 E
T ∼U(G)n

e2n
∑

(i,j)∈G ∥wi,j∥2(1
n

∑n
k=1 Zk

i,j−p)2

≤ 2
∑

(i,j)∈G

∥wi,j∥2 E
T ∼U(G)n

e2n(
1
n

∑n
k=1 Zk

i,j−p)2 ,

12
169

where the last inequality is obtained by using
∑

(i,j)∈G ∥wi,j∥2 = 1 and by using Jensen’s inequal-
ity on the convexity of the exponential.

Now, for any (q, p) ∈ [0, 1]2, let

kl(q∥p) def
= q ln

q

p
+ (1− q) ln

1− q

1− p
.

Then, by using 2(q − p)2 ≤ kl(q∥p) (Pinsker’s inequality), we have for n ≥ 8,

L ≤ 2
∑

(i,j)∈G

∥wi,j∥2 E
T ∼U(G)n

enkl(
1
n

∑n
k=1 Zk

i,j∥p) ≤ 4
√
n ,

where the last inequality follows from Maurer’s lemma [14] applied, for any fixed (i, j) ∈ G, to the
collection of n independent Bernoulli variables Zk

i,j of probability p.

The rest of the proof follows directly from standard PAC-Bayes theory [15, 13], which, for com-
pleteness, we briefly outline here.

Since
E

ζζζ∼P
e
√
n|⟨∆w,ζζζ⟩|

is a non negative random variable, Markov’s inequality implies that with probability > 1− δ/2 over
the random draws of T , we have

ln E
ζζζ∼P

e
√
n|⟨∆w,ζζζ⟩| ≤ ln

8
√
n

δ
.

By the change of measure inequality, we have with probability > 1− δ/2 over the random draws of
T , simultaneously for all φφφ,

√
n E
ζζζ∼Qφφφ

|⟨∆w,ζζζ⟩| ≤ KL (Qφφφ∥P) + ln
8
√
n

δ
.

Hence, by using Jensen’s inequality on the convex absolute value function, we have with probability
> 1− δ/2 over the random draws of T , simultaneously for all φφφ,

|⟨∆w,φφφ⟩| ≤ 1√
n

[
KL (Qφφφ∥P) + ln

8
√
n

δ

]
.

Note that we have KL(Qφφφ∥P) = 1/8 for σ2 = 4 (which is the value we shall use). Also note that the
left hand side of this equation equals to |RT (Qφφφ)−R(Qφφφ)|. In that case, we satisfy Equation (7)
with probability 1− δ/2 simultaneously for all φφφ of unit L2 norm whenever we satisfy

ℓ

2
√
n

[
1

8
+ ln

8
√
n

δ

]
≤ ϵ ,

which is the condition on n given by the theorem.

Theorem 4

Consider any unit L2 norm predictor w for the complete graph G, acting on a normalized joint
feature space, achieving a margin of Γ(w, x,y) for each (x,y) ∈ X × Y . Then for any ϵ > 0, and
any n satisfying Lemma 3, for any δ ∈ (0, 1], with probability of at least 1 − δ over all samples T
generated according to U(G)n, there exists a unit L2 norm conical combination (W,q) on T such
that, simultaneously ∀(x,y) ∈ X × Y , we have

ΓT (W,q, x,y) ≥ 1√
1 + ϵ

[Γ(w, x,y)− 2ϵ] .

13
170

Proof. For any T , consider a conical combination (W,q) where each ŵTi ∈ W is obtained by
projecting w on Ti and normalizing to unit L2 norm and where

qi =
aTi√∑n
i=1 a

2
Ti

.

Then, from equations (3) and (4), and from the definition of ΓT (w, x,y), we find that for all (x,y) ∈
X × Y , we have

ΓT (W,q, x,y) =
√

n∑n
i=1 a

2
Ti

ΓT (w, x,y) .

Now, by using Hoeffding’s inequality, it is straightforward to show that for any δ ∈ (0, 1], we have

Pr
T ∼U(G)n

(
1

n

n∑

i=1

a2Ti
≤ 1 + ϵ

)
≥ 1− δ/2 .

whenever n ≥ ℓ2

8ϵ ln
(
2
δ

)
. Since n satisfies the condition of Lemma 3, we see that it also satisfies this

condition whenever ϵ ≤ 1/2. Hence, with probability of at least 1− δ/2, we have
n∑

i=1

a2Ti
≤ n(1 + ϵ) .

Moreover Lemma 2 and Lemma 3 imply that, with probability of at least 1− δ/2, we have simulta-
neously for all (x,y) ∈ X × Y ,

ΓT (w, x,y) ≥ Γ(w, x,y)− 2ϵ .

Hence, from the union bound, with probability of at least 1 − δ, simultaneously ∀(x,y) ∈ X × Y ,
we have

ΓT (W,q, x,y) ≥ 1√
1 + ϵ

[Γ(w, x,y)− 2ϵ] .

Derivation of the Primal L2-norm Random Tree Approximation

If we introduce the usual slack variables ξi
def
= γ ·Lγ(ΓT (W,q, xi,yi)), Theorem 5 suggests that we

should minimize 1
γ

∑m
k=1 ξk for some fixed margin value γ > 0. Rather than performing this task

for several values of γ, we can, equivalently, solve the following optimization problem for several
values of C > 0.

min
ξξξ,γ,q,W

1

2γ2
+

C

γ

m∑

k=1

ξk (8)

s.t. : ΓT (W,q, xk,yk) ≥ γ − ξk, ξk ≥ 0, ∀ k ∈ {1, . . . ,m} ,
n∑

i=1

q2i = 1, qi ≥ 0, ∥wTi∥2 = 1, ∀ i ∈ {1, . . . , n} .

If we now use instead ζk
def
= ξk/γ, and vTi

def
= qiwTi/γ, we then have

∑n
i=1 ∥vTi∥2 = 1/γ2 (under

the constraints of problem (8)). If V def
= {vT1 , . . . ,vTn}, optimization problem (8) is then equivalent

to

min
ζζζ,V

1

2

n∑

i=1

∥vTi∥2 + C
m∑

k=1

ζk (9)

s.t. : ΓT (V,1, xk,yk) ≥ 1− ζk, ζk ≥ 0, ∀ k ∈ {1, . . . ,m} .
Note that, following our definitions, we now have

ΓT (V,1, x,y) =
1√
n

n∑

i=1

⟨vTi , φ̂φφTi
(x,y)⟩ −max

y′ ̸=y

1√
n

n∑

i=1

⟨vTi , φ̂φφTi
(x,y′)⟩ .

We then obtain the optimization problem of Property 6 with the change of variables wTi ← vTi/
√
n,

ξk ← ζk, and C ← C/
√
n.

14
171

Lemma 7

Let y⋆
K = argmax

y∈YT ,K

FT (x,y) be the highest scoring multilabel in YT ,K . Suppose that

FT (x,y
⋆
K) ≥ 1

n

n∑

i=1

FwTi
(x,yTi,K)

def
= θx(K)

It follows that FT (x,y⋆
K) = maxy∈Y FT (x,y).

Proof. Consider a multilabel y† ̸∈ YT ,K . It follows that for all Ti we have

FwTi
(x,y†) ≤ FwTi

(x,yTi,K).

Hence,

FT (x,y
†) =

1

n

n∑

i=1

FwTi
(x,y†) ≤ 1

n

n∑

i=1

FwTi
(x,yTi,K) ≤ FT (x,y

⋆
K),

as required.

Lemma 8

Let the scoring function FT of each spanning tree of G be a σT -sub-Gaussian random variable
under the uniform distribution of labels; i.e., for each T on G, there exists σT > 0 such that for any
λ > 0 we have

E
y∼U(Y)

eλ(FT (y)−µT) ≤ e
λ2

2 σ2
T .

Let σ2 def
= E

T∼U(G)
σ2
T , and let

α
def
= Pr

T∼U(G)

(
µT ≤ µ ∧ FT (ŷ) ≥ F (ŷ) ∧ σ2

T ≤ σ2
)
.

Then
Pr

T ∼U(G)n

(
∃T ∈ T : ρT (ŷ) ≤ e−

1
2

(F (ŷ)−µ)2

σ2

)
≥ 1− (1− α)n .

Proof. From the definition of ρ(ŷ) and for any λ > 0, we have

ρT (y
∗) = Pr

y∼U(Y)
(FT (y) ≥ FT (ŷ))

= Pr
y∼U(Y)

(FT (y)− µT ≥ FT (ŷ)− µT)

= Pr
y∼U(Y)

(
eλ(FT (y)−µT) ≥ eλ(FT (ŷ)−µT)

)

≤ e−λ(FT (ŷ)−µT) E
y∼U(Y)

eλ(FT (y)−µT) (10)

≤ e−λ(FT (ŷ)−µT)e
λ2

2 σ2
T , (11)

where we have used Markov’s inequality for line (10) and the fact that FT is a σT -sub-Gaussian
variable for line (11). Hence, from this equation and from the definition of α, we have that

Pr
T∼U(G)

(
ρT (ŷ) ≤ e−λ(FT (ŷ)−µT)e

λ2

2 σ2
T ≤ e−λ(F (ŷ)−µ)e

λ2

2 σ2
)
≥ α .

Hence,
Pr

T ∼U(G)n

(
∀T ∈ T : ρT (ŷ) > e−λ(F (ŷ)−µ)e

λ2

2 σ2
)
≤ (1− α)n ,

which is equivalent to the statement of the lemma when we choose λ = [F (ŷ)− µ]/σ2.

15
172

The K-best Inference Algorithm

Algorithm 1 depicts the K-best inference algorithm for the ensemble of rooted spanning trees. The
algorithm takes as input the collection of spanning trees Ti ∈ T , the edge labeling scores

FET = {FTi,v,v′(yv, yv′)}(v,v′)∈Ei,yv∈Yv,yv′∈Yv′ ,Ti∈T

for fixed xk and w, the length of K-best list, and optionally (for training) also the true multilabel yk

for xk.

As a rooted tree implicitly orients the edges, for convenience we denote the edges as directed v →
pa(v), where pa(v) denotes the parent (i.e. the adjacent node on the path towards the root) of v. By
ch(v) we denote the set of children of v. Moreover, we denote the subtree of Ti rooted at a node v
as Tv and by Tv′→v the subtree consisting of Tv′ plus the edge v′ → v and the node v.

The algorithm performs a dynamic programming over each tree in turn, extracting the K-best list
of multilabels and their scores, and aggregates the results of the trees, retrieving the highest scoring
multilabel of the ensemble, the worst violating multilabel and the threshold score of the K-best lists.

The dynamic programming is based on traversing the tree in post-order, so that children of the node
are always processed before the parent. The algorithm maintains sorted K best lists of candidate
labelings of the subtrees Tv and Tv′→v , using the following data structures:

• Score matrix Pv , where element Pv(y, r) records the score of the r’th best multilabel of
the subtree Tv when node v is labeled as y.

• Pointer matrix Cv , where element Cv(y, r) keeps track of the ranks of the child nodes
v′ ∈ ch(v) in the message matrix Mv′→v that contributes to the score Pv(y, r).

• Message matrix Mv→pa(v), where element Mv→pa(v)(y
′, r) records the score of r’th best

multilabel of the subtree Tv→pa(v) when the label of pa(v) is y′.

• Configuration matrix Cv→pa(v), where element Cv→pa(v)(y
′, r) traces the label and rank

(y, r) of child v that achieves Mv→pa(v)(y
′, r).

The processing of a node v entails the following steps. First, the K-best lists of the children of
the node stored in Mv′→v are merged in amortized Θ(K) time per child node. This is achieved by
processing two child lists in tandem starting from the top of the lists and in each step picking the
best pair of items to merge. This process results in the score matrix Pv and the pointer matrix Cv .

Second, the K-best lists of Tv→pa(v) corresponding to all possible labels y′ of pa(v) are formed.
This is achieved by keeping the label of the head of the edge v → pa(v) fixed, and picking the
best combination of labeling the tail of the edge and selecting a multilabel of Tv consistent with that
label. This process results in the matrices Mv→pa(v) and Cv→pa(v). Also this step can be performed
in Θ(K) time.

The iteration ends when the root vroot has updated its score Pvroot . Finally, the multilabels in form
YTi,K are traced using the pointers stored in Cv and Cv→pa(v). The time complexity for a single
tree is Θ(Kℓ), and repeating the process for n trees gives total time complexity of Θ(nKℓ).

Master algorithm for training the model

The master algorithm (Algorithm 2) iterates over each training example until convergence. The
processing of each training example proceeds by identifying the K worst violators of each tree
together with the threhold score θi = θxi (line 5), determining the worst ensemble violator from
among them (line 6) and updating each tree by the worst ensemble violator (line 8). During the
early stages of the algorithm, it is not essential to identify the worst violator. We therefore propose
that initially K = 2 , and the iterations continue until no violators are identified (line 7). We then
increment K and continue until the condition (line 10-12) given by Lemma 7 is satisfied so that we
are assured of having converged to the global optimum.

16
173

Algorithm 1 Algorithm to obtain top K multilabels on a collection of spanning trees.
FindKBest(T , FET ,K,yi)
Input: Collection of rooted spanning trees Ti = (Ei, Vi),

edge labeling scores FET = {FT,v,v′(yv, yv′)}
Output: The best scoring multilabel y∗, worst violator ȳ, threshold θi

1: for Ti ∈ T do
2: Initialize Pv, Cv,Mv→pa(v), Cv→pa(v), ∀v ∈ Vi

3: I = nodes indices in post-order of the tree Ti

4: for j = 1 : |I| do
5: v = vI(j)
6: % Collect and merge K-best lists of children
7: if ch(v) ̸= ∅ then
8: Pv(y) = Pv(y) + kmax

rv,v′∈ch(v)

(∑
v′∈ch(v) (Mv′→v(y, rv))

)

9: Cv(y) = Pv(y) + argkmax
rv,v′∈ch(v)

(∑
v′∈ch(v) (Mv′→v(y, rv))

)

10: end if
11: % Form the K-best list of Tv→pa(v)

12: Mv→pa(v)(ypa(v)) = kmax
y,r

(
Pv(y, r) + FT,v→pa(v)(yv, ypa(v))

)

13: Cv→pa(v)(ypa(v)) = argkmax
uv,r

(
Pv(uv, r) + FT,v→pa(v)(uv, ypa(v))

)

14: end for
15: Trace back with Cv and Cv→pa(v) to get YTi,K .
16: end for
17: YT ,K =

⋃

Ti∈T
YTi,K

18: y∗ = argmax
y∈YT ,K

n∑

i=1

∑

(v,v′)=
e∈Ei

FTi,v,v′(yv, yv′)

19: ȳ = argmax
y∈YT ,K\yi

n∑

i=1

∑

(v,v′)=
e∈Ei

FTi,v,v′(yv, yv′)

20: θi =
n∑

i=1

∑

(v,v′)=
e∈Ei

FTi,v,v′(yTi,K,v, yTi,k,v′)

17
174

Algorithm 2 Master algorithm.
Input: Training sample {(xk,yk)}mk=1, collection of spanning trees T , minimum violation γ0
Output: Scoring function FT

1: Kk = 2, ∀k ∈ {1, · · · ,m}; wTi = 0, ∀ Ti ∈ T ; converged = false
2: while not(converged) do
3: converged = true
4: for k = {1, . . . ,m} do
5: ST = {STi,e(k,ue)|STi,e(k,ue) = ⟨wTi,e,φTi,e(xk,ue)⟩ , ∀(e ∈ Ei, Ti ∈ T ,ue ∈

Yv × Yv′)}
6: [y∗, ȳ, θi] = FindKBest(T , ST ,Ki,yi)
7: if FT (xi, ȳ)− FT (xi,yi) ≥ γ0 then
8: {wTi}Ti∈T = updateTrees({wTi}Ti∈T , xi, ȳ)
9: converged = false

10: else
11: if θi > FT (xi, ȳ) then
12: Ki = min(2Ki, |Y|)
13: converged = false
14: end if
15: end if
16: end for
17: end while

Derivation of the Marginal Dual

Definition 6. Primal L2-norm Random Tree Approximation

min
wTi ,ξk

1

2

n∑

i=1

||wTi ||
2
2 + C

m∑

k=1

ξk

s.t.
n∑

i=1

⟨wTi , φ̂φφTi
(xk,yk)⟩ −max

y ̸=yk

n∑

i=1

⟨wTi , φ̂φφTi
(xk,y)⟩ ≥ 1− ξk

ξk ≥ 0, ∀ k ∈ {1, . . . ,m},
where {wTi |Ti ∈ T } are the feature weights to be learned on each tree, ξk is the margin slack allo-
cated for each example xk, and C is the slack parameter that controls the amount of regularization in
the model. This primal form has the interpretation of maximizing the joint margins from individual
trees between (correct) training examples and all the other (incorrect) examples.

The Lagrangian of the primal form (Definition 6) is

L(wTi , ξ,ααα,βββ) =
1

2

n∑

i=1

||wTi ||
2
2 + C

m∑

k=1

ξk −
m∑

k=1

βkξk

−
m∑

k=1

∑

y ̸=yk

αk,y

(
n∑

i=1

⟨wTi ,∆φ̂φφTi
(xk,yk)⟩ − 1 + ξk

)
,

where αk and βk are Lagrangian multipliers that correspond to the constraints of the primal form,
and ∆φ̂φφTi

(xk,yk) = φ̂φφTi
(xk,yk) − φ̂φφTi

(xk,y). Note that given a training example-label pair
(xk,yk) there are exponential number of αk,y one for each constraint defined by incorrect example-
label pair (xk,y).

Setting the gradient of Lagrangian with respect to primal variables to zero, we obtain the following
equalities:

∂L
∂wTi

= wTi −
m∑

k=1

∑

y ̸=yk

αk,y∆φ̂φφTi
(xk,yk) = 0,

∂L
∂ξk

= C −
∑

y ̸=yk

αk,y − βk = 0,

18
175

which give the following dual optimization problem.
Definition 10. Dual L2-norm Random Tree Approximation

max
ααα≥0

αααᵀ1− 1

2
αααᵀ

(
n∑

i=1

KTi

)
ααα

s.t.
∑

y ̸=yk

αk,y ≤ C, ∀ k ∈ {1, . . . ,m},

where ααα = (αk,y)k,y is the vector of dual variables. The joint kernel

KTi(xk,y;xk′ ,y′) = ⟨φ̂φφTi
(xk,yk)− φ̂φφTi

(xk,y), φ̂φφTi
(xk′ ,yk′)− φ̂φφTi

(xk′ ,y′)⟩
= ⟨ϕ(xk),ϕ(xk′)⟩ϕ · ⟨ψTi(yk)− ψTi(y),ψTi(yk′)− ψTi(y

′)⟩ψ

= Kϕ(xk, xk′) ·
(
Kψ

Ti
(yk,yk′)−Kψ

Ti
(yk,y

′)−Kψ
Ti
(y,yk′) +Kψ

Ti
(y,y′)

)

= Kϕ(xk, xk′) ·K∆ψ
Ti

(yk,y;yk′ ,y′)

is composed by input kernel Kϕ and output kernel Kψ
Ti

defined by
Kϕ(xk, xk′) = ⟨ϕ(xk),ϕ(xk′)⟩ϕ

K∆ψ
Ti

(yk,y;yk′ ,y′) = Kψ
Ti
(yk,yk′)−Kψ

Ti
(yk,y

′)−Kψ
Ti
(yk′ ,y) +Kψ

Ti
(y,y′).

To take advantage of the spanning tree structure in solving the problem, we further factorize the dual
(Definition 10) according to the output structure [9, 16]. by defining a marginal dual variable µ as

µ(k, e,ue) =
∑

y ̸=yk

1{ψ(y)=ue}αααk,y,

where e = (j, j′) ∈ E is an edge in the output graph and ue ∈ Y × Y ′ is a possible label of edge e.
As each marginal dual variable µ(k, e,ue) is the sum of a collection of dual variables αk,y that has
consistent label (uj , uj′) = ue, we have the following

∑

ue

µ(k, e,ue) =
∑

y ̸=yk

αααk,y (12)

for an arbitrary edge e, independently of the structure of the trees.

The linear part of the objective (Definition 10) can be stated in term of µµµ for an arbitrary collection
of trees as

αααᵀ1 =
m∑

k=1

∑

y ̸=yk

αk,y =
1

|ET |

m∑

k=1

∑

e∈ET

∑

ue

µ(k, e,ue) =
1

|ET |
∑

e,k,ue

µ(k, e,ue) ,

where edge e = (j, j′) ∈ ET appearing in the collection of trees T .

We observe that the label kernel of tree Ti, Kψ
Ti

, decomposes on the edges of the tree as

Kψ
Ti
(y,y′) = ⟨y,y′⟩ψ =

∑

e∈Ei

⟨ye, y′e⟩ψ =
∑

e∈Ei

Kψ,e(ye, y
′
e).

Thus, the output kernel K∆ψ
Ti

and the joint kernel KTi also decompose

K∆ψ
Ti

(yk,y;yk′ ,y′) =
(
Kψ

Ti
(yk,yk′)−Kψ

Ti
(yk,y

′)−Kψ
Ti
(yk′ ,y) +Kψ

Ti
(y,y′)

)

=
∑

e∈Ei

(
Kψ,e

Ti
(yke, yk′e)−Kψ,e

Ti
(yke, y

′
e)−Kψ,e

Ti
(ye, yk′e) +Kψ,e

Ti
(ye, y

′
e)
)

=
∑

e∈Ei

K∆ψ,e
Ti

(yke, ye; yk′e, y
′
e),

KTi(xk,y;xk′ ,y′) = Kψ(xk, xk′) ·K∆ψ
Ti

(yk,y;yk′ ,y′)

= Kψ(xk, xk′) ·
∑

e∈Ei

K∆ψ,e(yke, ye; yk′e, y
′
e)

=
∑

e∈Ei

Ke(xk, ye;xk′ , y′e).

19
176

The sum of joint kernels of the trees can be expressed as
n∑

i=1

KTi(xk,y;xk′ ,y′) =
n∑

i=1

∑

e∈Ei

Ke(xk, ye;xk′ , y′e)

=
∑

e∈ET

∑

Ti∈T :
e∈Ei

Ke(xk, ye;xk′ , y′e)

=
∑

e∈ET

NT (e)K
e(xk, ye;xk′ , y′e)

where NT (e) denotes the number of occurrences of edge e in the collection of trees T .

Taking advantage of the above decomposition and of the Equation (12) the quadratic part of the
objective (Definition 10) can be stated in term of µµµ as

− 1

2
αααᵀ

(
n∑

i=1

KTi

)
ααα

= − 1

2
αααᵀ

(
∑

e∈ET

NT (e)K
e(xk,y;xk′ ,y′)

)
ααα

= − 1

2

m∑

k,k′=1

∑

e∈ET

NT (e)
∑

y ̸=yk

y′ ̸=yk′

α(k,y)Ke(xk, ye;xk′ , y′e)α(k
′,y′)

= − 1

2

m∑

k,k′=1

∑

e∈ET

NT (e)
∑

ue,u′
e

∑

y ̸=yk:ye=ue

y′ ̸=yk′ :y′
e=u′

e

α(k,y)Ke(xk,ue;xk′ ,u′
e)α(k

′,y′)

= − 1

2

m∑

k,k′=1

∑

e∈ET

NT (e)

|ET |2
∑

ue,u′
e

µ(k, e,ue)K
e(xk,ue;xk′ ,u′

e)µ(k
′, e,u′

e)

= − 1

2

∑

e,k,ue,
k′,u′

e

µ(k, e,ue)K
e
T (xk,ue;xk′ ,u′

e)µ(k
′, e,u′

e),

where ET is the union of the sets of edges appearing in T .

We then arrive at the following definition.

Definition 9. Marginalized Dual L2-norm Random Tree Approximation

max
µµµ∈Mm

1

|ET |
∑

e,k,ue

µ(k, e,ue)−
1

2

∑

e,k,ue,
k′,u′

e

µ(k, e,ue)K
e
T (xk,ue;x

′
k,u

′
e)µ(k

′, e,u′
e) ,

where Mm is marginal dual feasible set defined as (c.f., [9])

Mm =

⎧
⎨

⎩µµµ |µ(k, e,ue) =
∑

y ̸=yk

1{yke=ue}ααα(k,y) , ∀(k, e,ue)

⎫
⎬

⎭ .

The feasible set is composed of a Cartesian product of m identical polytopes Mm = M× · · ·×M,
one for each training example. Furthermore, each µµµ ∈ M corresponds to some dual variable ααα in
the original dual feasible set A = {ααα|α(k,y) ≥ 0,

∑
y ̸=yi

α(k,y) ≤ C, ∀k}.

20
177

Experimental Results

Table 2 provides the standard deviation results of the prediction performance results of Table 1 for
each algorithm in terms of the microlabel and 0/1 error rates. Values are obtained by five fold
cross-validation.

DATASET
MICROLABEL LOSS (%) 0/1 LOSS (%)

SVM MTL MMCRF MAM RTA SVM MTL MMCRF MAM RTA
EMOTIONS 1.9 1.8 0.9 1.4 0.6 3.4 3.5 3.1 4.2 1.5

YEAST 0.7 0.5 0.6 0.5 0.6 2.8 1.0 1.5 0.4 1.2
SCENE 0.3 0.5 0.3 0.1 0.3 1.4 3.6 1.2 0.9 0.6
ENRON 0.2 0.2 0.2 0.2 0.2 0.3 0.4 2.8 2.3 0.9
CAL500 0.3 0.3 0.3 0.2 0.4 0.0 0.0 0.0 0.0 0.0

FINGERPRINT 0.3 0.6 0.6 0.3 0.6 0.7 0.0 0.5 0.6 1.3
NCI60 0.7 0.6 1.3 0.9 1.6 1.3 2.0 1.4 1.2 2.2

MEDICAL 0.0 0.1 0.1 0.1 0.2 2.1 2.3 3.3 2.5 3.6
CIRCLE10 0.9 0.7 0.3 0.4 0.3 3.8 3.4 2.1 3.5 1.7
CIRCLE50 0.5 0.5 0.3 0.3 0.6 2.0 3.3 4.5 5.5 2.2

Table 2: Standard deviation of prediction performance for each algorithm in terms of microlabel
loss and 0/1 loss.

21
178

DISSERTATIONS IN INFORMATION AND COMPUTER SCIENCE

Aalto-DD144/2014 Eirola, Emil
Machine learning methods for incomplete data and variable selection.
2014.

Aalto-DD149/2014 Äijö, Tarmo
Computational Methods for Analysis of Dynamic Transcriptome and
Its Regulation Through Chromatin Remodeling and Intracellular
Signaling. 2014.

Aalto-DD156/2014 Sjöberg, Mats
From pixels to semantics: visual concept detection and its
applications. 2014.

Aalto-DD157/2014 Adhikari, Prem Raj
Probabilistic Modelling of Multiresolution Biological Data. 2014.

Aalto-DD171/2014 Suvitaival, Tommi
Bayesian Multi-Way Models for Data Translation in Computational
Biology. 2014.

Aalto-DD177/2014 Laitinen, Tero
Extending SAT Solver with Parity Reasoning. 2014.

Aalto-DD178/2014 Gonçalves, Nicolau
Advances in Analysis and Exploration in Medical Imaging. 2014.

Aalto-DD191/2014 Kindermann, Roland
SMT-based Verification of Timed Systems and Software. 2014.

Aalto-DD207/2014 Chen, Xi
Real-time Action Recognition for RGB-D and Motion Capture Data.
2014.

Aalto-DD211/2014 Soleimany, Hadi
Studies in Lightweight Cryptography. 2014.

179

9HSTFMG*agbafe+
9HSTFMG*agbafe+
9HSTFMG*agbafe+

