
On Tokens and Signals: Bridging the Semantic Gap between Dataflow
Models and Hardware Implementations

Stavros Tripakis
University of California, Berkeley, CA, USA, and

Aalto University, Finland
stavros@eecs.berkeley.edu

Rhishikesh Limaye Kaushik Ravindran Guoqiang Wang
National Instruments Corporation, Berkeley, CA, USA

firstname.lastname@ni.com

Abstract—Dataflow models serve as useful abstractions of dig-
ital hardware in signal processing and other application domains.
But when can one say that a certain dataflow model faithfully
captures a given piece of hardware? To answer this question we
develop a formal conformance relation between the heterogeneous
formalisms of (1) finite state machines with synchronous seman-
tics, used to model hardware, and (2) asynchronous processes
communicating via queues, used as a formal model for dataflow.
The conformance relation preserves performance properties such
as worst-case throughput and latency.

I. INTRODUCTION

The standard way to model hardware (HW) is by using
(synchronous) finite state machines (FSMs). This is natural,
as FSMs are semantically very close to (synchronous) HW.
Ignoring concerns such as critical path delay (which are taken
care of during timing analysis), a piece of HW logically
behaves as an FSM, where a transition of the FSM corresponds
to a tick of the HW clock.

Another model widely used in HW design is dataflow.
A primary motivation for using dataflow for HW design
is the fact that many dataflow models, such as SDF [1],
CSDF [2], and SADF [3], admit efficient analysis methods
for computing key performance metrics such as throughput,
latency, or buffer sizes. In principle these metrics could be also
computed at the (cycle-accurate) FSM level. In practice, doing
so is infeasible due to the well-known state explosion problem.
Dataflow models suffer much less from state explosion because
they abstract much of the information contained in the FSM
descriptions (e.g., Verilog or VHDL). For example, models
such as SDF typically omit data values and use only abstract
notions of tokens (as done in, say, Petri nets [4]).

Still, two questions remain, namely: (1) how to build a
dataflow model for a given piece of HW, and (2) how to ensure
that the model is faithful to the original HW. (2) is not simply
a theoretical concern. As shown in [5], dataflow models are
often used incorrectly (meaning that the dataflow model does
not conservatively approximate the HW), or too defensively
(meaning that the dataflow model is too conservative). A
prerequisite for answering questions (1) and (2) is to make
the notion of faithfulness precise, and this is the question that
concerns us in this paper.

When attempting to define faithfulness, we are faced
with a major difficulty. The dataflow model is semantically
very different from FSMs. FSMs communicate synchronously

This work was partially supported by the Berkeley Research Centers CHESS
and iCyPhy, by the Academy of Finland and by the NSF via projects COSMOI:
Compositional System Modeling with Interfaces and ExCAPE: Expeditions in
Computer Augmented Program Engineering.

by means of input/output (boolean) signals. In dataflow, a
set of concurrent processes communicate asynchronously by
producing and consuming tokens from/to a set of (usually
FIFO) queues. It appears that the two models “live in different
worlds” and that comparing them is a bit like comparing apples
and oranges.

In this paper, we study this comparison problem. Our
goal is to bridge the semantic gap between dataflow and HW
implementations. We do this by defining a formal conformance
relation between FSMs and a formal operational model of
dataflow. The latter has a notion of time that we map to
HW clock ticks.1 In addition, we require explicit signals at
the HW level that allow us to observe token production and
consumption events that are primitive events at the dataflow
level. Conformance is then defined with respect to a mapping
of HW signals to the above events, which allows to translate
HW behaviors to dataflow behaviors.

In the rest of the paper, and after discussing related work,
we briefly review FSMs and their composition in Section II
and propose an operational process model for dataflow in
Section III. We present a conformance relation between FSMs
and dataflow networks in Section IV, discussing the rationale
behind the definition and illustrating the concepts through a
series of examples. Conclusions and plans for future work are
presented in Section V.

Related Work
Prior research has extensively studied methods to gen-

erate (HW or SW) implementations from dataflow models.
Algorithmic solutions have been developed for joint code and
buffer size optimization, throughput computation, buffer sizing
under throughput constraints, and schedule computation, e.g.,
[8], [1], [9], [10], [11], [12], [13], [14]. Hardware genera-
tion from dataflow models has also been extensively studied,
e.g., in [15], [16], [17], [18], [19], [20], [21], [22]. The
goals of that line of work are akin to those of high-level
synthesis, namely, obtaining efficient HW implementations
automatically from high-level descriptions. Even if we admit
that these methods are correct-by-construction, in which case
the resulting implementation is guaranteed to conform to the
high-level description, there is still a need to explicitly define
conformance, something missing from the above works. An
explicit notion of conformance is useful in the context of high-
level synthesis, for instance, in order to catch compiler bugs.

1Our formal dataflow model is similar to standard timed dataflow models
such as timed SDF [6]. Original works on dataflow models such as SDF
consider their untimed versions, e.g., [1], [7]. Timed properties such as
throughput cannot be evaluated on untimed models. For this reason, we work
with timed dataflow models.

But conformance is also useful in other contexts, for instance,
when abstract models are used to estimate performance of
an existing HW system (e.g. [23]), or in the context of IP
integration (e.g. [5]).

The problem of bridging the semantic gap between hard-
ware and higher-level models arises in many abstraction-based
design and verification methodologies, such as transaction-
level modeling (TLM), e.g. [24] or equivalence checking
between system-level and RTL models, e.g. [25]. A rigorous
formalization of the relation between the concrete (RTL) and
the abstract (transaction- or system-level) models is often
missing in such methodologies, and it is unclear how such
a relation could be defined, since the models “live in different
semantical worlds” (e.g., clock cycles vs. transactions). Indeed,
the abstract models are often untimed C programs and the
focus is to check functional equivalence within a cycle [26].

The works [23], [5] pursue goals similar in spirit to this
paper, however, they do not define a formal conformance rela-
tion. [23] presents a method for building conservative dataflow
models of a specific class of network-on-chip channels. Our
work aims to be more general, and applicable to general
hardware modeled as FSMs. The main focus of [5] is the
synthesis of glue, and the notions of correctness and non-
defensiveness between models and systems are defined with
respect to the glue (e.g., whether buffer sizes estimated by the
model are overly pessimistic or optimistic).

Formal conformance relations abound in the field of formal
verification, such as trace inclusion, simulation, bisimulation,
and so on (see, for instance, [27], [28]). However, these works
typically relate processes that “live in the same world”, in other
words, follow the same model of computation. In contrast, we
develop a conformance relation between two heterogeneous
models that preserves key execution properties.

A formal refinement relation for a model of actors has
been proposed in [29]. Actors are viewed as relations between
input and output timed traces and the refinement relation
preserves worst-case throughput and latency properties. Our
work pursues goals similar to those pursued in that paper,
however, there are differences. The primary difference is that
[29] uses an abstract, denotational model of actors, which
does not answer the question how to map the semantic gap
between tokens and signals. Here we use operational models
for both dataflow and hardware, and directly consider how
to map signals to tokens. A secondary difference is that the
refinement relation used in [29] is based on the “earlier the
better” principle, whereas here we employ the more traditional
principle of subset of behaviors. More discussion on the
relation to [29] is provided in Section V.

II. A MODEL FOR HARDWARE

We model hardware as finite-state machines (FSMs) and
in particular Mealy machines [30].2 An FSM is a tuple M =
(X,Y, S, s0, δ, λ), where: X and Y are finite sets of Boolean
variables, called the input and output signals of M ; S is a
finite set of states; s0 ∈ S is the initial state; δ : S × 2X → S
is the transition function (total); λ : S × 2X → 2Y the output
function (total). δ takes a state s ∈ S and an input assignment
a ∈ 2X and produces a next state s′ = δ(s, a) ∈ S. λ takes a

2For simplicity, we use deterministic FSMs. However, the results, and in
particular the definition of conformance, directly extend to non-deterministic
FSMs as well.

Mbuf

v1

r2r1

v2

s0: r1 := 1
v2 := v1 ∧ r2

s1: r1 := r2
v2 := r2

v1

v1 ∧ r2

v1 ∧ r2 r2

v1 ∧ r2v1 ∧ r2

Fig. 1. Example FSM: structure (left) and behavior (right).

state s ∈ S and an input assignment a ∈ 2X and produces an
output assignment b = λ(s, a) ∈ 2Y .

An FSM M is closed if its set of input signals is empty,
i.e., X = ∅. In that case, the transition and output functions
become simply functions of S: δ : S → S and λ : S → 2Y .
If X 6= ∅ then M is called open.

An FSM M is a Moore machine if the value of each one
of its output signals only depends on the current state and not
on the inputs, that is, λ is only a function of S: λ : S →
2Y . Clearly, every closed FSM is a Moore machine. More
generally, we will say that a certain output signal y ∈ Y is a
Moore output of M if the value of that output only depends
on the current state (whereas the value of other outputs may
also depend on the inputs), that is, λy is only a function of
S: λy : S → {0, 1}. Clearly, M is a Moore machine iff every
output of M is a Moore output.

An FSM M defines a set of behaviors of the form

s0
a0/b0 // s1

a1/b1 // s2
a2/b2 // · · ·

where si ∈ S, ai ∈ 2X , bi ∈ 2Y , si+1 = δ(si, ai) and bi =
λ(si, ai), for all i. Intuitively, at synchronous clock cycle i, if
the current state is si and the current inputs are ai, then the
current outputs are bi and the next state (at clock cycle i+ 1)
will be si+1. We say that the sequence (a0, b0)(a1, b1) · · · is
an observable behavior of M .

FSM example
An example of an FSM is shown in Figure 1. The left

part of the figure shows the structure (or “black-box” view) of
the FSM, namely, its name Mbuf , its set of input signals {v1,
r2} and its set of output signals {r1, v2}. The right part of the
figure shows the behavior of the FSM, namely, its set of states,
initial state, and transition and output functions. Mbuf models
a simple buffer of size one. See [31] for a detailed explanation
of this example. Notice that data values are abstracted away
in this FSM, and only control signals are captured.

FSM composition
FSMs can be composed with other FSMs. Different com-

position operators can be considered: parallel composition
(putting two FSMs “side by side”), serial composition (con-
necting an output signal of one FSM to an input signal of
another FSM), feedback composition (connecting an output
signal of an FSM to one of its input signals), and so on. The
FSM model is compositional in the sense that, under quite mild
conditions, the composition of a set of FSMs (with respect to
any of the above composition operators) defines an FSM.

The conditions are imposed to avoid problems of cyclic
dependencies during feedback composition: the fact that the
value of a signal may depend on itself. To avoid this, a typical
condition is to require that in order to form a feedback loop

M1 Mbuf M2

v1

r2r1

v2

v1 := r1 r2 r2 r2

v2

v2

M1 M2

s00
1111

s01
1100

s12
0000

s10
1111

s11
0000

M = M1 ×Mbuf ×M2

Fig. 2. Closed FSM M obtained by composing FSMs M1, M2 above, with
Mbuf from Figure 1. The vectors in the lower half of each state denote the
values of the four output signals r1, v1, r2, v2 in that state.

connecting an output signal y to an input signal x, y must be
a Moore output.

We will not define FSM composition formally, as it is stan-
dard. Instead, we give an example. Consider the composition
of the three FSMs shown in Figure 2. Mbuf is the FSM from
Figure 1, while the behaviors of M1 and M2 are shown in
Figure 2. The composite FSM M is shown at the bottom of
the figure. M is the synchronous composition of M1, Mbuf and
M2, denoted M1×Mbuf ×M2. M has no input signals: all its
four signals r1, v1, r2, v2 are outputs. Therefore, by definition,
M is a Moore machine. The vectors in the lower half of each
state denote the values of the four output signals r1, v1, r2, v2
in that state. Each state of M is a composite state, that is,
a vector describing the local states of the components of M .
Since M1 is stateless (it has a single state that never changes)
we omit its state from the composite vector and include only
the states of Mbuf and M2. Thus, state s12 of M represents the
fact that Mbuf is at state s1 and M2 is at state 2 (we suppose
that the states of M2 are numbered 0, 1, 2).

III. A MODEL FOR DATAFLOW

A variety of formal models for dataflow systems exist
in the literature, e.g., see [32], [33], [34], [35], [11], [29],
although they are not as standard as FSMs are for hardware.
The operational model we present here is in the spirit of those
proposed in [6], [11], [36], [35]. Time is typically introduced
in dataflow models by means of a special action denoted tick,
modeling the lapse of one unit of time. We follow the same
approach. Specifically, we model a dataflow system using two
types of components:

Processes: These are finite-state automata whose transi-
tions are labeled with actions of the following three types:
geti (get token from the i-th input queue), puti (put token
into the i-th output queue), or tick (one time unit elapses).

Queues: These are essentially counters counting the num-
ber of tokens in the queue at a given point in time. put actions
increment the queue’s counter by one. get actions decrement
the queue’s counter by one when the counter is greater than
zero, otherwise get is not possible. A queue may be unbounded
which means the counter can grow arbitrarily large, yielding
an infinite-state automaton; or the queue may be bounded
meaning the counter can only grow up to a given constant
K, at which point put is no longer possible.

A

4

3 2

s0 s1 s2 s3

s4s5s6s7s8

tick

get

tick

get

tick

get

tick

tickticktickput

tick

put

tick

Fig. 3. Example SDF process: structure (left) and behavior (right).

The above models abstract away from data and the func-
tional aspects of dataflow. They only maintain information on
production/consumption of tokens and timing, which is our
focus in this paper.

Formally, a dataflow process is modeled as an automaton
A = (n,m, S, s0,→) where:
• n ≥ 0 is an integer representing the number of input

ports of A. Each input port will be connected to an
input queue.

• m ≥ 0 is an integer representing the number of output
ports of A. Each output port will be connected to an
output queue.

• S is a set of states (not necessarily finite).
• s0 ∈ S is the initial state of A.
• → ⊆ S×L×S is the transition relation of A, where

the set of labels L is defined as follows:

L = {get1, get2, ..., getn, put1, put2, ..., putm, tick}

A transition (s, `, s′) ∈→ is also denoted s `→ s′.
An example dataflow process is shown in Figure 3. A is

an SDF process with a single input queue and a single output
queue, represented by the incoming and outgoing arrows of
A, respectively. A repeatedly consumes 3 tokens and then
produces 2 tokens, as indicated by the numbers annotating
the arrows. Each such repetition is called a firing of A. The
firing lasts for 4 time units, as indicated by the number below
A in the figure. That is, from the moment the last of the 3
input tokens is consumed, until the moment the first of the
2 output tokens is produced, in a given firing, 4 time units
elapse. This behavior is specified at the right of Figure 3. A
has nine states, labeled s0, ..., s8. A waits at state s0 until there
is a token to consume, in which case the get transition occurs
representing consumption of one token, and moving A to state
s1. For simplicity, we write get instead of get1, since there is
only one input queue. Similarly we write put instead of put1.
After all three tokens have been consumed, A is at state s3. The
next four transitions are labeled with tick actions, representing
the passage of time. Once four time units have elapsed, A is
at state s7 and is ready to output tokens, which is represented
by transitions labeled with put actions. After producing two
tokens, A returns to its initial state for a new firing.3

Note that states s7 and s8 have self-loop tick transitions, as
do states s0, s1, s2. Such transitions are perhaps to be expected
in states s0, s1, s2, since A receives its input tokens from an
input queue, which might be empty. As long as the input queue
is empty, A must wait, therefore, it must allow time to elapse

3For simplicity, in our examples we assume no auto-concurrency, that is, no
overlapping of firings of the same process. Auto-concurrency can be captured
in our model using more elaborate and potentially infinite-state processes.

B

1

1
s0 s1

tick

tick

put

C

3

1
q0 q1 q2 q3

tick

get tick tick

tick

Fig. 4. Source SDF process (top) and sink SDF process (bottom).

at these states. The situation is similar in states s7 and s8: even
though queues in dataflow semantics are typically considered
to be of unbounded size, in which case put actions can never be
blocked, it is often useful, as we shall see below, to consider
an alternative semantics where queues are bounded. In that
case, put may block when a queue is full, and in that case
time must be allowed to elapse.

A dataflow process may have no input queues, in which
case it is called a source, or no output queues, in which case
it is called a sink. Examples of SDF source and sink processes
are shown in Figure 4.

Note that Figures 3 and 4 are simply examples, and do
not prescribe a way to capture SDF as dataflow processes. In
fact, as we shall see, there are different ways to model SDF
operationally, and this is part of the challenge in coming up
with faithful models.

Remark 1: Although our examples are simple dataflow
processes that fall in the SDF or Kahn Process Network
(KPN) [32] classes, the modeling framework as well as the
conformance relation defined in Section IV are more broadly
applicable. In particular, contrary to what is customary [35],
we make no assumptions on determinism or confluence of
the transition relation → of a dataflow process. For instance,
it is allowed to have a process with multiple transitions
s

get1→ s1 and s
get2→ s2 emanating from the same state s.

This would typically be interpreted as the process choosing
non-deterministically to read from channel 1 or from channel
2, something which is not allowed in neither SDF nor KPN.
It is also possible to have non-determinism in the successor
states, e.g., s

get1→ s1 and s
get1→ s′1, with s1 6= s′1. These types

of non-determinism are useful, for instance, when abstracting
data-dependent behavior. An example of a non-deterministic
dataflow process is given in [31].

Dataflow process semantics
A dataflow process A defines a set of behaviors of the form

s0
`0 // s1

`1 // s2
`2 // · · ·

where si ∈ S, `i ∈ L, and si
`i→ si+1, for all i. Intuitively,

from state si, the process can perform action `i and move to
state si+1. If `i = tick then this action represents the passage
of one time unit. Otherwise, the action is instantaneous. Action
geti means that A removes a token from its i-th input queue.
Action puti means that A adds a token to its i-th output queue.

As we did for FSMs, we will define a concept of observable
behaviors for dataflow. This is a little more involved to do
for dataflow than for FSMs because in the case of dataflow,
consecutive put and get actions that are not “interrupted”
by ticks are considered to be instantaneous. Therefore, it is

reasonable to group all such actions together in a set. We
will do this, and define an observable behavior of A to be
a sequence α0α1 · · · obtained by a behavior ρ of A, such that
αi is either tick or a set of consecutive put and get actions in
ρ. For example, if

s0
tick // s1

put // s2
get // s0

tick // s1
get // s2

put // · · ·

is a dataflow behavior, then the corresponding observable
dataflow behavior is

tick · {put, get} · tick · {put, get} · · · .

Queues
Dataflow processes communicate via FIFO queues. In our

model, data is abstracted away, therefore, the FIFO property
of such queues is irrelevant, and does not have to be modeled.
Therefore, we can easily model queues as counters that count
the number of tokens currently in the queue. We can capture
such counters using the same formalism as for processes. For
example, the processes for an infinite queue and for a finite
queue are shown in Figure 5. Queues are assumed to have an
implicit self-loop transition labeled tick at every state: we omit
these self-loops from the figures for the sake of simplicity.

0 1 2 · · ·

put

get

put

get

put

get

0 1 2

put put

get get

Fig. 5. Queue processes: infinite queue (left) and queue of size 2 (right).

Closed and open dataflow networks
A dataflow network is a collection of dataflow processes

connected via queues. A dataflow network is closed if every
input port of every process in the network is connected to
some output port. This includes the ports get and put of queue
processes, which are both inputs, since a queue is essentially
a “passive” object: it waits for a writer process to perform
a put or for a reader process to perform a get, and it may
sometimes disallow these actions (when full or empty), but it
cannot initiate them.

For example, the network shown in Figure 6 is closed. If we
removed C, however, it would be open. A network containing
only process B would be closed. A network containing only
process A of Figure 3, however, would be open.

Dataflow composition
Having obtained formal behavioral models for dataflow

processes and for queues, the semantics of a dataflow network
can be captured as the composition of the individual processes
and queues. This composition can be defined as a standard
composition of processes with rendez-vous communication in
the style of CCS [37] or CSP [38]. In particular:
• a get action of a dataflow process A synchronizes

with the get action of the process of the corresponding
input queue of A;

• a put action of a dataflow process A synchronizes
with the put action of the process of the corresponding
output queue of A;

• tick actions synchronize across all processes in the
network.

N : B

1

queue of
size 1 C

3

1 1

000

100 010 110

001 101 011

112

102 012 113

103 013

tick

put tick

get get

tick tick

put

put

tick

tick
tick

tick

tick

put

tick
tick

000

100 010 110

001 101 011

112

102 012 113

tick

put

get get

tick

put

put

tick

tick
tick

tick

Fig. 6. A closed dataflow network N (top) and the corresponding composite
dataflow processes: non-idling (bottom-left) and eager (bottom-right).

A composite process obtained by following the above rules
is maximal in the sense that it contains all possible behaviors
of a network. Maximality is important to have in an open
network, that is, one that could be further composed (see
paragraph below for a formal definition of open and closed
networks). On the other hand, in a closed network, maximality
may sometimes result in including behaviors that are not
interesting or not optimal from a performance perspective.
We may therefore need to exclude such behaviors. In order
to do this, we define two composition semantics, obtained by
restricting the maximal set of behaviors by adding extra rules.

Non-idling semantics: This semantics is obtained by com-
puting the composition according to the above rules, and then
removing all self-loop transitions labeled with tick, except if
such a transition is the only one left at a given state. Indeed,
such transitions represent idling where time passes without any
process doing something useful.

Eager semantics: Non-idling semantics guarantees absence
of idling but often we require something more, namely, that
processes consume and produce tokens as soon as possible. In
order to obtain this eager semantics, we additionally impose
the following rule: a tick action is allowed at a given state
only when no other action is possible.

Example: As an example, a dataflow network is shown at
the top of Figure 6. It consists of the two SDF processes B and
C of Figure 4 connected via a queue of size 1. The non-idling
and eager composite processes obtained for N by following the
rules described above are shown at the bottom of Figure 6, left
and right, respectively. The states of the composite processes
are product states, that is, vectors consisting of one element
state for each process in the network. To save space, we write
ijk for a composite state instead of (si, j, sk). Thus, 010
represents product state (s0, 1, q0) where B is at state s0, the
queue is at state 1 (i.e., contains one token) and C is at state
q0. Notice that the eager semantics has no tick transition from
that state, whereas the non-idling semantics has one.

IV. CONFORMANCE

Having defined formal models and semantics for hardware
and dataflow, we proceed in attacking our main problem,
which is to define a formal conformance relation between the
two. We are immediately faced with a difficulty. FSMs and
dataflow processes are different mathematical objects, with
heterogeneous semantics. How to compare them?

To overcome this difficulty, we take a pragmatic approach.
Before defining conformance, let us recall that dataflow models

are usually employed for estimation of timing and performance
properties of the HW system. We examine such properties first,
and then define conformance.

Timing properties
At the dataflow level, timing properties can be defined by

referring to basic events: token consumptions, token produc-
tions, and the passage of time. More specifically: throughput
can be defined by measuring how many tokens are produced
within a given window of time (or the limit of such); latency
can be defined by measuring the amount of time that elapses
between the consumption and production of certain tokens;
timing properties refer to which points in time certain con-
sumptions or productions may or may not occur.

For example, consider the SDF network N shown in
Figure 6. We can define throughput as the asymptotic average
of the number of tokens consumed by C per unit of time.
In the behaviors of N , consumptions are represented by get
actions and time units by tick actions. Therefore, for a given
behavior, we can compute the throughput by counting the
average number of gets per number of ticks. As we can
see from the composite processes for N shown in Figure 6,
different behaviors achieve different throughput. In the non-
idling process, there are behaviors that achieve throughput
1
3 but also others that achieve throughput 1

4 . In the eager
process there is only one behavior that achieves the optimal
throughput 1

3 .
As for latency, we can define it as the time delay between

the production of a token by B and the next corresponding
consumption by C. This delay is not constant: it depends
not only on the behavior of N , but it can also vary at
different points within a behavior, for different productions
and consumptions. In the case of the example of Figure 6, the
worst-case latency between a put and a get is equal to 3 ticks,
and the best-case latency is 0 ticks.

Conformance for closed systems
Having seen examples of typical properties that we are

interested in, let us return to the question of conformance. In
this paper we tackle this question in the case of closed systems.
The case of open system is the subject of future investigation
(see Section V).

Suppose we want to compare a closed dataflow network
such as the one of Figure 6 with a closed FSM. When should
one say that the FSM conforms to the dataflow network?
A standard principle for defining conformance in behavioral
models is that of containment of sets of behaviors: a certain
model M1 conforms to another model M2 if the set of all
possible behaviors of M1 is a subset of the set of behaviors
of M2.

We would like to apply the above principle in our setting.
However, we are still faced with the problem that the behaviors
of dataflow and FSM models are not directly comparable.
In particular, although time elapse is observable from the
behaviors of FSMs (by simply counting the number of tran-
sitions), token productions and consumptions are not directly
observable at the FSM level. Indeed, it is not clear, by looking
at the input and output Boolean signals of an FSM as they
take values across successive clock cycles, when do token
consumptions or productions occur.

To overcome this, we propose to make such events explic-
itly observable at the FSM level.4 More specifically, with each
put or get action of the dataflow network that we are interested
in observing, we associate a corresponding output signal of
the FSM. The intended meaning is that whenever that signal
becomes 1, the corresponding production or consumption
occurs.

Let us formalize this. Let N be a closed dataflow network
and let L be the set of actions of N to be observed. Let M =
(X,Y, S, s0, δ, λ) be a closed FSM. Because M is closed, X =
∅. Let θ : L→ Y be a 1-1 mapping from L to Y , associating
to each action ` ∈ L a distinguished output signal θ(`) ∈ Y
serving to observe action ` at the FSM level.

The mapping θ defines a mapping Θ from FSM observable
behaviors to dataflow observable behaviors as follows. Let σ =
(a0, b0)(a1, b1) · · · be an observable behavior of M . Because
X = ∅, all ak’s are trivial (empty assignments). Then, each bk
is mapped to a subsequence ρk = tick · αk, where

αk := {` ∈ L | bk(θ(`)) = 1}.

That is, αk is the set of all actions that are observed to occur
at the FSM level, according to the distinguished outputs that
are true in bk. If αk is empty then we let ρk be simply tick.
Then, Θ maps the FSM observable behavior σ to the dataflow
observable behavior Θ(σ) = ρ0 · ρ1 · · · .

For example, let L = {put, get} and Y = {yput, yget}. Let
θ = {put 7→ yput, get 7→ yget}. Then we have the following
mappings from FSM observable behaviors to dataflow observ-
able behaviors:

(yput = 0, yget = 0) · (yput = 1, yget = 0) · (yput = 0, yget = 1)

is mapped to

tick · tick · {put} · tick · {get}

and

(yput = 0, yget = 0) · (yput = 1, yget = 1) · (yput = 0, yget = 0)

is mapped to

tick · tick · {put, get} · tick.

Having specified this mapping, we define two types of
conformance as follows:

Definition 1: M conforms to the non-idling (respectively,
eager) semantics of N with respect to mapping θ iff for every
observable behavior σ of M , the sequence Θ(σ) defined as
above, is an observable behavior in the non-idling (respec-
tively, eager) semantics of N .

It is worth noting that if N is a dataflow model whose
eager semantics is a subset of its non-idling semantics (e.g.,
as in a KPN), then, if M conforms to the eager semantics of
N then it also conforms to the non-idling semantics of N .

Also note that since M is a closed FSM, it is by definition a
Moore machine, and since we consider deterministic FSMs, M
has a single behavior. We could therefore simplify the above
definition to state “for the unique observable behavior σ of
M” instead of “for every observable behavior σ of M”. We

4An alternative could be to attempt to discover consumptions and produc-
tions automatically by observing the behavior of the FSM. This problem is
much more difficult, and is the topic of future work.

v1 v1

r1
r1

r1

r1

s00
10

s10
11

s11
01

s02
00

M11 M11 ×M2

v1 v1

r1
r1 s00

10

s10
11

s01
00

s02
00

M12 M12 ×M2

v1 v1 := r1

r1

r1

s00
10

s10
11

s01
00

s12
00

M13 M13 ×M2

Fig. 7. Left: three variants, M11,M12,M13, of FSM M1 of Figure 2.
We compose each of these with M2 (without use of Mbuf in the middle).
Let states of M2 be labeled q0, q1, q2. Let states of M1i be labeled s0, s1.
Resulting three composite FSMs are shown to the right column of the figure.
In each of the composites, state sij is composed of si of M1k and qj of M2,
and vector in the lower half of each state denotes values of signals r = r1 = r2
and v = v1 = v2 respectively in that state.

prefer not to do so, however, in order to have a definition that
generalizes to the case of non-deterministic FSMs.

We proceed to illustrate conformance by examples.

Examples of conformance and non-conformance
Consider the dataflow network N shown in Figure 6 and

the FSM M shown in Figure 2. Let θ be the mapping

θ = {put 7→ v1, get 7→ v2}.

That is, at the level of M , every time v1 = 1 this corresponds
to a put in the buffer, and every time v2 = 1 this corresponds
to a get.

We claim that M conforms to both the eager and non-idling
semantics of N with respect to θ. As shown in Figure 2, M
has a single infinite behavior yielding the infinite observable
behavior

σ = (r1, v1, r2, v2) · (r1, v1, r2, v2)·(
(r1, v1, r2, v2) · (r1, v1, r2, v2) · (r1, v1, r2, v2)

)ω
where ρω denotes the infinite repetition of a sequence ρ.

σ is mapped to the dataflow observable behavior

Θ(σ) = tick·{put, get}·tick·{put}·
(
tick·tick·{put, get}·tick

)ω
.

It can be seen that Θ(σ) is identical to the observable behavior
of the eager semantics of N – Figure 6, bottom. Therefore, M
conforms to both the eager and non-idling semantics of N .

Consider next Figure 7. The figure shows three variants of
FSM M1 of Figure 2 and the synchronous FSM composition
of each of these variants with FSM M2 of Figure 2. Note that
the buffer FSM Mbuf is not used in these compositions. Let
r = r1 = r2 and v = v1 = v2 be the names of the signals of
the composite FSMs.

Define θ = {put 7→ v, get 7→ q0 ∧ v}. The expression
get 7→ q0 ∧ v means that we interpret v to correspond to a get
action only when M2 is at its initial state q0, otherwise, even if
v = 1, we will not consider this a get. We use such expressions
merely for reasons of convenience, without departing from the

D

2

1

s0 s1

s2

tick

tick

tick

put

s0 s1

s2

tick

tick

tick

tick

put

Fig. 8. Two variants of SDF process D.

framework we set up above. Indeed, we could easily consider
an additional signal v′ defined to be 1 iff M2 is at q0 and
v = 1. Then, we could define θ equivalently as θ = {put 7→
v, get 7→ v′}. Therefore, using such expressions is not more
expressive than our original framework.

With the above mapping θ, the observable behaviors of the
three composite FSMs are mapped to the following observable
dataflow behaviors:

1)
(
tick · tick · {put, get} · tick · {put} · tick

)ω
,

2)
(
tick · tick · {put, get} · tick · tick

)ω
,

3)
(
tick · tick · {put, get} · tick

)ω
.

None of these composites conforms to dataflow network N
of Figure 6, because N does not admit the starting sequence
tick·tick·{put, get}. This non-conformance indicates that SDF
process B of Figure 4 may incorrectly capture HW blocks
M1k. Indeed, B can produce a token every 1 time unit, whereas
it appears that, M1k require 2 time units.

Instead of B, consider SDF process D of Figure 8 and
dataflow network NDC shown at the top of Figure 9. NDC is
similar to the network of Figure 6 except that B is replaced
by D. NDC defines two composite dataflow processes, one for
each of the two variants of D: the two composite processes
are denoted N1 and N2 and are shown in Figure 9, bottom.
Then:
(1) M11 ×M2 conforms to neither N1 nor N2. On inspecting
the behavior of M11×M2, it is evident that every other token
generated by M11 is dropped, i.e., it is not read by M2 because
M2 is busy processing the previous token. This is a case
of wrong synchronization between the two FSMs, which is
revealed by attempting to show conformance to an SDF model.
(2) M12 ×M2 does not conform to N1, but conforms to the
non-idling semantics of N2. In this case, one may interpret
M12 × M2 as a non-idling implementation of NDC where
the execution of D and C is pipelined in such a way as to
overlap the last cycle of C with the first one of the next D,
achieving a non-optimal throughput of 1

4 . Such a pipelining
can be captured by N2 but not by N1. This indicates that N1

is not a faithful model of this HW. Also, although M12 ×
M2 conforms to the non-idling semantics of N2, it does not
conform to its eager semantics, and indeed, does not achieve
the optimal throughput of 1

3 .
(3) M13×M2 conforms to the non-idling semantics of N1 and
therefore also of N2 since N1 is a subset of N2. M13 ×M2

achieves optimal throughput 1
3 . Despite this, its behavior is not

eager, and therefore it does not conform to the eager semantics
of N1 or N2.

Discussion
As seen from the examples presented above, conformance

can be used in a number of different scenarios. It can pro-

NDC : D

2

queue of
size 1 C

3

1 1

000

100 200 010

001102203

013 110101202

201011

112 213

012 113

210

N1

tick

tick put

get

ticktick

tick
tick

put

tick

get

tick

tick

put

tick

tick

tick

get

put

tick

tick

tick tick

000

100 200 010

001102203

002

103003

013 110101202

201011

112 213

012 113

210

N2

tick

tick put

get

ticktick

tick tick

tick

tick

tick

tick tick

tick

tick

tick

tick

put

tick

get

tick

tick

put

tick

tick

tick

get

put

tick

tick

tick tick

Fig. 9. Top: closed dataflow network of actors D,C connected using queue
of size 1. Bottom-left: composite non-idling dataflow process, N1, using left-
most variant of process D from Figure 8. Bottom-right: composite non-idling
dataflow process, N2, using right-most variant of D. In each of the composites,
the corresponding eager composition is embedded, as shown by edges with
double arrowheads.

vide guarantees of throughput preservation between dataflow
models and HW implementations. It can point to timing or syn-
chronization errors in HW implementations, or to inadequacies
of the dataflow model of the HW. Thus, our framework can
be used in a bottom-up methodology where HW is given and
the goal is to build faithful performance models of this HW,
as well as in a top-down or model-based design methodology
where the goal is to synthesize from a high-level model (e.g.,
SDF) a HW implementation that preserves the properties of
the model.

The definition of conformance as containment of behaviors
allows to derive such preservation for properties of type “for-
all”. More precisely, if a property P is stated as “for all
behaviors of N something holds” then if N satisfies P , any
model whose behaviors are a subset of N also satisfies P .

Conformance can be used in particular to show preserva-
tion of performance bounds such as worst-case or best-case
throughput and latency. For example, bounds on throughput
can be expressed using “for-all” properties of the form “for
any behavior ρ, the throughput of ρ is in [Tmin, Tmax]”.

Our conformance relation is essentially a language inclu-
sion type of conformance, modulo the fact that a translation Θ
from FSM behaviors to dataflow process behaviors needs to be
performed first. Such a translation can be performed automat-
ically by appropriately transforming an FSM into another type
of finite automaton. If the process automaton is also finite-
state, then conformance can be checked automatically, using
standard model-checking type of techniques.

V. CONCLUSIONS AND FUTURE WORK

We have investigated the question of faithfulness of
dataflow models to hardware implementations by proposing a
formal conformance relation between the two. The examples
of dataflow processes presented above are SDF, but our process
model is general enough to capture other dataflow variants as
well. Since conformance is defined with respect to the process
model, this means that the framework is applicable to a wide
class of dataflow models.

Our current study is limited to closed systems. One of our
future goals is to study conformance between open systems,
with the main challenge being to guarantee some notion of
compositionality. For instance, we would like our framework
to guarantee that if M1 conforms to N1 and M2 conforms
to N2, then M1 ×M2 conforms to N1||N2 (where || denotes
dataflow composition). This is essential for scalable confor-
mance checking, but also for incremental design, where a HW
component can replace another one without compromising the
properties of the overall system.

Another direction of future work is to develop “recipes”
for generating dataflow processes such as the ones used in the
examples above for a variety of dataflow models (SDF, CSDF,
HDF, ...). Developing specialized algorithms for checking
conformance with respect to these subclasses is an additional
interesting objective.

An alternative way to bridge the gap between dataflow
and hardware is to give them both semantics in terms of
the denotational actor model of [29]. This has already partly
been done in [29] for SDF but not for general dataflow. It
has also been done in [29] for different models of discrete
automata, but not for the Mealy and Moore machines which
are the standard hardware models. Once both dataflow and
hardware are given actor semantics, they “live in the same
world” and can therefore be compared using the refinement
relation defined in [29], or another relation such as the one
based on subsets of behaviors that we employ here.

REFERENCES

[1] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of
the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[2] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cyclo-static
data flow,” in IEEE Intl. Conf. Acoustics, Speech, and Signal Processing,
1995.

[3] S. Stuijk, M. Geilen, B. Theelen, and T. Basten, “Scenario-aware
dataflow: Modeling, analysis and implementation of dynamic applica-
tions,” in SAMOS XI, Jul. 2011, pp. 404–411.

[4] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, Apr. 1989.

[5] S. Tripakis, H. Andrade, A. Ghosal, R. Limaye, K. Ravindran, G. Wang,
G. Yang, J. Kornerup, and I. Wong, “Correct and non-defensive glue
design using abstract models,” in CODES+ISSS11. ACM, 2011.

[6] A. H. Ghamarian, M. Geilen, S. Stuijk, T. Basten, B. D. Theelen, M. R.
Mousavi, A. J. M. Moonen, and M. Bekooij, “Throughput analysis of
synchronous data flow graphs,” in ACSD’06, 2006, pp. 25–36.

[7] J. Janneck, “A machine model for dataflow actors and its applications,”
in ASILOMAR, 2011.

[8] S. Bhattacharyya, P. Murthy, and E. Lee, Software Synthesis from
Dataflow Graphs. Kluwer, 1996.

[9] O. M. Moreira and M. J. G. Bekooij, “Self-Timed Scheduling Analysis
for Real-Time Applications,” EURASIP Journal on Advances in Signal
Processing, vol. 2007, no. 83710, pp. 1–15, April 2007.

[10] M. H. Wiggers, M. J. G. Bekooij, and G. J. M. Smit, “Modelling run-
time arbitration by latency-rate servers in dataflow graphs,” in SCOPES,
2007.

[11] S. Stuijk, M. Geilen, and T. Basten, “Throughput-buffering trade-
off exploration for cyclo-static and synchronous dataflow graphs,”
Computers, IEEE Trans. on, vol. 57, no. 10, Oct. 2008.

[12] M. H. Wiggers, M. J. G. Bekooij, and G. J. M. Smit, “Efficient
Computation of Buffer Capacities for Cyclo-Static Dataflow Graphs,”
in DAC, 2007.

[13] Y.-K. Kwok and I. Ahmad, “Static Scheduling Algorithms for Allo-
cating Directed Task Graphs to Multiprocessors,” ACM Comput. Surv.,
vol. 31, no. 4, pp. 406–471, 1999.

[14] A. Ghosal, R. Limaye, K. Ravindran, S. Tripakis, A. Prasad, G. Wang,
T. Tran, and H. Andrade, “Static dataflow with access patterns: Seman-
tics and analysis,” in Design Automation Conference (DAC), 2012.

[15] R. Lauwereins, M. Engels, M. Adé, and J. A. Peperstraete, “Grape-
II: A System-Level Prototyping Environment for DSP Applications,”
Computer, vol. 28, no. 2, pp. 35–43, 1995.

[16] M. Williamson and E. Lee, “Synthesis of parallel hardware implementa-
tions from synchronous dataflow graph specifications,” in ASILOMAR,
1996.

[17] J. Horstmannshoff and H. Meyr, “Optimized System Synthesis of
Complex RT Level Building Blocks from Multirate Dataflow Graphs,”
in 12th International Symposium on System Synthesis. IEEE, 1999.

[18] H. Jung, H. Yang, and S. Ha, “Optimized RTL Code Generation from
Coarse-Grain Dataflow Specification for Fast HW/SW Cosynthesis,” J.
Signal Process. Syst., vol. 52, no. 1, pp. 13–34, July 2008.

[19] J. Janneck, I. Miller, D. Parlour, G. Roquier, M. Wipliez, and M. Raulet,
“Synthesizing hardware from dataflow programs: An MPEG-4 simple
profile decoder case study,” in Signal Processing Systems, 2008.

[20] R. Thavot, R. Mosqueron, M. Alisafaee, C. Lucarz, M. Mattavelli,
J. Dubois, and V. Noel, “Dataflow design of a co-processor architecture
for image processing,” in DASIP, 2008.

[21] J. Dubois, R. Thavot, R. Mosqueron, J. Miteran, and C. Lucarz, “Motion
estimation accelerator with user search strategy in an RVC context,” in
IEEE ICIP’09, 2009.

[22] T. Olsson, A. Carlsson, L. Wilhelmsson, J. Eker, C. von Platen, and
I. Diaz, “A reconfigurable OFDM inner receiver implemented in the
CAL dataflow language,” in Circuits and Systems (ISCAS), 2010.

[23] A. Hansson, M. Wiggers, A. Moonen, K. Goossens, and M. Bekooij,
“Enabling application-level performance guarantees in network-based
systems on chip by applying dataflow analysis,” Computers Digital
Techniques, IET, vol. 3, no. 5, pp. 398 –412, Sep. 2009.

[24] F. Ghenassia, Ed., Transaction-Level Modeling with SystemC, 2005.
[25] C. Pixley, “Practical Considerations Concerning HL-to -RT Equivalence

Checking,” in Hardware and Software: Verification and Testing, ser.
LNCS. Springer, 2009, vol. 5394.

[26] E. Clarke, D. Kroening, and K. Yorav, “Behavioral consistency of C
and verilog programs using bounded model checking,” in DAC, 2003.

[27] R. J. van Glabbeek, “The linear time-branching time spectrum,” in
CONCUR’90. Springer, 1990, pp. 278–297.

[28] R. van Glabbeek and U. Goltz, “Refinement of actions and equivalence
notions for concurrent systems,” Acta Informatica, vol. 37, no. 4-5, pp.
229–327, 2000.

[29] M. Geilen, S. Tripakis, and M. Wiggers, “The earlier the better: A
theory of timed actor interfaces,” in 14th Intl. Conf. Hybrid Systems:
Computation and Control (HSCC’11). ACM, 2011.

[30] Z. Kohavi, Switching and finite automata theory, 2nd ed., 1978.
[31] S. Tripakis, R. Limaye, K. Ravindran, and G. Wang, “On tokens and

signals: Bridging the semantic gap between dataflow models and hard-
ware implementations,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2012-164, Jun 2012.

[32] G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Information Processing 74, Proceedings of IFIP Congress 74.
North-Holland, 1974.

[33] A. Faustini, “An operational semantics for pure dataflow,” in Automata,
Languages and Programming, ser. LNCS, M. Nielsen and E. Schmidt,
Eds. Springer, 1982, vol. 140, pp. 212–224.

[34] B. Jonsson, “A fully abstract trace model for dataflow and asynchronous
networks,” Distrib. Comput., vol. 7, no. 4, pp. 197–212, 1994.

[35] M. Geilen and T. Basten, “Kahn Process Networks and a Reactive
Extension,” in Handbook of Signal Processing Systems, 2010.

[36] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors: Schedul-
ing and Synchronization, 2nd ed. CRC Press, 2009.

[37] R. Milner, A Calculus of Communicating Systems, 1980.
[38] C. Hoare, Communicating Sequential Processes. Prentice Hall, 1985.

