

slide 1 of 12

Using R in Triton

slide 2 of 12

R in Triton: General Information

● R is a very popular language for statistics, bioinformatics etc.

● R has a large collection of libraries provided by R CRAN
See: https://cran.r-project.org/

● In Triton R is provided through Modules environment

● R is a vectorized language and it utilizes available linear algebra
libraries (OpenBLAS,IntelMKL etc.). All versions of R in Triton are
compiled against these libraries.

● All modules have a large set of libraries pre-installed by admins.
We can add libraries to the installations or you can install them
yourself (more on that later).

https://cran.r-project.org/

slide 3 of 12

R in Triton: Running R programs
from scripts

Rscript script.R

● On desktops most users use R through IDE like Rstudio

● In Triton due to the queue system one needs to run R programs
from scripts

● Easiest way to do this is to use the Rscript command:

● Another option is to use R CMD BATCH, but it has few caveats

slide 4 of 12

R in Triton: Running R programs
from scripts

By default Rscript does few things differently to R CMD BATCH:

● It does not save nor restore a R environment
(--no-restore and –no-save for R CMD BATCH)

● Output is produced to stdout instead of script.Rout
(you got slurm output anyways)

● R startup jargon is skipped
(--slave for R CMD BATCH)

● It speeds up startup by skipping the load of some default
packages. You can set the packages to be loaded through:

Rscript --default-packages=methods,utils,stats script.R

slide 5 of 12

R in Triton: Example R program

● Example available in
https://github.com/AaltoScienceIT/triton-examples

● Single-CPU R example:

#!/bin/bash
#SBATCH -p short
#SBATCH -t 00:20:00
#SBATCH --ntasks=1
#SBATCH --mem=3G
#SBATCH -o serialR.out

module load R

echo 'Running a simple serial R example:'

srun Rscript serialR.R

https://github.com/AaltoScienceIT/triton-examples

slide 6 of 12

R in Triton: Example R program

● serialR.R

Run simple cross-validation method with caret and knn
https://github.com/tobigithub/caret-machine-learning
Tobias Kind (2015)

Single example, no cross-validation
 require(caret); data(BloodBrain); set.seed(123);
 fit1 <- train(bbbDescr, logBBB, "knn"); fit1

cross-validation example with method boot
 require(caret); data(BloodBrain); set.seed(123);
 tc <- trainControl(method="boot")
 fit1 <- train(bbbDescr, logBBB, trControl=tc, method="knn"); fit1

END

slide 7 of 12

R in Triton: Installing libraries

● Many libraries are already included in the modules and we
can add even more

● If you want to install your own, there are few caveats

1. R by default uses ~/R/R.version$platform-library/x.y
This is a problem as /home is a small and slow NFS.
Easiest solution is to create a folder Rlibs to $WRKDIR
and write
R_LIBS=/path/to/work/dir/Rlibs
to .Renviron

2. Libraries installed with one version of R do not necessarily
work with other version of R
→ Keep the same module version! (save collection)

slide 8 of 12

Trivially parallel:

● You can access SLURM_ARRAY_TASK_ID environment variable
from R with System.getenv(“SLURM_ARRAY_TASK_ID”)

● Example:

myfunc <- function(x) {
message(x)

}

myfunc(System.getenv(“SLURM_ARRAY_TASK_ID”))

R in Triton: Parallel R

slide 9 of 12

Different R packages allow for multiprocessor action for
independent tasks:

● parallel-package has mclapply and cluster constructs with
parLapply for parallel *apply

● foreach and doParallel can parallelize for-loops

● Rmpi,snow,snowfall can be used for parallelism across nodes

For dependent tasks:

● Rcpp can be used to create C code that can use OpenMP

R in Triton: Parallel R

slide 10 of 12

● Script is quite similar:

R in Triton: Parallel R example

#!/bin/bash
#SBATCH -p short
#SBATCH -t 00:20:00
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=4
#SBATCH --mem=8G
#SBATCH -o parallelR.out

module load R

echo 'Running parallel R example:'

srun Rscript parallelR.R

#!/bin/bash
#SBATCH -p short
#SBATCH -t 00:20:00
#SBATCH --ntasks=1
#SBATCH --mem=3G
#SBATCH -o serialR.out

module load R

echo 'Running a simple serial R example:'

srun Rscript serialR.R

slide 11 of 12

● R can get the number of CPUs from the environment:

● This is then used when calling mclapply, parLapply etc.
to define the number of workers used

R in Triton: Parallel R example

 cores <- as.integer(Sys.getenv("SLURM_CPUS_PER_TASK"))

slide 12 of 12

Any questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

