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Abstract. We present a compositional semantics and analysis frame-
work for hierarchical block diagrams (HBDs) in terms of atomic and
composite predicate transformers. Our framework consists of two com-
ponents: (1) a compiler that translates Simulink HBDs into an algebra
of transformers composed in series, in parallel, and in feedback; (2) an
implementation of the theory of transformers and static analysis tech-
niques for them in Isabelle. We evaluate our framework on several case
studies including a benchmark Simulink model by Toyota.

1 Introduction

Simulink3 is a widely used tool for modeling and simulating embedded control
systems. Simulink uses a graphical language based on hierarchical block diagrams
(HBDs). HBDs are networks of interconnected blocks, which can be either ba-
sic blocks from Simulink’s libraries, or composite blocks (subsystems), which are
themselves HBDs. Hierarchy is the primary modularization mechanism that lan-
guages like Simulink offer. It allows to structure large models and thus master
their complexity, improve their readability, and so on.

In this paper we present a compositional semantics and analysis framework
for HBDs, including but not limited to Simulink models. By “compositional” we
mean exploiting the hierarchical structure of these diagrams, for instance, reason-
ing about individual blocks and subsystems independently, and then composing
the results to reason about more complex systems. By “analysis”, we mean differ-
ent types of checks, including exhaustive verification (model-checking), but also
static analysis such as compatibility checking, which aims to check whether the
connections between two or more blocks in the diagram are valid, i.e., whether
the blocks are compatible.

Our framework is based on the theories of relational interfaces and refine-
ment calculus of reactive systems [23,19]. The framework can express open,
non-deterministic, and non-input-receptive systems, and both safety and live-
ness properties. As syntax, we use (temporal or non) logic formulas on input,
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Fig. 1: Three ways to view and translate the same block diagram.

output, and state variables. As semantics we use predicate and property trans-
formers [2,19]. To form complex systems from simpler ones we use composition
in series, in parallel, and in feedback. Apart from standard verification (of a sys-
tem against a property) the framework offers: (1) compatibility checking during
composition; and (2) refinement, a binary relation between components, which
characterizes substitutability (when can a component replace another one while
preserving system properties). Compatibility checking is very useful, as it offers a
lightweight alternative to verification, akin to type-checking [23]. Refinement has
multiple usages, including compositional and incremental design, and reusabil-
ity. This makes the framework compelling for application on tools like Simulink,
which have a naturally compositional hierarchical language.

In order to define the semantics of HBDs in a compositional framework, one
needs to do two things. First, define the semantics of every basic block in terms
of an atomic element of the framework. We do this by defining for each Simulink
basic block a corresponding (atomic) monotonic predicate transformer (MPT).
Second, one must define the semantics of composite diagrams. We do this by
mapping such diagrams to composite MPTs (CPTs), i.e., MPTs composed in
series, in parallel, or in feedback.

As it turns out, mapping HBDs to CPTs raises interesting problems. For
example, consider the block diagram in Fig. 1a. Let PA and PB be transformers
modeling the blocks A and B in the diagram. How should we compose PA and
PB in order to get a transformer that represents the entire diagram? As it turns
out, there are several possible options. One option is to compose first PA and PB

in series, and then compose the result in feedback, following Fig. 1a. This results
in the composite transformer feedbacka(PA ◦ (PB ‖ Id)), where ◦ is composition
in series, ‖ in parallel, and feedbackx is feedback applied on port x. Id is the
transformer representing the identity function. A has two outputs and B only one
input, therefore to connect them in series we first form the parallel composition
PB ‖ Id, which represents a system with two inputs.

Another option is to compose the blocks in series in the opposite order,
PB followed by PA, and then apply feedback. This results in the transformer
feedbackc((PB ‖ Id) ◦ PA). A third option is to compose the two blocks first
in parallel, and then apply feedback on the two ports a, c. This results in the
transformer feedbacka,c(PA ‖PB). Although semantically equivalent, these three
transformers have different computational properties.

Clearly, for complex diagrams, there are many possible translation options.
A main contribution of this paper is the study of these options in depth. Specif-
ically, we present three different translation strategies: feedback-parallel transla-



tion which forms the parallel composition of all blocks, and then applies feed-
back; incremental translation which orders blocks topologically and composes
them one by one; and feedbackless translation, which avoids feedback composi-
tion altogether, provided the original block diagram has no algebraic loops.

Having defined the compositional semantics of HBDs in terms of CPTs, we
turn to analysis. Our main focus in this paper is checking diagram compatibility,
which roughly speaking means that the input requirements of every block in
the diagram are satisfied [23,19]. We check compatibility by (1) expanding the
definitions of CPTs to obtain an atomic MPT; (2) simplifying the formulas in
the atomic MPT; and (3) checking satisfiability of the resulting formulas.

We report on a toolset which implements the framework described above. The
toolset consists of (1) the simulink2isabelle compiler which translates hierar-
chical Simulink models into CPTs implemented in the Isabelle proof assistant4,
and (2) the implementation of the theory of CPTs, together with expansion and
simplification techniques in Isabelle. We evaluate our framework on several case
studies, including a Fuel Control System benchmark by Toyota [10,11].

2 Hierarchical Block Diagrams

A hierarchical block diagram (HBD) is a network of interconnected blocks.5

Blocks can be either basic blocks (from Simulink libraries), or composite blocks
(subsystems). A basic block is described by: (1) a label, (2) a list of parameters,
(3) a list of in- and out-ports, (4) a vector of state variables with predefined
initial values (i.e., the local memory of a block) and (5) functions to compute
the outputs and next state variables. The outputs are computed from the inputs,
current state and parameters. State variables are updated by a function with the
same arguments. Subsystems are defined by their label, list of in- and out-ports,
and the list of block instances that they contain – both atomic and composite.

Simulink allows to model both discrete and continuous-time blocks. For ex-
ample, UnitDelay (graphically represented as the 1

z block in a Simulink diagram)
is a discrete-time block which outputs at step n the input at step n − 1. An
Integrator is a continuous-time block whose output is described by a differential
equation solved with numerical methods. We interpret a Simulink model as a
discrete-time model (essentially an input-output state machine, possibly infinite-
state) which evolves in a sequence of discrete steps. Each step has duration ∆t,
which is a parameter (user-defined or automatically computed by Simulink based
on the blocks’ time rates).

Algebraic-loop-free diagrams. In this paper we consider diagrams which are
free from algebraic loops. By “algebraic loop” we mean a feedback loop result-
ing in instantaneous cyclic dependencies. More precisely, the way we define and
check for algebraic loops is the following: first, we build a directed dependency

4 https://isabelle.in.tum.de/
5 Our exposition focuses on HBDs as implemented in Simulink, but our method and

tool can also be applied to other block-diagram based languages with minor changes.
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Fig. 2: An extract of Toyota’s Simulink Fuel Control System model [10,11]: this
diagram is algebraic-loop-free despite the fact that the feedback loop in red is
not “broken” by blocks such as Integrator or UnitDelay.

graph whose nodes are the input/output ports of the diagram, and whose edges
correspond to connections or to input-output dependencies within a block; sec-
ond, we check whether this graph has a cycle. The class of algebraic-loop-free
diagrams includes all diagrams whose feedback loops are “broken” by blocks such
as Integrator or UnitDelay. The output of such blocks does not depend on their
input (it only depends on their state), which prevents a cycle from forming in
the dependency graph. For example, the diagram of Fig. 1 is algebraic-loop-free
if the output of block B does not depend on its input.

But algebraic-loop-free diagrams can also be diagrams where feedback loops
are not broken by Integrators or UnitDelays. An example is shown in Fig. 2.
Despite the feedback loop in red, which creates an apparent dependency cycle,
this diagram is algebraic-loop-free. The reason is that the Fuel Cmd Open block

is the function
1

14.7
(−0.366 + 0.08979u7u3 − 0.0337u7u

2
3 + 0.0001u27u3), where

u = (u1, u2, ..., u7) is the input vector. This function only depends on variables
u3, u7 of the vector u, and is independent from u1, u2, u4, u5, u6. Since the
output of the block does not depend on the 6th input link (i.e., u6), the cycle
is broken. Similarly, the outputs of Fuel Cmd Open Pwr and Fuel Cmd Closed
are also independent from u6, which prevents the other two feedback loops from
forming a cyclic dependency. This type of algebraic-loop-free pattern abounds
in Simulink models found in the industry.

Running example. Throughout the paper we illustrate our methods using a
simple example of a counter, shown in Fig. 3. This is a hierarchical (two-level)
Simulink model. The top-level diagram (Fig. 3a) contains three block instances:
the step of the counter as a Constant basic block, the subsystem DelaySum, and
the Scope basic block which allows to view simulation results. The subsystem
DelaySum (Fig. 3b) contains a UnitDelay block instance which models the state
of the counter. UnitDelay can be specified by the formula a = s∧ s′ = c, where c
is the input, a the output, s the current state and s′ the next state variable. We
assume that s is initially 0. The Add block instance adds the two input values
and outputs the result in the same time step: c = f + e. The junction after link
a (black dot in the figure) can be seen as a basic block duplicating (or splitting)
its input to its two outputs: f = a ∧ g = a.
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Fig. 3: Simulink model of a counter with step 1.

3 Basic Blocks as Monotonic Predicate Transformers

Monotonic predicate transformers [6] (MPTs) are an expressive formalism, used
within the context of programming languages to model non-determinism, cor-
rectness (both functional correctness and termination), and refinement [2]. In
this paper we show how MPTs can also be used to give semantics to HBDs. We
consider basic blocks in this section, which can be given semantics in terms of
atomic MPTs. In the next section we consider general diagrams, which can be
mapped to composite MPTs.

3.1 Monotonic Predicate Transformers

A predicate on an arbitrary set Σ is a function q : Σ → Bool. Predicate q can
also be seen as a subset of Σ: for σ ∈ Σ, σ belongs to the subset iff q(σ) is true.
Predicates can be ordered by the subset relation: we write q ≤ q′ if predicate q,
viewed as a set, is a subset of q′. Pred(Σ) denotes the set of predicates Σ → Bool.

A predicate transformer is a function S : (Σ′ → Bool) → (Σ → Bool), or
equivalently, S : Pred(Σ′) → Pred(Σ). S takes a predicate on Σ′ and returns a
predicate on Σ. S is monotonic if ∀q, q′ : q ≤ q′ ⇒ S(q) ≤ S(q′).

Traditionally, MPTs have been used to model sequential programs using
weakest precondition semantics. Given a MPT S : (Σ′ → Bool)→ (Σ → Bool),
and a predicate q′ : Σ′ → Bool capturing a set of final states, S(q′) captures the
set of all initial states, such that if the program is started in any state in S(q′),
it is guaranteed to finish in some state in q′. But this is not the only possible
interpretation of S. S can also model input-output systems. For instance, S
can model a stateless system with a single inport ranging over Σ, and a single
outport ranging over Σ′. Given a predicate q′ characterizing a set of possible
output values, S(q′) characterizes the set of all input values which, when fed into
the system, result in the system outputting a value in q′. As an example, the
identity function can be modeled by the MPT Id : Pred(Σ)→ Pred(Σ), defined
by Id(q) = q, for any q.

MPTs can also model stateful systems. For instance, consider the UnitDelay
described in §2. Let the input, output, and state variable of this system range over
some domain Σ. Then, this system can be modeled as a MPT S : Pred(Σ×Σ)→
Pred(Σ × Σ). The Cartesian product Σ × Σ captures pairs of (input, current
state) or (output, next state) values. Intuitively, we can think of this system as
a function which takes as input (x, s), the input x and the current state s, and



returns (y, s′), the output and the next state s′, such that y = s and s′ = x. The
MPT S can then be defined as follows:

S(q) = {(x, s) | (s, x) ∈ q}.

In the definition above we view predicates q and S(q) as sets.
Syntactically, a convenient way to specify systems is using formulas on input,

output, and state variables. For example, the identity system can be specified
by the formula y = x, where y is the output variable and x is the input. The
UnitDelay system can be specified by the formula y = s ∧ s′ = x. We next
introduce operators which define MPTs from predicates and relations.

For a predicate p : Σ → Bool and a relation r : Σ → Σ′ → Bool, we define
the assert MPT, {p} : Pred(Σ) → Pred(Σ), and the non-deterministic update
MPT, [r] : Pred(Σ′)→ Pred(Σ), where:

{p}(q) = (p ∧ q) and [r](q) = {σ | ∀σ′ : σ′ ∈ r(σ)⇒ σ′ ∈ q}

Transformer {p} is used to model non-input-receptive systems, that is, sys-
tems where some inputs are illegal [23]. {p} constrains the inputs so that they
must satisfy predicate p. It accepts only those inputs and behaves like the identity
function. That is, {p}models a partial identity function, restricted to the domain
p. Transformer [r] models an input-receptive but possibly non-deterministic sys-
tem. Given input σ, the system chooses non-deterministically some output σ′

such that σ′ ∈ r(σ) is true. If no such σ′ exists, then the system behaves mirac-
ulously [2]. In our framework we ensure non-miraculous behavior as explained
below, therefore, we do not detail further this term.

3.2 Semantics of Basic Blocks as Monotonic Predicate Transformers

To give semantics to basic Simulink blocks, we often combine {p} and [r] us-
ing the serial composition operator ◦, which for predicate transformers is sim-
ply function composition. Given two MPTs S : Pred(Σ2) → Pred(Σ1) and T :
Pred(Σ3) → Pred(Σ2), their serial composition (S ◦ T ) : Pred(Σ3) → Pred(Σ1)
is defined as (S ◦ T )(q) = S(T (q)).

For example, consider a block with two inputs x, y and one output z, per-
forming the division z = x

y . We want to state that division by zero is illegal,

and therefore, the block should reject any input where y = 0. This block can be
specified as the MPT

Div = {λ(x, y) : y 6= 0} ◦ [λ(x, y), z : z =
x

y
]

where we employ lambda-notation for functions.
In general, and in order to ensure non-miraculous behavior, we model non-

input-receptive systems using a suitable assert transformer {p} such that in
{p} ◦ [r], if p is true for some input x, then there exists output y such that (x, y)
satisfies r. MPTs which do not satisfy this condition are not considered in our
framework. This is the case, for example, of the MPT [λ(x, y), z : y 6= 0∧z = x

y ].



For a function f : Σ → Σ′ the functional update [f ] : Pred(Σ′)→ Pred(Σ) is
defined as [λσ, σ′ : σ′ = f(σ)] and we have

[f ](q) = {σ | f(σ) ∈ q} = f−1(q)

Functional predicate transformers are of the form {p} ◦ [f ], and relational
predicate transformers are of the form {p} ◦ [r], where p is a predicate, f is a
function, and r is a relation. Atomic predicate transformers are either functional
or relational transformers. Div is a functional predicate transformer which can
also be written as Div = {λx, y : y 6= 0} ◦ [λx, y : x

y ].

For assert and update transformers based on Boolean expressions we intro-
duce a simplified notation that avoids lambda abstractions. If P is a Boolean
expression on some variables x1, . . . , xn, then {x1, . . . , xn : P} denotes the assert
transformer {λx1, . . . , xn : P}. Similarly if R is a Boolean expression on vari-
ables x1, . . . , xn, y1, . . . , yk and F is a tuple of expressions on variables x1, . . . , xn,
then [x1, . . . , xn  y1, . . . , yk : R] and [x1, . . . , xn  F ] are notations for
[λ(x1, . . . , xn), (y1, . . . , yk) : R] and [λx1, . . . , xn : F ], respectively. With these
notations the Div transformer becomes:

Div = {x, y : y 6= 0} ◦ [x, y  
x

y
]

Other basic Simulink blocks include constants, delays, and integrators. Let
us see how to give semantics to these blocks in terms of MPTs. A constant block
parameterized by constant c has no input, and a single output equal to c. As a
predicate transformer the constant block has as input the empty tuple (), and
outputs the constant c:

Const(c) = [() c]

The unit delay block is modeled as the atomic predicate transformer

UnitDelay = [x, s s, x]

Simulink includes continuous-time blocks such as the integrator, which com-
putes the integral

∫ x

0
f of a function f . Simulink uses different integration meth-

ods to simulate this block. We use the Euler method with fixed time step ∆t
(a parameter). If x is the input, y the output, and s the state variable of the
integrator, then y = s and s′ = s + x · ∆t . Therefore, the integrator can be
modeled as the MPT

Integrator(∆t) = [x, s s, s+ x ·∆t ]

All other Simulink basic blocks fall within these cases discussed above. Re-
lation (1) introduces the definitions of some blocks that we use in our examples.

Add = [x, y  x+ y] Split = [x x, x] Scope = Id (1)



4 HBDs as Composite Predicate Transformers

4.1 Composite Predicate Transformers

The semantics of basic Simulink blocks is defined using monotonic predicate
transformers. To give semantics to arbitrary block diagrams, we map them to
composite predicate transformers (CPTs). CPTs are expressions over the atomic
predicate transformers using serial, parallel, and feedback composition operators.
Here we focus on how these operators instantiate on functional predicate trans-
formers, which are sufficient for this paper. The complete formal definitions of
the operators can be found in [7] and in the Isabelle theories that accompany
this paper.6

Serial composition ◦ has already been introduced in §3.1. For two functional
predicate transformers S = {p} ◦ [f ] and T = {p′} ◦ [f ′], it can be shown that
their serial composition satisfies:

S ◦ T = {p ∧ (p′ ◦ f)} ◦ [f ′ ◦ f ] (2)

(2) states that input x is legal for S ◦ T if x is legal for S and the output of S,
f(x), is legal for T , i.e., (p∧ (p′ ◦ f))(x) = p(x)∧ p′(f(x)) is true. The output of
S ◦ T is (f ′ ◦ f)(x) = f ′(f(x)).

For two MPTs S : Pred(Y ) → Pred(X) and T : Pred(Y ′) → Pred(X ′),
their parallel composition is the MPT S ‖T : Pred(Y × Y ′)→ Pred(X ×X ′). If
S = {p} ◦ [f ] and T = {p′} ◦ [f ′] are functional predicate transformers, then it
can be shown that their parallel composition satisfies:

S ‖T = {x, x′ : p(x) ∧ p(x′)} ◦ [x, x′  f(x), f ′(x′)] (3)

(3) states that input (x, x′) is legal for S ‖T if x is a legal input for S and x′ is
a legal input for T , and that the output of S ‖T is the pair (f(x), f ′(x′)).

For S : Pred(U ×Y )→ Pred(U ×X) as in Fig. 4a, the feedback of S, denoted
feedback(S) : Pred(Y )→ Pred(X) is obtained by connecting output v to input u
(Fig. 4b). The feedback operator that we use in this paper is a simplified version
of the one defined in [20]. It is specifically designed for a component S having
the structure shown in Fig. 4c, i.e., where the first output v depends only on the
second input x. We call such components decomposable. The result of applying
feedback to a decomposable block is depicted in Fig. 4d.

If S is a decomposable functional predicate transformer, i.e., if S = {p} ◦
[u, x  f ′(x), f(u, x)], then it can be shown that feedback(S) is functional and
it satisfies:

feedback(S) = {x : p(f ′(x), x))} ◦ [x f(f ′(x), x)] (4)

That is, input x is legal for the feedback if p(f ′(x), x) is true, and the output for
x is f(f ′(x), x).

The fact that the diagram is algebraic-loop-free implies that whenever we
attempt to compute feedback(S), S is guaranteed to be decomposable. However,

6 Available at: http://users.ics.aalto.fi/iulia/sim2isa.shtml.
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Fig. 4: (a) MPT S, (b) feedback(S), (c) decomposable S, (d) feedback of (c).

we only know that S = {p} ◦ [h] for some p and h, and we do not know what
f and f ′ are. We can compute f and f ′ by setting f = snd ◦ h, f0 = fst ◦ h,
and f ′(x) = f0(u0, x) for some arbitrary fixed u0, where fst and snd are the
functions that select the first and second elements of a pair, respectively.

As an illustration of how CPTs can give semantics to HBDs, consider our
running example (Fig. 3). An example mapping of the DelaySum subsystem and
of the top-level Simulink model yields the following two CPTs:

DelaySum = feedback((Add ‖ Id) ◦ UnitDelay ◦ (Split ‖ Id))

Counter = (Const(1) ‖ Id) ◦ DelaySum ◦ (Scope ‖ Id)
(5)

The Id transformers in these definitions are for propagating the state introduced
by the unit delay. Expanding the definitions of the basic blocks, and applying
properties (2), (3), and (4), we obtain the simplified MPTs for the entire system:

DelaySum = [x, s s, s+ x] and Counter = [s s, s+ 1] (6)

4.2 Translating HBDs to CPTs

As illustrated in the introduction, the mapping from HBDs to CPTs is not
unique: for a given HBD, there are many possible CPTs that we could generate.
Although these CPTs are semantically equivalent, they have different simplifi-
ability properties (see §4.3 and §5). Therefore, the problem of how exactly to
map a HBD to a CPT is interesting both from a theoretical and from a practical
point of view. In this section, we describe three different translation strategies.

In what follows, we describe how a flat (non-hierarchical), connected diagram
is translated. If the diagram consists of many disconnected “islands”, we can
simply translate each island separately. Hierarchical diagrams are translated
bottom-up: we first translate the subsystems, then their parent, and so on.

Feedback-parallel translation. The feedback-parallel translation strategy (FPT)
first composes all components in parallel, and then connects outputs to inputs
by applying feedback operations. FPT is illustrated in Fig. 5a, for the DelaySum
component of Fig. 3b. The Split MPT models the junction after link a.

Applying FPT on the DelaySum diagram yields the following CPT:

DelaySum = feedback3([f, c, a, e, s f, e, c, s, a]

◦ (Add ‖UnitDelay ‖Split) ◦ [c, a, s′, f, g  f, c, a, s′, g])
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where feedback3(·) = feedback(feedback(feedback(·))) denotes application of the
feedback operator 3 times, on the variables f , c, and a, respectively (recall that
feedback works only on one variable at a time, the first input and first output of
the argument transformer). In order to apply feedback3 to the parallel composi-
tion Add ‖UnitDelay ‖ Split, we first have to reorder its inputs and outputs, such
that the variables on which the feedbacks are applied come first in matching
order. This is achieved by the rerouting transformers [f, c, a, e, s  f, e, c, s, a]
and [c, a, s′, f, g  f, c, a, s′, g].

Incremental translation. The incremental translation strategy (IT) composes
components one by one, after having ordered them in topological order accord-
ing to the dependencies in the diagram. When composing A with B, a decision
procedure determines which composition operator(s) should be applied, based
on dependencies between A and B. If A and B are not connected, parallel com-
position is applied. Otherwise, serial composition is used, possibly together with
feedback if necessary.

The IT strategy is illustrated in Fig. 5b. First, topological sorting yields the
order Add,UnitDelay, Split. So IT first composes Add and UnitDelay. Since the
two are connected with c, serial composition is applied, obtaining the CPT

ICC1 = (Add ‖ Id) ◦ UnitDelay

As in the example in the introduction, Id is used here to match the number of
outputs of Add with the number of inputs of UnitDelay.

Next, IT composes ICC1 with Split. This requires both serial composition and
feedback, and yields the final CPT:

DelaySum = feedback(ICC1 ◦ (Split ‖ Id))

It is worth noting that composing systems incrementally in this way
might result in not the most natural compositions. For example, consider
the diagram from Fig. 6. The “natural” CPT for this diagram is probably:
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(Const(1) ‖Const(0)) ◦Div ◦ Split ◦ (Scope ‖ Scope). Instead, IT generates the fol-
lowing CPT: (Const(1) ‖Const(0)) ◦ Div ◦ Split ◦ (Scope ‖ Id) ◦ (Id ‖ Scope). More
sophisticated methods may be developed to extract parallelism in the diagram
and avoid redundant Id compositions like in the above CPT. This study is left
for future work.

Feedbackless translation. Simplifying a CPT which contains feedback op-
erators involves performing decomposability tests, function compositions which
include variable renamings, and other computations which turn out to be re-
source consuming (see §5). For reasons of scalability, we would therefore like to
avoid feedback operators in the generated CPTs. The feedbackless translation
strategy (NFBT) avoids feedback altogether, provided the diagram is algebraic-
loop-free. The key idea is that, since the diagram has no algebraic loops, we
should be able to eliminate feedback and replace it with direct operations on
current- and next-state variables, just like with basic blocks. In particular, we
can decompose UnitDelay into two Id transformers, denoted Idud1 and Idud2: Idud1
computes the next state from the input, while Idud2 computes the output from
the current state.

Generally, we decompose all components having multiple outputs into several
components having each a single output. For each new component we keep only
the inputs they depend on, as shown in Fig. 5c. Thus, the Split component from
Fig. 5b is also divided into two Id components, denoted Idsplt1 and Idsplt2.

Decomposing into components with single outputs allows to compute a sep-
arate CPT for each of the outputs. Then we take the parallel composition of
these CPTs to form the CPT of the entire diagram. Doing so on our running
example, we obtain:

DelaySum = [s, e s, s, e] ◦
((

Idud2 ◦ Idsplt2
)
‖
(
((Idud2 ◦ Idsplt1) ‖ Id) ◦Add ◦ Idud1

))
Because Idud1, Idud2, Idsplt1 and Idsplt2 are all Ids, and Id ◦ A = A ◦ Id = A and
Id ‖ Id = Id (thanks to polymorphism), this CPT is reduced to DelaySum =
[s, e s, s, e] ◦ (Id ‖Add). Our tool directly generates this simplified CPT.

4.3 Simplifying CPTs and Checking Compatibility

Once a set of CPTs has been generated, they can be subjected to various static
analysis and verification tasks. Currently, our toolset mainly supports static
compatibility checks, which amount to checking whether any CPT obtained from
the diagram is equivalent to the MPT Fail = {x : false}. Fail corresponds to an
invalid component, indicating that the composition of two or more blocks in the
diagram is illegal [23,19].



Compatibility checking is not a trivial task. Two steps are performed in order
to check whether a certain CPT is equivalent to Fail: the CPT is (1) expanded, and
(2) simplified. By expansion we mean replacing the serial, parallel, and feedback
composition operators by their definitions (2), (3), (4). As a result of expansion,
the CPT is turned into an MPT of the form {p}◦ [f ]. By simplification we mean
simplifying the formulas p and f , e.g., by eliminating internal variables.

5 Implementation and Evaluation

Our framework has been implemented and is publicly downloadable from http:
//users.ics.aalto.fi/iulia/sim2isa.shtml. The implementation consists
of two components: (1) the simulink2isabelle compiler, which takes as input
Simulink diagrams and translates them into CPTs, using the strategies described
in §4.2; and (2) an implementation of the theory of CPTs, together with simpli-
fication strategies and static analysis checks such as compatibility checks, in the
Isabelle theorem prover. In this section we present the toolset and report evalu-
ation and analysis results on several case studies, including an industrial-grade
benchmark by Toyota [10,11].

5.1 Toolset

simulink2isabelle, written in Python, takes as input Simulink files in XML
format and produces valid Isabelle theories that can be subjected to compati-
bility checking and verification. The compiler currently handles a large subset
of Simulink’s blocks, including math and logical operators, continuous, discon-
tinuous and discrete blocks, as well as sources, sinks, and subsystems (including
enabled and switch case action subsystems). This subset is enough to express
industrial-grade models such as the Toyota benchmarks.

During the parsing and preprocessing phase of the input Simulink file, the
tool performs a set of checks, including algebraic loop detection, unsupported
blocks and/or block parameters, malformed blocks (e.g., a function block refer-
ring to a nonexistent input), etc., and issues possible warnings/errors.

simulink2isabelle implements all three translation strategies as options
-fp, -ic and -nfb, and also takes two additional options: -flat (flatten dia-
gram) and -io (intermediate outputs, applicable to -ic). All options apply to
any Simulink model. Option flat flattens the hierarchy of the HBD and pro-
duces a single diagram consisting only of basic blocks (no subsystems), on which
the translation is then applied. Option io generates and names all intermediate
CPTs produced during the translation process. These names are then used in
the CPT for the top-level system, to make it shorter and more readable. In ad-
dition, the intermediate CPTs can be expanded and simplified incrementally by
Isabelle, and used in their simplified form when computing the CPT for the next
level up. This generally results in more efficient simplification. Another benefit of
producing intermediate CPTs is the detection of incompatibilities early during
the simplification phase. Moreover, this indicates the group of components at
fault and helps localize the error.

http://users.ics.aalto.fi/iulia/sim2isa.shtml
http://users.ics.aalto.fi/iulia/sim2isa.shtml


The second component of our toolset includes a complete implementation of
the theory of MPTs and CPTs in Isabelle. In addition, we have implemented
in Isabelle a set of functions (keyword simulink) which perform expansion and
simplification automatically in the generated CPTs, and also generate automat-
ically proved theorems of the simplified formulas. After expansion and simpli-
fication, we obtain for the top-level system a single MPT referring only to the
external input, output, and state/next state variables of the system (and not to
the internal links of the diagram).

For instance, when executed on our running example (Fig. 3) with the IT
option, the tool produces the Isabelle code:

simulink DelaySum = feedback((Add ‖ Id) ◦ UnitDelay ◦ (Split ‖ Id))

simulink Counter = (Const(1) ‖ Id) ◦ DelaySum ◦ (Scope ‖ Id)

When executed in Isabelle, this code automatically generates the definitions
(5) as well as the simplification theorems (6), and automatically proves these
theorems. Note that the simplification theorems also contain the final MPT for
the entire system. In general, when the diagram contains continuous-time blocks
such as Integrator, the final simplified MPT will be parameterized by ∆t .

As another example, when we run the tool on the example of Fig. 6, we
obtain the theorem ConstDiv = Fail, which states that the system has no legal
inputs. This reveals the incompatibility due to performing a division by zero.

5.2 Evaluation

We evaluated our toolset on several case studies, including the Foucault pendu-
lum, house heating and anti-lock braking systems from the Simulink examples
library.7 Due to space limitations, we only present here the results obtained on
the running example (Fig. 3) and the Fuel Control System (FCS) model de-
scribed in [10,11]. FCS solves the problem of maintaining the ratio of air mass
and injected fuel at the stoichiometric value [5], i.e., enough air is provided
to completely burn the fuel in a car’s engine. This control problem has im-
portant implications on lowering pollution and improving engine performance.
Three designs are presented in [10,11], all modeled in Simulink, but differing
in their complexity. The first model is the most complex, incorporating already
available subsystems from the Simulink library. The second and third models
represent abstractions of this main design, but they are still complicated for ver-
ification purposes. The second model is formalized as Hybrid I/O Automata [15],
while the third is presented as Polynomial Hybrid I/O Automata [8]. We eval-
uate our approach on the third model designed with Simulink, available from
http://cps-vo.org/group/ARCH/benchmarks. This model has a 3-level hierar-
chy with a total of 104 block instances (97 basic blocks and 7 subsystems), and
101 connections, of which 8 feedbacks.

First, we run all three translation strategies on each model using the
simulink2isabelle compiler. Then, we expand/simplify the CPTs within Is-
abelle and at the same time check for incompatibilities. The translation strategies

7 http://se.mathworks.com/help/simulink/examples.html

http://cps-vo.org/group/ARCH/benchmarks
http://se.mathworks.com/help/simulink/examples.html


FPT IT NFBT
HBD FBD HBD FBD IO-HBD IO-FBD

Translation
Ttrans 0.082 0.093 0.081 0.087 0.081 0.085 0.096
Lcpt 722 629 1131 1246 1146 1134 1159

Ncpt 10 9 10 9 14 14 15

Expans., simplif., and
compatibility check

Tsimp 0.596 0.575 0.184 0.225 0.240 0.279 0.214

Psimp 0.006 0.005 0.005 0.006 0.006 0.007 0.006

Table 1: Experimental results for the running example (Fig. 3).

FPT IT NFBT
HBD FBD HBD FBD IO-HBD IO-FBD

Translation
Ttrans 0.249 0.329 0.213 0.222 0.220 0.260 0.605
Lcpt 18895 17432 87006 116550 86318 108001 46863

Ncpt 127 120 127 120 236 236 269

Expansion,
simplification, and
compatibility check

Tsimp 894.472 3471.317 617.873 2439.229 267.052 417.05 57.425

Psimp 7.144 7.267 7.856 7.161 6.742 6.228 5.18

Lsimp 158212 158212 157791 157797 127132 127642 122001

Table 2: Experimental results for the FCS model.

are run with the following options: FPT without/with flattening (HBD/FBD),
IT without/with flattening and without/with io option (IO), and NFBT. NFBT
by construction generates intermediate outputs and does not preserve the struc-
ture of the hierarchy in the result, thus, its result is identical with/without the
options. The results from the running example are shown in Table 1 and from
the FCS model in Table 2.

The notations used in the tables are as follows: (1) Ttrans: time to generate
the Isabelle CPTs from the Simulink model, (2) Lcpt: length of the produced

CPTs (# characters), (3)Ncpt: number of generated CPTs, (4) Tsimp: total time

needed for expansion and simplification, (5) Psimp: time to print the simplified

formula, (6) Lsimp: length of the simplified formula (# chars). All times are in

seconds. We report separately the time to print the final formulas (Psimp), since

printing takes significant time in the Isabelle/ML framework.

Let us now focus on Table 2 since it contains the most relevant results due to
the size and complexity of the system. Observe that the translation time (Ttrans)
is always negligible compared to the other times.8 Also, NFBT generates the
most CPTs, which are relatively short compared to the other translations. This
is one of the reasons why CPTs produced by NFBT are easier to expand/simplify
than those produced by the other methods. The other and main reason is that
applying the feedback operator requires identifying f and f ′, computing several
function compositions, etc. We note that a Simulink feedback connection can
transfer an array of n values, which is translated by our tool as n successive
applications of feedback.
8 Ttrans for NFBT is almost twice larger than for FPT, IT and IT-IO. The reason is

that NFBT executes extra steps, such as splitting blocks with multiple outputs and
removing CPTs that are not used in calculating the system’s output.
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Fig. 7: Part of the FCS model: setting simTime to 10 results in incompatibility.

Readability. An important aspect of the produced CPTs is their readabil-
ity. Defining quantitative readability measures such as number, length, nesting
depth, etc., of the generated CPTs, is beyond the scope of this paper. Neverthe-
less, we can make the following (subjective) observations: (1) IT with option -io
improves readability as the intermediate outputs allow to parse the result step
by step. (2) NFBT reduces readability because this method decomposes blocks
and does not preserve the hierarchy of the original model.

Equivalence of the different translations. One interesting question is whether
the different translation options generate equivalent CPTs. Proving a meta-
theorem stating that this is indeed the case for every diagram is beyond the
scope of this paper, and part of future work. Nevertheless, we did prove that in
the case of the FCS model, the final simplified MPTs resulting from each trans-
lation method are all equivalent. These proofs have been conducted in Isabelle.

Analysis. Our tool proves that the final simplified MPT of the entire FCS model
is not Fail. This proves compatibility of the components in the FCS model. The
obtained MPT is functional, i.e., has the form {p} ◦ [f ]. Its assert condition p
states that the state value of an integrator which is fed into a square root is ≥ 0.
We proved in Isabelle that this holds for all ∆t > 0. Therefore, compatibility
holds independently of the value of the time step.

We also introduced a fault in the FCS model on purpose, to demonstrate
that our tool is able to detect the error. Consider the model fragment depicted
in Fig. 7. If the constant simTime is mistakenly set to 10, the model contains
a division by zero. Our tool catches this error during compatibility checking, in
51.71 seconds total (including NFBT translation, expansion, and simplification,
which results in Fail).

Comparison with Simulink. In this work we give semantics of Simulink
diagrams in terms of CPTs. One question that may be raised is how the CPT
semantics compares to Simulink’s own semantics, i.e., to “what the simulator
does”. Our toolset includes an option to generate simulation code (in Python)
from the Isabelle CPTs. Then, we can compare the simulation results obtained
from Simulink to those obtained from the CPT-generated simulation code. We
performed this comparison for the FCS model: the results are shown in Fig. 8.
Since the FCS model is closed (i.e., has no external inputs) and deterministic,
it only has a single behavior. Therefore, we only generate one simulation plot
for each method. The plot from Fig. 8a is obtained with variable step and the
ode45 (Dormand-Prince) solver. The difference between the values computed by
Simulink and our simulation ranges from 0 to 6.1487e-05 (in absolute value)
for this solver. Better results can be obtained by reducing the step length. For
instance, a step of 5e-05 gives an error difference of 2.0354e-06.
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Fig. 8: Simulation plots obtained from Simulink and the simplified CPT for a
50s time interval and ∆t = 0.001.

6 Related Work

A plethora of work exists on translating Simulink models to various target lan-
guages, for verification purposes or for code-generation purposes. Primarily fo-
cusing on verification and targeting discrete-time fragments of Simulink, existing
works describe translations to BIP [22], NuSMV [17], or Lustre [24]. Other works
study transformation of continuous-time Simulink to Timed Interval Calculus [4],
Function Blocks [25], I/O Extended Finite Automata [26], or Hybrid CSP [27],
and both discrete and continuous time fragments to SpaceEx Hybrid Automata
[18]. The Stateflow module of Simulink, which allows to model hierarchical state
machines, has been the subject of translation to hybrid automata [1,16].

Contract-based frameworks for Simulink are described in [3,21]. [3] uses
pre/post-conditions as contracts for discrete-time Simulink blocks, and SDF
graphs [12] to represent Simulink diagrams. Then sequential code is generated
from the SDF graph, and the code is verified using traditional refinement-based
techniques [2]. In [21] Simulink blocks are annotated with rich types (separate
constraints on inputs and outputs, but no relations between inputs and outputs
which is possible in our framework). Then the SimCheck tool extracts verifica-
tion conditions from the Simulink model and the annotations, and submits them
to an SMT solver for verification.

Our work offers a compositional framework which allows compatibility checks
and refinement, which is not supported in the above works. We also study dif-
ferent translation strategies from HBDs to an algebra with serial, parallel, and
feedback composition operators, which, to the best of our knowledge, have not
been previously studied.

In [9], the authors propose an n-ary parallel composition operator for the
Lotos process algebra. Their motivation, namely, that there may be several dif-
ferent process algebra terms representing a given process network, is similar to
ours. But their solution (the n-ary parallel composition operator) is different
from ours. Their setting is also different from ours, and results in some signifi-
cantly different properties. For instance, they identify certain process networks
which cannot be expressed in Lotos. In our case, every HBD can be expressed as
a CPT (this includes HBDs with algebraic loops, even though we do not consider
these in this paper).

Modular code generation methods for Simulink models are described in [14,13].
The main technical problem solved there is how to cluster subsystems in as few
clusters as possible without introducing false input-output dependencies.



7 Conclusion

In this paper we present a compositional semantics and analysis framework for
hierarchical block diagrams such as those found in Simulink and similar tools.
Our contributions are the following: (1) semantics of basic Simulink blocks (both
stateless and stateful) as atomic monotonic predicate transformers; (2) compo-
sitional semantics of HBDs as composite MPTs; (3) three translation strategies
from HBDs to CPTs, implemented in the simulink2isabelle compiler; (4) the
theory of CPTs, along with expansion and simplification methods, implemented
in Isabelle; (5) automatic static analysis (compatibility checks) implemented in
Isabelle; and (6) proof of concept and evaluation of the framework on a real-life
Simulink model from Toyota. Our approach enables compositional and correct-
by-construction system design. The top-level MPT, which can be viewed as a
formal interface or contract for the overall system, is automatically generated.
Moreover, it is formally defined and checked in Isabelle (the theorems are also
automatically generated and proved).

As future work, the current code generation process, used to compare the
Isabelle code to the Simulink code via simulation, could be extended to also gen-
erate proof-carrying, easier-to-certify embedded code, from the Isabelle theories.
Other future work directions include: (1) studying other translation strategies;
(2) improving the automated simplification methods within Isabelle or other
solvers; (3) extending the toolset with automatic verification methods (proving
requirements against the top-level MPT); and (4) extending the toolset with
fault localization methods whenever the compatibility or verification checks fail.
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