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Abstract Designing hardware often involves several types
of modeling and analysis, e.g., in order to check sys-
tem correctness, to derive performance properties such as
throughput, to optimize resource usages (e.g., buffer sizes),
and to synthesize parts of a circuit (e.g., control logic).
Working directly with low-level hardware models such as
finite-state machines (FSMs) to answer such questions is
often infeasible, e.g., due to state explosion. Instead, design-
ers often use dataflow models such as SDF and CSDF,
which are more abstract than FSMs, and less expensive to
use since they come with more efficient analysis algorithms.
However, dataflow models are only abstractions of the real
hardware, and often omit critical information. This raises
the question, when can one say that a certain dataflow model
faithfully captures a given piece of hardware? The question
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is of more than simply academic interest. Indeed, as illus-
trated in this paper, dataflow-based analysis outcomes may
sometimes be defensive (e.g., buffers that are too big) or
even incorrect (e.g., buffers that are too small). To answer
the question of faithfully capturing hardware using dataflow
models, we develop a formal conformance relation between
the heterogeneous formalisms of (1) finite-state machines
with synchronous semantics, typically used to model syn-
chronous hardware, and (2) asynchronous processes com-
municating via queues, used as a formal model for dataflow.
The conformance relation preserves performance properties
such as worst-case throughput and latency.

Keywords Finite state machines · Dataflow ·
Conformance · Hardware design · Hardware synthesis ·
Verification · Formal methods

1 Introduction

The hardware design process today is largely model-based
in the sense that designers work with high-level models
which capture the essential properties of the system under
design, while hiding irrelevant details. Automatic synthesis
tools are then used which take as input a high-level model
and generate a lower-level model, filling in the implemen-
tation details. This process often involves multiple layers of
abstraction.

A standard model for hardware (HW), and in particu-
lar synchronous HW, which is the main focus of this paper,
is the model of synchronous finite-state machines (FSMs).
FSMs are a natural model, as they are semantically very
close to synchronous HW. Ignoring concerns such as crit-
ical path delay, technology mapping, placement, routing,
noise cancellation, and other problems which are taken care
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of during lower levels of abstraction, a piece of HW log-
ically behaves as an FSM, where a transition of the FSM
corresponds to a tick of the HW clock.

Although FSMs model HW at a higher level of abstrac-
tion than, say, models based on differential equations (e.g.,
SPICE), FSMs are still cycle-accurate and detailed models.
This can often be problematic when FSMs are used for anal-
ysis, because of the well-known state explosion problem,
which means that the FSMs become too large to handle.

For this reason, HW designers often use higher-level
models coming from the family of dataflow models, such as
SDF [3], CSDF [4], and SADF [5]. These models admit effi-
cient analysis methods for computing key performance met-
rics such as throughput, latency, or buffer sizes. Dataflow
models suffer much less from state explosion because they
abstract much of the information contained in the FSM
descriptions (e.g., Verilog or VHDL). For example, models
such as SDF typically omit data values and use only abstract
notions of tokens (as done in, say, Petri nets [6]).

Still, two questions remain, namely: (1) how to build
a dataflow model for a given piece of HW, and (2) how
to ensure that the model is faithful to the original HW.
(2) is not simply an academic concern. As we illustrate in
this paper, using the example of the glue design problem,
dataflow models are often used incorrectly (meaning that
the dataflow model does not conservatively approximate the
HW), or too defensively (meaning that the dataflow model
is too conservative). A prerequisite for answering questions
(1) and (2) is to make the notion of faithfulness precise,
and this is one of the main questions that this paper tries
to answer. The paper combines and extends previous work
reported in [1, 2].

When attempting to define faithfulness, we are faced
with a major difficulty. The dataflow model is semanti-
cally very different from FSMs. FSMs communicate syn-
chronously by means of input/output (boolean) signals. In
dataflow, a set of concurrent processes communicate asyn-
chronously by producing and consuming tokens from/to a
set of (usually FIFO) queues. It appears that the two models
“live in different worlds” and that comparing them is like
comparing apples and oranges.

In this paper, we study this comparison problem. Our
goal is to bridge the semantic gap between dataflow and
HW implementations. We do this by defining a formal
conformance relation between FSMs and a formal opera-
tional model of dataflow. The latter has a notion of time
that we map to HW clock ticks.1 In addition, we require
explicit signals at the HW level that allow us to observe

1Our formal dataflow model is similar to standard timed dataflow mod-
els such as timed SDF [7]. Original works on dataflow models such
as SDF consider their untimed versions, e.g., [3, 8]. Timed properties
such as throughput cannot be evaluated on untimed models. For this
reason, we work with timed dataflow models.

token production and consumption events that are primitive
events at the dataflow level. Conformance is then defined
with respect to a mapping of HW signals to the above
events, which allows to translate HW behaviors to dataflow
behaviors.

The rest of the paper is organized as follows. We
briefly review FSMs and their composition in Section 2. In
Section 3 we describe the glue design problem, which is a
main motivation for this work. In Section 4 we illustrate the
problems that can arise when using abstract dataflow mod-
els to solve the glue design problem. An operational process
model for dataflow is proposed in Section 5. We present
a conformance relation between FSMs and dataflow net-
works in Section 6. Related work is discussed in Section 7.
Conclusions and plans for future work are presented in
Section 8.

2 A Model for Hardware

We model hardware as finite-state machines (FSMs) [9] of
type Mealy (and Moore as a special case).2 An FSM is a
tuple M = (X, Y, S, s0, δ, λ), where:

• X is a finite set of Boolean variables, called the input
signals of M .

• Y is a finite set of Boolean variables, called the output
signals of M .

• S is a finite set of states.
• s0 ∈ S is the initial state of M .
• δ : S × 2X → S is the transition function of M: it takes

a state s ∈ S and an input assignment a ∈ 2X and pro-
duces a next state s′ = δ(s, a) ∈ S. An assignment is
a function that assigns a value to each of a set of vari-
ables. An input assignment is a function a : X → {0, 1}
that assigns a Boolean value to each input signal. δ is a
total function meaning it is defined for any s ∈ S and
a ∈ 2X.

• λ : S × 2X → 2Y is the output function of M: it takes
a state s ∈ S and an input assignment a ∈ 2X and
produces an output assignment b = λ(s, a) ∈ 2Y . An
output assignment is a function b : Y → {0, 1} that
assigns a Boolean value to each output signal. λ is a
total function. For y ∈ Y , we define λy : S × 2X →
{0, 1} to be the function that returns a Boolean value for
output signal y, given the current state and inputs. That
is, λy(s, a) = (λ(s, a))(y).

An FSM M is closed if its set of input signals is empty,
i.e., X = ∅. In that case, the transition and output functions

2For simplicity, we use deterministic FSMs. However, the results,
and in particular the definition of conformance, directly extend to
non-deterministic FSMs as well.
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become simply functions of S: δ : S → S and λ : S → 2Y .
If X �= ∅ then M is called open.

An FSM M is a Moore machine if the value of each one
of its output signals only depends on the current state and
not on the inputs, that is, λ is only a function of S: λ : S →
2Y . Clearly, every closed FSM is a Moore machine. More
generally, we will say that a certain output signal y ∈ Y is a
Moore output of M if the value of that output only depends
on the current state (whereas the value of other outputs may
also depend on the inputs), that is, λy is only a function of
S: λy : S → {0, 1}. Clearly, M is a Moore machine iff every
output of M is a Moore output.

2.1 FSM Semantics

An FSM M defines a set of behaviors of the form

where si ∈ S, ai ∈ 2X, bi ∈ 2Y , si+1 = δ(si , ai) and bi =
λ(si , ai), for all i. Intuitively, at synchronous clock cycle i,
if the current state is si and the current inputs are ai , then the
current outputs are bi and the next state (at clock cycle i+1)
will be si+1. We say that the sequence (a0, b0)(a1, b1) · · · is
an observable behavior of M .

2.2 FSM Example

An example of an FSM is shown in Fig. 1. The top part
of the figure shows the structure (or “black-box” view) of
the FSM, namely, its name Mbuf , its set of input signals
{v1, r2} and its set of output signals {v1, r2}. The bottom
part of the figure shows the behavior of the FSM, namely,
its set of states, initial state, and transition and output func-
tions. Mbuf models a simple buffer of size one. It has two
states, denoted s0 and s1, representing the fact that the buffer
is empty and full, respectively. s0 is the initial state. The
assignment expressions inside the state represent the output
function. For example, r1 := 1 at state s0 specifies that r1 is
set to true when Mbuf is in that state (in this case, r1 does
not depend on the inputs), and v2 := v1 ∧ r2 specifies that
v2 is set to the logical conjunction of the two inputs.

Intuitively, the operation of Mbuf is as follows. Initially,
the buffer is empty and declares it is ready to receive input
by setting r1 to 1. A writer may request to write something to
the buffer (provided r1 = 1) by asserting v1. If this is done,
there are two cases: either a read is also requested simulta-
neously, by having r2 = 1; or no read is requested at this
time, i.e., r2 = 0. In the former case, the buffer acts as a
“wire”, letting the input “flow through” to the output: v2 is
set to 1 and the buffer continues to be empty. In the latter

Figure 1 Example FSM: structure (top) and behavior (bottom). This
FSM is of type Mealy, since, say, output v2 is a function of input v1
in state s0. Note that we use a slightly different notation for Mealy
machines than traditionally used, and represent the output function on
the states rather than on the transitions of the machine. The transi-
tions are annotated only with guards on the inputs, and represent only
the transition function. We find this notation more appropriate, since
the inputs may change multiple times during a clock cycle, while the
state remains fixed, and only changes at clock ticks. Then, the outputs
may also change multiple times at a given state, without the machine
making a transition.

case, v2 is set to 0 and the buffer moves to s1. The behav-
ior at s1 is analogous. Notice that data values are abstracted
away in this FSM, and only control signals are captured.

2.3 FSM Composition

FSMs can be composed with other FSMs, to form larger
FSMs. Since we use FSMs to model synchronous hard-
ware, we consider synchronous composition, where all
composed FSMs take a transition simultaneously. Different
types of composition can be considered: parallel composi-
tion (putting two FSMs “side by side”), serial composition
(connecting an output signal of one FSM to an input signal
of another FSM), feedback composition (connecting an out-
put signal of an FSM to one of its input signals), and so on.
The FSM model is compositional in the sense that, under
quite mild conditions, the composition of a set of FSMs
(with respect to any of the above composition operators)
defines an FSM.

The conditions are imposed to avoid problems of cyclic
dependencies during feedback composition: the fact that the
value of a signal may depend on itself. To avoid this, we
need to define combinational (i.e., instantaneous) depen-
dencies between the output and input signals of a machine.
Recall that, for an output signal y ∈ Y , the function λy :
S × 2X → {0, 1} returns the value of y for given state and
input. We say that y combinationally depends on a given
input signal x ∈ X if the Boolean function λy changes value
when x is toggled between 0, 1, while all other input signals
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Figure 2 Closed FSM M obtained by composing FSMs M1, M2
above, with Mbuf from Fig. 1. The vectors in the lower half of each
state denote the values of the four output signals r1, v1, r2, v2 in that
state.

remain constant. For example, in the FSM Mbuf from Fig. 1,
output v2 combinationally depends on both inputs v1 and r2,
because of the assignment v2 := v1 ∧ r2 at state s0. On the
other hand, output r1 combinationally depends on input r2,
but not on input v1.

A composition of two or more FSMs is valid if the com-
binational dependencies of the FSMs do not form a cycle
after we connect the signals. This is checked easily by con-
structing a dependency graph from the network of FSMs,
and checking whether this directed graph has cycles. The
nodes of the graph are signals, and the edges are combina-
tional dependencies. For example, consider the composition
of the three FSMs shown in Fig. 2. Mbuf is the FSM from
Fig. 1, while the behaviors of M1 and M2 are shown in
Fig. 2. This is a valid composition, because the combina-
tional dependency graph, shown in Fig. 3, has no cycles.
This is because, first, the output r2 of M2 does not depend
on its input v2 (M2 is a Moore machine), and second, the
output r1 of Mbuf does not depend on its input v1. Note that
none of the outputs of Mbuf is a Moore output.

Provided the combinational dependencies are acyclic, the
composition of a network of FSMs forms a new, composite
FSM. We will not define this composite FSM formally, as
it is standard. Instead, we give an example. Consider again

Figure 3 Combinational dependency graph of the composite FSM
M = M1 ×Mbuf ×M2 from Fig. 2. The absence of cycles in the graph
makes the composition valid.

the composition of the three FSMs shown in Fig. 2. The
composite FSM M is shown at the bottom of the figure. M

is the synchronous composition of M1, Mbuf and M2, and
is denoted also as a product M1 × Mbuf × M2. M has no
input signals: all its four signals r1, v1, r2, v2 are outputs.
Therefore, by definition, M is a Moore machine. The vec-
tors in the lower half of each state denote the values of the
four output signals r1, v1, r2, v2 in that state. Each state of
M is a composite state, that is, a vector describing the local
states of the components of M . Since M1 is stateless (it has
a single state that never changes) we omit its state from the
composite vector and include only the states of Mbuf and
M2. Thus, state s12 of M represents the fact that Mbuf is at
state s1 and M2 is at state 2 (we suppose that the states of
M2 are numbered 0,1,2).

3 The Glue Design Problem

We motivate the need for a formal definition of conformance
between hardware and dataflow models with a simple yet
realistic use case. Figure 4 (left) shows the interfaces for
two hardware IP blocks: a Signal Source (S) and a Ratio-
nal Resampler (R). The Source block generates one data
sample every two clock cycles. The sample value is pro-
duced on the Data-out output, and the Valid-out signal is
asserted to indicate the presence of a sample on Data-out.
The Resampler block does 2/3 resampling, that is, for every
three input samples, it produces two output samples. A sim-
ple implementation of Resampler in VHDL is shown in
Fig. 4 (right).

Alternatively, Resampler could be implemented using
the FIR IP block in the Xilinx CoreGen library [10].
Both implementations have the following semantics on
their interfaces: Data-in carries input data samples into
the Resampler. The corresponding Valid-in input indicates
when the sample on Data-in is valid. Three data sam-
ples must be provided in three consecutive cycles, i.e.
Valid-in, once asserted, must stay high for three cycles.
Output sample values are produced on Data-out in second
and third cycles, with Valid-out asserted to indicate their
validity.

The above interface semantics can be derived by analyz-
ing the VHDL implementation, and/or documentation and
timing diagrams in data sheets. The timing diagram of Fig. 4
shows examples of both correct and incorrect usages of the
Resampler block. A correct usage is illustrated in the first 4
clock cycles; an incorrect one in cycles 5-7. In cycle 5, the
Valid-in input for the Resampler turns true, but it becomes
false in cycle 7. This voids the input requirement that three
data samples must be provided in three consecutive cycles.
This results in the timing diagram indicating “ERROR” in
cycle 7.
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Figure 4 Left: interfaces of Source and Resampler IP blocks and timing diagram of Resampler. Right: an implementation of Resampler in VHDL;
c0, c1, c2, c3 are 8-bit constants that are declared elsewhere.

The challenge to the hardware designer is to create a valid
composition of these blocks (i.e., a system) so that behav-
ioral and timing constraints are respected. These constraints
include correctness requirements such as correct usage of
blocks like Resampler. But there may also be additional
requirements related to performance. For instance, require-
ments imposed on the output sample rate, analogous to a
throughput constraint.

An obvious composition of the blocks of Fig. 4 is to
connect Data-out and Valid-out from the Source directly
to the Data-in and Valid-in on the Resampler, respec-
tively. However, this results in an invalid composition,
since the Source produces an output sample every other
cycle, whereas the Resampler requires 3 samples in con-
secutive cycles. Hence, some glue consisting of buffer and
control logic is necessary to connect these blocks. Alter-
natively, a different Source block that produces a sample
every cycle satisfies the timing requirements on the Resam-
pler inputs. In this case, a direct connection between these
blocks results in a valid configuration. The overarching
challenge is to reason about these compositions and design
the appropriate glue to coordinate the interaction between
components.

In the rest of this section, we discuss in more detail the
components of a system, namely, actors and glue, and define
the glue design problem in a more precise manner.

3.1 Actors

We use the term actors to refer to system components such
as IP blocks, legacy blocks, or other blocks that perform
computations. These are typically available in hardware
description language (HDL) such as VHDL, Verilog, or as
low-level netlists.

Designing glue directly at the HDL or netlist level
is often infeasible in practice, due to state explosion
and other combinatorial explosion problems. As a first

Figure 5 FSM models for the Source (S) and Resampler (R) actors.
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Figure 6 System built by
connecting the Source and
Resampler blocks of Fig. 4 with
glue that includes a FIFO buffer
and a controller.
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remedy to this problem, we can model actors using
simplified FSMs where we abstract away the data sig-
nals and preserve only the control signals. This allows
us to obtain simpler and smaller FSMs. Another key
characteristic is that the error conditions are modeled
explicitly.

Figure 5 shows the FSMs for the Source and Resam-
pler actors. We refer to the FSMs by the same name as the
actors they represent but shorten and rename the control
signals Valid-out of S, Valid-in of R, and Valid-out of R to
vs, ur ,and vr , respectively. The FSM S makes a sample (also
called token) available every second clock cycle, by setting
its output vs to true. The FSM R waits for its input signal
ur to become true. Once ur becomes true, R requires that it
stays true for 3 consecutive clock cycles (these include the
first cycle where ur became true). If this requirement is vio-
lated, R moves into an “error” state. Otherwise, R produces
two samples in the last two of the three consumption clock
cycles, by setting its output signal vr to true.

Note that the machine for the Resampler actor given
in Fig. 5 does not strictly conform to the definition
of FSM given in Section 2. This is because of the
error state. Error states can be seen as states where the
machine enters a mode where its behavior is undefined,
or chaotic (“anything can happen”). This models a non-
deterministic FSM, which can produce any output once
it enters the error state. In Section 6.4, we shall see
how this non-determinism can be used to catch non-
conformance and thus indicate cases of erroneous dataflow
models.

3.2 Glue

The problem a designer faces is to connect actors such as S
and R to form a system. In this example, S and R cannot be
connected directly, i.e., by connecting output vs to input ur ,

Figure 7 FSM for a buffer of size 2.

because this would violate the requirements of R, as men-
tioned above. The system must therefore include some glue
which in the context of this work consists of a set of interme-
diate buffers and corresponding control logic. An example
of a system formed by composing S and R via some glue is
shown in Fig. 6. In the sequel, we elaborate on the salient
components of glues.

3.2.1 Buffers

The glue often includes buffers that store data tokens pro-
duced by components until these tokens can be consumed by
other components. In case such a buffer is finite, its behavior
can be modeled using FSMs, as with actors.

Figure 7 shows the FSM for a buffer Buf2 that can hold
at most two tokens. Buf2 has two input control signals
w and r, representing a write request and a read request
respectively. As before, data signals are abstracted. Tran-
sitions labeled “else” denote the default behavior. Note
that this buffer requires that it not be read from when
it is empty, or written to when it is full. This buffer
allows simultaneous reads and writes, except when it is
empty.

3.2.2 Control Logic

The glue may also include some type of control logic to
control the execution of actors. Figure 8 shows an exam-
ple. Controller Ctrl has the interface of Fig. 6: it has a
single input signal vs and three output signals, w, r, ur .
Output w is set to vs at all states, meaning that when-
ever the Source produces a token, the controller writes
this into the buffer. At the 5th cycle, when two tokens
have already been stored into the buffer, the controller
starts issuing read requests, at the same time enabling
the input signal of the Resampler. Provided a buffer of
size at least 2 is used, such as Buf2 of Fig. 7, this con-
troller guarantees that the requirements of the Resampler are
satisfied.

3.3 System-Level Properties

Once we have a set of actors and corresponding glue, we
can compose them together to form a system. In our setting,
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Figure 8 A mealy machine modeling the control logic.

a system is a closed FSM, that is, an FSM without input
signals. For example, Fig 6 represents a system.

The objective of the designer is to build a system that
has certain properties. These include correctness proper-
ties such as compatibility of actors, absence of deadlocks,
absence of buffer overflow, etc. These correctness properties
can often be described as some type of safety properties on
FSMs such as “an error state is never reached”. For exam-
ple, the system built by directly composing actors S and R
of Fig. 5 is incorrect, because the error state of R is reach-
able; the system built by composing S, R, Buf2, and Ctrl, of
Figs. 5, 7 and 8, is correct because no error state is reach-
able. Note that if in this system Buf2 is replaced by a buffer
of size 1, then the system would no longer be correct, as the
buffer would overflow.

In addition to correctness, the system must satisfy some
performance properties. These often include lower bounds
on throughput (the average number of tokens produced
per cycle) as well as optimality requirements with respect
to metrics such as sizes of buffers or control logic. For
instance, in our running example, the throughput achieved
by the system (S,R,Buf2,Ctrl), as measured at the output
vr of the Resampler, is 1

3 , as on average 2 tokens are pro-
duced by R every 6 cycles. It can be checked that increasing
the buffer size further will not improve the throughput, in
other words, a buffer of size 2 is optimal to achieve this
throughput.

3.4 Glue Design Problem

Definition 1 (Glue design problem) Given a set of actors,
synthesize a glue, consisting of buffers and control logic,
such that the closed system resulting from composing the
actors with the glue satisfies a set of given correctness,
performance, and optimality properties.

The glue design problem is challenging for a number
of reasons. At the theoretical level, one could formalize
the problem as a controller synthesis problem, along the
lines of works [11, 12] and their successors. However, there
are challenges in doing so. First, a glue generally includes
multiple buffers and control logic, which may itself be dis-
tributed. Thus, if we look at the glue as the controller to
be synthesized, this controller, being a collection of compo-
nents, is decentralized. Furthermore, some glue components
(e.g., buffers) may be parameterized (e.g., buffer size), or

Figure 9 SDF model of the source-resampler example.

they may be chosen from a library of available compo-
nents. Also, the glue in general only has partial information
about the actors. For example, in Fig. 6, the glue can
only observe the data and control outputs of the Source.
These characteristics lead to controller synthesis problems
which are hard, and generally undecidable [13–16]. Finally,
the requirements on the closed system are complex, and
expressing these requirements formally is not an easy task.
For example, part of the correctness requirements is that
every token produced by an actor is eventually delivered
to another actor, which strictly speaking is not a regular
(finite-memory) property.

In addition to the theoretical challenges, there are prac-
tical challenges, as automatic controller synthesis methods
are often plagued by state explosion, implementability, and
other problems.

Because of the above challenges, conventional prac-
tice often follows a trial-and-error process, where some
glue is chosen, the system is simulated for a finite num-
ber of inputs and cycles, and depending on the results,
the glue is modified and the process repeated. This pro-
cess is not guaranteed to converge to satisfactory results.
An alternative is to employ higher-level, dataflow mod-
els, such as SDF and CSDF. However, care must be
taken when using such models, as the following section
illustrates.

4 Using Abstract Models to Solve the Glue Design
Problem

The glue design problem is difficult to solve directly at the
HDL level or even at the FSM level due to the theoretical
and practical challenges described in the previous section.
This is where abstract models such as SDF come into play.
These models admit efficient algorithms for buffer sizing,
throughput, and other tasks, which can be applied for auto-
matic glue synthesis. However, care must be taken so that
employing such abstractions yields valid (i.e., correct) and
non-defensive (i.e., not too conservative) results, as we show
in this section.

4.1 SDF Model

Many streaming applications can be specified as SDF
models [3]. An SDF model consists of a finite set of
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Figure 10 Firing schedule to achieve optimal throughput for the SDF model of Fig. 9 assuming buffer size 5.

computational actors inter-connected by directed links rep-
resenting unbounded First In First Out (FIFO) channels that
carry streams of data tokens. The SDF semantics requires
the number of tokens consumed and produced by an actor
per firing to be fixed and pre-specified. We restrict our-
selves to SDF models without auto-concurrency, so that
at most one firing of each actor can be active at a given
time. Forbidding auto-concurrency can be done by explicitly
adding self-loops to the model, but we avoid this for rea-
sons of simplicity, and instead assume no auto-concurrency
implicitly.

Figure 9 shows a possible SDF model for the Source-
Resampler example from Fig. 5. This SDF model contains
two actors, S and R: S produces 1 token every time it fires
and R consumes 3 tokens and produces 2 tokens every time
it fires. These static token rates annotate the links of the
model.

The dataflow models that we consider are timed. The
execution time (ET) of each actor (marked as “ex.”) is the
time it takes to complete one firing (measured in HW clock
cycles). The ET includes the total time required to consume
tokens from all input channels, perform computation, and
produce tokens on all output channels. It could be exact
or an upper bound on the worst case behavior. Note that
the SDF abstraction hides the cycle-level details of exactly
when consumption, computation and production happens
within the span of an ET interval.

The ET and the token rates are typically derived from
low-level behavior and timing diagrams, such as the ones
specified in Fig. 4, or from FSM models like the ones in
Fig. 5. How the abstract models (SDF or others) are built
or extracted automatically from more concrete models is an
interesting problem, but beyond the scope of this paper. We
leave this discussion for future work.

The value of the SDF abstraction is that it enables static
analysis of key execution properties. Absence of dead-
locks (i.e., proper channel initialization) and consistency
of execution rates (i.e., ability to execute the model with
bounded channels) can be checked using efficient polyno-
mial time algorithms [3, 17]. The result of the analysis
also determines the relative execution rates of the actors in
one iteration of the model. For example, the SDF model
in Fig. 9 requires 1 firing of R for every 3 firings of

S to guarantee that the channel remains bounded during
execution.

Furthermore, the SDF model can be used to compute
a static schedule of actor firings and the corresponding
throughput of the model. One common scheduling strategy,
guaranteed to achieve optimal throughput for a given selec-
tion of buffer sizes, is a self-timed schedule, where finite
buffers are modeled using the standard technique of back-
ward edges [18, 19]. As the SDF abstraction does not reveal
the exact timing of consumption or production of tokens, the
following conservative assumptions are made when deriv-
ing the self-timed schedule: 1) an actor starts firing exactly
when enough tokens are available at all input channels (this,
together with the backward edges, ensures also that the req-
uisite number of vacancies are at that time available at all
outputs); 2) output tokens are produced only at the last clock
cycle in a firing (therefore delaying the firing of downstream
actors as much as possible); 3) input tokens are consumed
only at the last clock cycle in a firing (therefore delaying the
firing of upstream actors as much as possible).

An optimization problem for SDF is to compute buffer
sizes for the channels in order to achieve a specified
throughput. Several exact and heuristic algorithms have
been studied for this problem [17–20]. Figure 10 shows the
self-timed schedule when the channel between S and R is
implemented by a FIFO buffer of size 5. In this case, R fires
every time 3 tokens are available on the buffer. The addi-
tional space in the buffer ensures that there are sufficient
vacancies to start the subsequent firings of S while R works
on 3 tokens present in the buffer. The throughput at the out-
put of R is 2 samples every 6 cycles, which corresponds to
the optimal throughput of the system.

The benefits of the SDF abstraction are not limited
to static analysis of key properties. The abstraction also
enables automatic synthesis of the glue to connect the
underlying hardware IP blocks and generate a fully func-
tional implementation. For example, the buffer and sched-
ule shown in Fig. 10 can be naturally incorporated as
the buffer and controller components of Fig. 6, respec-
tively. Similarly, automatic synthesis of the glue (buffers
and schedule) is possible not only from SDF, but also
from other abstract models such as CSDF, discussed
next.
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4.2 CSDF Model

The CSDF model generalizes SDF by allowing the number
of tokens consumed or produced by an actor to vary accord-
ing to a fixed cyclic pattern [4]. Each firing of a CSDF actor
corresponds to a phase of the cyclic pattern.

Figure 11 shows a possible CSDF model for the Source-
Resampler example of Fig. 5. This CSDF model contains
two actors, S and R. S cycles between two phases, each tak-
ing 1 cycle to execute: in phase 1, S produces nothing; in
phase 2, S produces 1 token. R cycles between three phases,
also taking 1 cycle each: in phase 1, R consumes 1 token and
produces nothing; in phases 2 and 3, R consumes 1 token
and produces 1 token.

Since the cyclic pattern is fixed and known a priori,
all static analysis properties of SDF are also applicable to
CSDF [4, 18]. Figure 12 shows a schedule of actor firings
in steady state when the channel between S and R is imple-
mented by a FIFO buffer of size 1. The schedule in Fig. 12
achieves the optimal throughput of 2 samples every 6 cycles
at the output of R.

4.3 Correctness and Non-Defensiveness

We say that an abstract model M is correct if any analy-
sis result that can be obtained on M is sound, i.e., it can
be achieved (and potentially improved) by some implemen-
tation. We say that M is defensive if the analysis results
obtained on M are too conservative (with respect to a certain
metric). We proceed to discuss and illustrate these notions
by example.

Consider the SDF model of Fig. 9. As mentioned above,
according to the SDF semantics and corresponding analysis,
a buffer of size 5 is required to achieve optimal through-
put. However, we have seen in Section 3.2.2 that a buffer of
size 2 is sufficient to achieve the optimal throughput. The
difference is due to the fact that the SDF buffer analysis
conservatively allocates space for tokens from the firings of
S that occur while R executes. We conclude that the SDF
model of Fig. 9 is defensive.

We should note that defensiveness is intentionally
defined above to be a qualitative rather than quantitative
notion. It is up to the designer to decide exactly what “too
conservative” means. It could mean, for instance, “at least
X % more buffer space than the optimal implementation”.
The exact value of X depends on the application domain,
and is therefore beyond our immediate scope.

Figure 11 CSDF model of the Source-Resampler example.

Let us next turn to the CSDF model in Fig. 11. As men-
tioned above, CSDF analysis yields a required buffer size of
1 for this model to achieve optimal throughput. This result
is unfortunately misleading. It leads the designer to believe
that an implementation with buffer size 1 exists, whereas
this is not the case. The reason is that R expects to receive
3 tokens consecutively on 3 cycles, but S only produces a
token every 2 cycles. With a buffer similar to Buf2 shown
in Fig. 7 but with capacity 1, the requirement of R cannot
be satisfied. For instance, if the controller of Fig. 8 is used,
then the buffer will overflow. We conclude that the CSDF
model is incorrect.

5 An Operational Model for Dataflow

In order to be able to define a formal conformance relation
between dataflow and hardware, we need first to define an
operational model for dataflow. A variety of formal mod-
els for dataflow systems exist in the literature, e.g., see
[18, 21–25], although they are not as standard as FSMs
are for hardware. The operational model we present here is
in the spirit of those proposed in [7, 18, 24, 26]. Time is
typically introduced in dataflow models by means of a spe-
cial action denoted tick, modeling the lapse of one unit of
time. We follow the same approach. Specifically, we model
a dataflow system using two types of components:

• Processes: These are finite-state automata whose tran-
sitions are labeled with actions of the following three
types: geti (get token from the i-th input queue), puti
(put token into the i-th output queue), or tick (one time
unit elapses).

• Queues: These are essentially counters counting the
number of tokens in the queue at a given point in time.
put actions increment the queue’s counter by one. get
actions decrement the queue’s counter by one when the
counter is greater than zero, otherwise get is not pos-
sible. A queue may be unbounded which means the
counter can grow arbitrarily large, yielding an infinite-
state automaton; or the queue may be bounded meaning
the counter can only grow up to a given constant K , at
which point put is no longer possible.

The above models abstract away from data and the func-
tional aspects of dataflow. They only maintain information
on production/consumption of tokens and timing, which is
our focus in this paper.

Formally, a dataflow process is modeled as an automaton
A = (n, m, S, s0, →) where:

• n ≥ 0 is an integer representing the number of input
ports of A. Each input port will be connected to an input
queue.
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Figure 12 Firing schedule to achieve optimal throughput for the CSDF model of Fig. 11 assuming buffer size 1. The number following the actor
name indicates the phase of the firing.

• m ≥ 0 is an integer representing the number of output
ports of A. Each output port will be connected to an
output queue.

• S is a set of states (not necessarily finite).
• s0 ∈ S is the initial state of A.
• → ⊆ S × L × S is the transition relation of A, where

the set of labels L is defined as follows:

L = {get1, get2, ..., getn, put1, put2, ..., putm, tick}

A transition (s, �, s′) ∈ → is also denoted s
�→ s′.

An example dataflow process is shown in Fig. 13. A is an
SDF process with a single input queue and a single output
queue, represented by the incoming and outgoing arrows of
A, respectively. A repeatedly consumes 3 tokens and then
produces 2 tokens, as indicated by the numbers annotat-
ing the arrows. Each such repetition is called a firing of A.
The firing lasts for 4 time units, as indicated by the num-
ber below A in the figure. That is, from the moment the
last of the 3 input tokens is consumed, until the moment the
first of the 2 output tokens is produced, in a given firing,
4 time units elapse. This behavior is specified at the bot-
tom of Fig. 13. A has nine states, labeled s0, ..., s8. A waits
at state s0 until there is a token to consume, in which case
the get transition occurs representing consumption of one
token, and moving A to state s1. For simplicity, we write get
instead of get1, since there is only one input queue. Sim-
ilarly we write put instead of put1. After all three tokens

Figure 13 Example SDF process: structure (top) and behavior (bot-
tom).

have been consumed, A is at state s3. The next four transi-
tions are labeled with tick actions, representing the passage
of time. Once four time units have elapsed, A is at state s7

and is ready to output tokens, which is represented by tran-
sitions labeled with put actions. After producing two tokens,
A returns to its initial state for a new firing.3

Note that states s7 and s8 have self-loop tick transitions,
as do states s0, s1, s2. Such transitions are perhaps to be
expected in states s0, s1, s2, since A receives its input tokens
from an input queue, which might be empty. As long as the
input queue is empty, A must wait, therefore, it must allow
time to elapse at these states. The situation is similar in
states s7 and s8: even though queues in dataflow semantics
are typically considered to be of unbounded size, in which
case put actions can never be blocked, it is often useful,
as we shall see below, to consider an alternative semantics
where queues are bounded. In that case, put may block when
a queue is full, and in that case time must be allowed to
elapse.

A dataflow process may have no input queues, in which
case it is called a source, or no output queues, in which
case it is called a sink. Examples of SDF source and sink
processes are shown in Fig. 14. Note that Figs. 13 and 14
are simply examples, and do not prescribe a way to capture
SDF as dataflow processes. In fact, as we shall see, there
are different ways to capture dataflow models operationally,
and this is part of the challenge in coming up with faithful
models.

Remark 1 Although most of the examples in this paper
are simple dataflow processes that fall in the SDF, CSDF,
or Kahn Process Network (KPN) [21] classes,4 the model-
ing framework as well as the conformance relation defined
in Section 6 are more broadly applicable. In particular,
contrary to what is customary [24], we make no assump-
tions on determinism or confluence of the transition relation
→ of a dataflow process. For instance, it is allowed to

have a process with multiple transitions s
get1→ s1 and s

get1→ s2

3For simplicity, in our examples we assume no auto-concurrency, that
is, no overlapping of firings of the same process. Auto-concurrency
can be captured in our model using more elaborate and potentially
infinite-state processes.
4Examples of CSDF processes can be found in Fig. 21.
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Figure 14 Source SDF process (top) and sink SDF process (bottom).

emanating from the same state s. This would typically be
interpreted as the process choosing non-deterministically to
read from channel 1 or from channel 2, something which
is not allowed in neither SDF, CSDF, or KPN. It is also
possible to have non-determinism in the successor states,

e.g., s
get1→ s1 and s

get1→ s′
1, with s1 �= s′

1. These types of
non-determinism are useful, for instance, when abstracting
data-dependent behavior.

An example of a non-deterministic dataflow process is
shown in Fig. 15. This process has one input and two out-
put ports. After reading from its input, the process can
non-deterministically choose two courses of action: either
to write to port 1 after two time units, or to write to port
2 after one time unit. Such non-determinism is often the
result of data abstraction. For example, consider a Kahn
process which reads a concrete value, tests this value, and
based on the result of the test chooses to perform different
types of computation (requiring longer or shorter execution
times) and write to different output ports. Such a process
can be captured as in Fig. 15, where the test is replaced by a
non-deterministic choice.

5.1 Dataflow Process Semantics

A dataflow process A defines a set of behaviors of the form

where si ∈ S, �i ∈ L, and si
�i→ si+1, for all i. Intuitively,

from state si , the process can perform action �i and move
to state si+1. If �i = tick then this action represents the
passage of one time unit. Otherwise, the action is instanta-
neous. Action geti means that A removes a token from its
i-th input queue. Action puti means that A adds a token to
its i-th output queue.

As we did for FSMs, we will define a concept of
observable behaviors for dataflow. This is somewhat more
involved to do for dataflow than for FSMs because in the
case of dataflow, consecutive put and get actions that are not
“interrupted” by ticks are considered to be instantaneous.
Therefore, it is reasonable to group all such actions together

Figure 15 A non-deterministic dataflow process.

in a set. We will do this, and define an observable behavior
of A to be a sequence α0α1 · · · obtained by a behavior ρ of
A, such that αi is either tick or a set of consecutive put and
get

is a dataflow behavior, then the corresponding observable
dataflow behavior is

tick · {put, get} · tick · {put, get} · · · .

5.2 Queues

Dataflow processes communicate via FIFO queues. In our
model, data is abstracted away, therefore, the FIFO property
of such queues is irrelevant, and does not have to be mod-
eled. Therefore, we can easily model queues as counters that
count the number of tokens currently in the queue. We can
capture such counters using the same formalism as for pro-
cesses. For example, the processes for an infinite queue and
for a finite queue are shown in Fig. 16. Queues are assumed
to have an implicit self-loop transition labeled tick at every
state: we omit these self-loops from the figures for the sake
of simplicity.

5.3 Closed and Open Dataflow Networks

A dataflow network is a collection of dataflow processes
connected via queues. A dataflow network is closed if every
input port of every process in the network is connected to
some output port. This includes the ports get and put of
queue processes, which are both inputs, since a queue is
essentially a “passive” object, in the sense that it waits for
a writer process to perform a put or for a reader process to
perform a get, and it may sometimes disallow these actions
(when full or empty), but it cannot initiate them.

For example, the network shown in Fig. 17 is closed.
If we removed C, however, it would be open. A network
containing only process B would be closed. A network
containing only process A of Fig. 13, however, would be
open.
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Figure 16 Queue processes: infinite queue (left) and queue of size 2 (right).

5.4 Dataflow Composition

Having obtained formal behavioral models for dataflow
processes and for queues, the semantics of a dataflow net-
work can be captured as the composition of the individual
processes and queues. This composition can be defined
as a standard composition of processes with rendez-vous
communication in the style of CCS [27] or CSP [28]. In
particular:

• a get action of a dataflow process A synchronizes with
the get action of the process of the corresponding input
queue of A;

• a put action of a dataflow process A synchronizes with
the put action of the process of the corresponding output
queue of A;

• tick actions synchronize across all processes in the
network.

A composite process obtained by following the above
rules is maximal in the sense that it contains all possible
behaviors of a network. Maximality is important to have
in an open network, that is, one that could be further com-
posed. On the other hand, in a closed network, maximality
may sometimes result in including behaviors that are not
interesting or not optimal from a performance perspective.
We may therefore need to exclude such behaviors. In order
to do this, we define two composition semantics, obtained
by restricting the maximal set of behaviors by adding extra
rules.

5.4.1 Non-Idling Semantics

This semantics is obtained by computing the composi-
tion according to the above rules, and then removing
all self-loop transitions labeled with tick, except if
such a transition is the only one left at a given
state. Indeed, such transitions represent idling where
time passes without any process doing something
useful.

5.4.2 Eager Semantics

Non-idling semantics guarantees absence of idling but often
we require something more, namely, that processes con-
sume and produce tokens as soon as possible. In order to

obtain this eager semantics, we additionally impose the fol-
lowing rule: a tick action is allowed at a given state only
when no other action is possible.

5.4.3 Example

As an example, a dataflow network is shown at the top of
Fig. 17. It consists of the two SDF processes B and C of
Fig. 14 connected via a queue of size 1. The non-idling and
eager composite processes obtained for N by following the
rules described above are shown at the bottom of Fig. 17,
left and right, respectively. The states of the composite pro-
cesses are product states, that is, vectors consisting of one
element state for each process in the network. To save space,
we write ijk for a composite state instead of (si , j, sk).
Thus, 010 represents product state (s0, 1, q0) where B is at
state s0, the queue is at state 1 (i.e., contains one token) and
C is at state q0. Notice that the eager semantics has no tick
transition from that state, whereas the non-idling semantics
has one.

6 Conformance

We are now ready to attack our main problem, which is
to define a formal conformance relation between the for-
mal model for hardware defined in Section 2 and the
formal model for dataflow defined in Section 5. We are
immediately faced with a difficulty. FSMs and dataflow
processes are different mathematical objects, with heteroge-
neous semantics. How to compare them?

To overcome this difficulty, we take a pragmatic
approach. Before defining conformance, let us recall that
dataflow models are usually employed for estimation of
timing and performance properties of the HW system. We
examine such properties first, and then define conformance.

6.1 Timing Properties

At the dataflow level, timing properties can be defined
by referring to basic events: token consumptions, token
productions, and the passage of time. More specifically:

• throughput can be defined by measuring how many
tokens are produced within a given window of time (or
the limit of such);
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Figure 17 A closed dataflow
network N (top) and the
corresponding composite
dataflow processes: non-idling
(bottom-left) and eager
(bottom-right).

• latency can be defined by measuring the amount of time
that elapses between the consumption and production
of certain tokens;

• timing properties refer to which points in time certain
consumptions or productions may or may not occur.

For example, consider the SDF network N shown in
Fig. 17. We can define throughput as the asymptotic aver-
age of the number of tokens consumed by C per unit of
time. In the behaviors of N , consumptions are represented
by get actions and time units by tick actions. Therefore, for a
given behavior, we can compute the throughput by counting
the average number of gets per number of ticks. As we can
see from the composite processes for N shown in Fig. 17,
different behaviors achieve different throughput. In the non-
idling process, there are behaviors that achieve throughput
1
3 but also others that achieve throughput 1

4 . In the eager
process there is only one behavior that achieves the optimal
throughput 1

3 .
As for latency, we can define it as the time delay

between the production of a token by B and the next cor-
responding consumption by C. This delay is not constant:
it depends not only on the behavior of N , but it can also
vary at different points within a behavior, for different
productions and consumptions. In the case of the exam-
ple of Fig. 17, the worst-case latency between a put and
a get is equal to 3 ticks, and the best-case latency is 0
ticks.

6.2 Conformance for Closed Systems

Having seen examples of typical properties that we are inter-
ested in, let us return to the question of conformance. In this
paper we tackle this question in the case of closed systems.
The case of open system is the subject of future investigation
(see Section 8).

Suppose we want to compare a closed dataflow network
such as the one of Fig. 17 with a closed FSM. When should
one say that the FSM conforms to the dataflow network? A
standard principle for defining conformance in behavioral
models is that of containment of sets of behaviors: a certain
model M1 conforms to another model M2 if the set of all
possible behaviors of M1 is a subset of the set of behaviors
of M2.

We would like to apply the above principle in our set-
ting. However, we are still faced with the problem that the
behaviors of dataflow and FSM models are not directly
comparable. In particular, although time elapse is observ-
able from the behaviors of FSMs (by simply counting the
number of transitions), token productions and consumptions
are not directly observable at the FSM level. Indeed, it is not
clear, by looking at the input and output Boolean signals of
an FSM as they take values across successive clock cycles,
when token consumptions or productions ccur.

To overcome this, we propose to make such events
explicitly observable at the FSM level.5 More specifically,
with each put or get action of the dataflow network that
we are interested in observing, we associate a correspond-
ing output signal of the FSM. The intended meaning is
that whenever that signal becomes 1, the corresponding
production or consumption occurs.

Let us formalize this. Let N be a closed dataflow network
and let L be the set of actions of N to be observed. Let
M = (X, Y, S, s0, δ, λ) be a closed FSM. Because M is
closed, X = ∅. Let θ : L → Y be a 1-1 mapping from L to
Y , associating to each action � ∈ L a distinguished output
signal θ(�) ∈ Y serving to observe action � at the FSM level.

5An alternative could be to attempt to discover consumptions and pro-
ductions automatically by observing the behavior of the FSM. This
problem is much more difficult, and is the topic of future work.
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The mapping θ defines a mapping � from FSM observ-
able behaviors to dataflow observable behaviors as follows.
Let σ = (a0, b0)(a1, b1) · · · be an observable behavior of
M . Because X = ∅, all ak’s are trivial (empty assignments).
Then, each bk is mapped to a subsequence ρk = tick · αk ,
where

αk := {� ∈ L | bk(θ(�)) = 1}.
That is, αk is the set of all actions that are observed to occur
at the FSM level, according to the distinguished outputs
that are true in bk . If αk is empty then we let ρk be simply
tick. Then, � maps the FSM observable behavior σ to the
dataflow observable behavior �(σ) = ρ0 · ρ1 · · · .

For example, let L = {put, get} and Y = {yput, yget}. Let
θ = {put 
→ yput, get 
→ yget}. Then we have the follow-
ing mappings from FSM observable behaviors to dataflow
observable behaviors:

(yput =0, yget = 0)·(yput = 1, yget = 0)·(yput = 0, yget = 1)

is mapped to

tick · tick · {put} · tick · {get}
and

(yput = 0, yget = 0) · (yput = 1, yget = 1) · (yput = 0, yget = 0)

is mapped to

tick · tick · {put, get} · tick.

Having specified this mapping, we define two types of
conformance as follows:

Definition 2 (Conformance) M conforms to the non-
idling (respectively, eager) semantics of N with respect to
mapping θ iff for every observable behavior σ of M , the
sequence �(σ) defined as above, is an observable behavior
in the non-idling (respectively, eager) semantics of N .

It is worth noting that if N is a dataflow model whose
eager semantics is a subset of its non-idling semantics (e.g.,
as in a KPN), then, if M conforms to the eager semantics of
N then it also conforms to the non-idling semantics of N .

Also note that since M is a closed FSM, it is by defini-
tion a Moore machine, and since we consider deterministic
FSMs, M has a single behavior. We could therefore sim-
plify the above definition to state “for the unique observable
behavior σ of M” instead of “for every observable behavior
σ of M”. We prefer not to do so, however, in order to have
a definition that generalizes to the case of non-deterministic
FSMs.

We proceed to illustrate conformance by examples.

6.3 Examples of Conformance and Non-conformance

Consider the dataflow network N shown in Fig. 17 and the
FSM M shown in Fig. 2. Let θ be the mapping

θ = {put 
→ v1, get 
→ v2}.
That is, at the level of M , every time v1 = 1 this corresponds
to a put in the buffer, and every time v2 = 1 this corresponds
to a get.

We claim that M conforms to both the eager and non-
idling semantics of N with respect to θ . As shown in
Fig. 2, M has a single infinite behavior yielding the infinite
observable behavior

σ = (r1, v1, r2, v2) · (r1, v1, r2, v2) · ((r1, v1, r2, v2)

·(r1, v1, r2, v2) · (r1, v1, r2, v2))
ω

where ρω denotes the infinite repetition of a sequence ρ.
σ is mapped to the dataflow observable behavior

�(σ)= tick·{put, get}·tick·{put}·(tick·tick·{put, get}·tick)ω .

It can be seen that �(σ) is identical to the observable behav-
ior of the eager semantics of N – Fig. 17, bottom right.
Therefore, M conforms to both the eager and non-idling
semantics of N .

Consider next Fig. 18. The figure shows three variants of
FSM M1 of Fig. 2 and the synchronous FSM composition
of each of these variants with FSM M2 of Fig. 2. Note that
the buffer FSM Mbuf is not used in these compositions. Let
r = r1 = r2 and v = v1 = v2 be the names of the signals of
the composite FSMs.

Define θ = {put 
→ v, get 
→ q0 ∧ v}. The expression
get 
→ q0 ∧ v means that we interpret v to correspond to
a get action only when M2 is at its initial state q0, other-
wise, even if v = 1, we will not consider this a get. We use
such expressions merely for reasons of convenience, with-
out departing from the framework we set up above. Indeed,
we could easily consider an additional signal v′ defined to
be 1 iff M2 is at q0 and v = 1. Then, we could define θ

equivalently as θ = {put 
→ v, get 
→ v′}. Therefore, using
such expressions is not more expressive than our original
framework.

With the above mapping θ , the observable behaviors of
the three composite FSMs are mapped to the following
observable dataflow behaviors:

1. (tick · tick · {put, get} · tick · {put} · tick)ω,
2. (tick · tick · {put, get} · tick · tick)ω,
3. (tick · tick · {put, get} · tick)ω.

None of these composites conforms to dataflow net-
work N of Fig. 17, because N does not admit the starting
sequence tick · tick · {put, get}. This non-conformance indi-
cates that SDF process B of Fig. 14 may incorrectly capture
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Figure 18 Left: three variants,
M11,M12,M13, of FSM M1 of
Fig. 2. We compose each of
these with M2 (without use of
Mbuf in the middle). Let states
of M2 be labeled q0, q1, q2. Let
states of M1i be labeled s0, s1.
Resulting three composite FSMs
are shown to the right column of
the figure. In each of the
composites, state sij is
composed of si of M1k and qj of
M2, and vector in the lower half
of each state denotes values of
signals r = r1 = r2 and
v = v1 = v2 respectively in that
state.

HW blocks M1k . Indeed, B can produce a token every 1
time unit, whereas it appears that, M1k require 2 time units.

Instead of B , consider SDF process D of Fig. 19 and
dataflow network NDC shown at the top of Fig. 20. NDC is
similar to the network of Fig. 17 except that B is replaced by
D. NDC defines two composite dataflow processes, one for
each of the two variants of D: the two composite processes
are denoted N1 and N2 and are shown in Fig. 20, bottom.
Then:

1. M11 × M2 conforms to neither N1 nor N2. On inspect-
ing the behavior of M11 × M2, it is evident that every
other token generated by M11 is dropped, i.e., it is not
read by M2 because M2 is busy processing the previous
token. This is a case of wrong synchronization between
the two FSMs, which is revealed by attempting to show
conformance to an SDF model.

2. M12 × M2 does not conform to N1, but conforms to
the non-idling semantics of N2. In this case, one may
interpret M12 × M2 as a non-idling implementation
of NDC where the execution of D and C is pipelined
in such a way as to overlap the last cycle of C with
the first one of the next D, achieving a non-optimal
throughput of 1

4 . Such a pipelining can be captured by
N2 but not by N1. This indicates that N1 is not a faithful
model of this HW. Also, although M12 × M2 conforms
to the non-idling semantics of N2, it does not conform
to its eager semantics, and indeed, does not achieve the
optimal throughput of 1

3 .
3. M13 × M2 conforms to the non-idling semantics of

N1 and therefore also of N2 since N1 is a subset of
N2. M13 × M2 achieves optimal throughput 1

3 . Despite
this, its behavior is not eager, and therefore it does not
conform to the eager semantics of N1 or N2.

Figure 19 Two variants of SDF
process D.
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Figure 20 Top: closed dataflow
network of actors D,C

connected using queue of size 1.
Bottom-left: composite
non-idling dataflow process, N1,
using left-most variant of
process D from Fig. 19.
Bottom-right: composite
non-idling dataflow process, N2,
using right-most variant of D. In
each of the composites, the
corresponding eager
composition is embedded, as
shown by edges with double
arrowheads.

6.4 The Sampler-Resampler Example

Let us return to the Sampler-Resampler example from
Sections 3 and 4, to see how the conformance relation can
be used to catch the incorrectness of the CSDF model.

As a first approach, we consider the comparison of two
closed systems:

• The closed FSM shown in Fig. 4, that is, the FSM
formed by composing four FSMs, S, R, Buf2, and Ctrl,
from Fig. 5, 7, and 8, respectively. Call this system
MSR .

• The closed dataflow network consisting of the two
CSDF actors of Fig. 11, connected by a queue of size
1. The dataflow processes for these actors are shown in
Fig. 21. Call this system NSR.

Let us identify the signals of interest to be:

• For MSR , the signals w and r, which are both inputs of
Buf2, and outputs of Ctrl.

• For NSR , the output puts of Sampler process S, and the
input getr of Resampler process R. Note that, for now,
we ignore the output of R.

As might be expected, we use the mapping θ = {puts 
→
w, getr 
→ r}.

Then, as it can be verified, by looking in particular at
the behavior of S and Ctrl, MSR generates the observable
behavior

σ = (w, r) (w, r) (w, r) (w, r) · · ·

which is mapped to the dataflow observable behavior

�(σ) = tick · tick · {puts} · tick · tick · {puts} · · ·

But �(σ) is not admitted by NSR. This is because �(σ)

contains two consecutive puts actions without a getr in
between. This behavior is impossible in NSR, which has a
queue of size one, forcing every puts to be followed by a
getr .

Non-conformance of MSR to NSR indicates the incor-
rectness of the latter. Note that, comparing a hardware
implementation which uses a buffer of size 2, to a dataflow
model which uses a queue of size 1, is not unreason-
able. Recall that the queue of size 1 was obtained as
the optimal one by the CSDF analysis. And one would
expect that increasing the available buffer space in the
hardware implementation should not result in breaching
conformance.

Still, one might wonder whether we can compare NSR

to a variant of MSR which uses a buffer of size 1 instead
of 2. Call this variant M ′

SR . Unfortunately, M ′
SR is an

erroneous FSM model, because either it reaches the error
state of R, or it over-writes data in the buffer (two con-
secutive w’s without an r in-between). The latter case
will result in non-conformance with similar traces as σ

and �(σ) above. In the former case, when R reaches the
error state, it behaves non-deterministically. This results
in arbitrary behavior also in M ′

SR , which again results in
non-conformance, as such arbitrary behavior is not part
of NSR .
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Figure 21 Dataflow processes for the CSDF actors of Fig. 11.

6.5 Discussion

As seen from the examples presented above, conformance
can be used in a number of different scenarios. It can
provide guarantees of throughput preservation between
dataflow models and HW implementations. It can point
to timing or synchronization errors in HW implementa-
tions, or to inadequacies of the dataflow model of the
HW. Thus, our framework can be used in a bottom-up
methodology where HW is given and the goal is to build
faithful performance models of this HW, as well as in a
top-down or model-based design methodology where the
goal is to synthesize from a high-level model (e.g., SDF)
a HW implementation that preserves the properties of the
model.

The definition of conformance as containment of behav-
iors allows to derive such preservation for properties of type
“for-all”. More precisely, if a property P is stated as “for all
behaviors of N something holds” then if N satisfies P , any
model whose behaviors are a subset of N also satisfies P .

Conformance can be used in particular to show preser-
vation of performance bounds such as worst-case or best-
case throughput and latency. For example, bounds on
throughput can be expressed using “for-all” properties of
the form “for any behavior ρ, the throughput of ρ is
in [Tmin, Tmax]”.

Our conformance relation is essentially a language inclu-
sion type of conformance, modulo the fact that a translation
� from FSM behaviors to dataflow process behaviors needs
to be performed first. Such a translation can be performed
automatically by appropriately transforming an FSM into
another type of finite automaton. If the process automa-
ton is also finite-state, then conformance can be checked
automatically, using standard model-checking type of
techniques.

7 Related Work

Prior research has extensively studied methods to gener-
ate (HW or SW) implementations from dataflow mod-
els. Algorithmic solutions have been developed for joint
code and buffer size optimization, throughput computa-
tion, buffer sizing under throughput constraints, and sched-
ule computation, e.g., [3, 17, 18, 20, 29–32]. Hardware
generation from dataflow models has also been exten-
sively studied, e.g., in [33–40]. The goals of that line of
work are akin to those of high-level synthesis, namely,
obtaining efficient HW implementations automatically from
high-level descriptions. Even if we admit that these
methods are correct-by-construction, in which case the
resulting implementation is guaranteed to conform to the
high-level description, there is still a need to explicitly
define conformance, something missing from the above
works. An explicit notion of conformance is useful in
the context of high-level synthesis, for instance, in order
to catch compiler bugs. But conformance is also use-
ful in other contexts, for instance, when abstract mod-
els are used to estimate performance of an existing HW
system (e.g. [41]), or in the context of IP integration
(e.g. [2]).

The problem of bridging the semantic gap between hard-
ware and higher-level models arises in many abstraction-
based design and verification methodologies, such as
transaction-level modeling (TLM), e.g. [42] or equivalence
checking between system-level and RTL models, e.g. [43]. A
rigorous formalization of the relation between the concrete
(RTL) and the abstract (transaction- or system-level) mod-
els is often missing in such methodologies, and it is unclear
how such a relation could be defined, since the models “live
in different semantical worlds” (e.g., clock cycles vs. trans-
actions). Indeed, the abstract models are often untimed C
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programs and the focus is to check functional equivalence
within a cycle [44].

The works [2, 41] pursue goals similar in spirit to this
paper, however, they do not define a formal conformance
relation. [41] presents a method for building conservative
dataflow models of a specific class of network-on-chip
channels. Our work aims to be more general, and applica-
ble to general hardware modeled as FSMs. The main focus
of [2] is the synthesis of glue, and the notions of correctness
and non-defensiveness between models and systems are
defined with respect to the glue (e.g., whether buffer sizes
estimated by the model are overly pessimistic or optimistic).

Formal conformance relations abound in the field of
formal verification, such as trace inclusion, simulation,
bisimulation, and so on (see, for instance, [45, 46]). How-
ever, these works typically relate processes that “live in the
same world”, in other words, follow the same model of
computation. In contrast, we develop a conformance rela-
tion between two heterogeneous models that preserves key
execution properties.

A formal refinement relation for a model of actors has
been proposed in [25]. Actors are viewed as relations
between input and output timed traces and the refinement
relation preserves worst-case throughput and latency prop-
erties. Our work pursues goals similar to those pursued in
that paper, however, there are differences. The primary dif-
ference is that [25] uses an abstract, denotational model of
actors, which does not answer the question how to bridge the
semantic gap between tokens and signals. Here we use oper-
ational models for both dataflow and hardware, and directly
consider how to map signals to tokens. A secondary differ-
ence is that the refinement relation used in [25] is based on
the “earlier the better” principle, whereas here we employ
the more traditional principle of subset of behaviors. More
discussion on the relation to [25] is provided in Section 8.

The glue design problem is related to controller synthe-
sis problem [11–16, 47], for which theoretical and practical
challenges remain. The same challenges are present in
methods for converter synthesis [48, 49]. Moreover, these
methods typically do not deal with buffer sizes and through-
put constraints which are central in our context. Abstract
dataflow models proposed in this paper can provide effec-
tive solutions, if used carefully.

Compositional verification techniques such as those
in [50, 51] bear some similarity to our work in the sense
that they also deal with abstractions. However, these meth-
ods focus at verification of an existing closed system and
not at how to close an open system by adding glue.

Our work is also inspired by ideas that have existed for a
long time in the software and programming language com-
munities, such as abstraction by pre/post-conditions, non-
defensive programming and design-by-contract [52]. Lim-
ited but practically useful versions of these ideas (e.g., types

and interfaces) have found their way in widespread pro-
gramming languages such as C++ and Java. More advanced
concepts such as pre- and post-conditions are included in
newer languages such as Spec# [53]. This paper advo-
cates the adoption of these ideas as an integral part of the
hardware design methodology.

8 Conclusions and Future Work

We have investigated the question of faithfulness of
dataflow models to hardware implementations by proposing
a formal conformance relation between the two. The exam-
ples of dataflow processes presented above are SDF, but our
process model is general enough to capture other dataflow
variants as well. Since conformance is defined with respect
to the process model, this means that the framework is
applicable to a wide class of dataflow models.

Our study has been motivated by the extensive use
of dataflow models in hardware design, and in particular
by the glue design problem. We formulated this problem,
defined the notions of correctness and non-defensiveness
between abstract models and concrete hardware systems,
and examined the scenarios under which these notions may
be compromised.

Our current study is limited to closed systems. One of
our future goals is to study conformance between open sys-
tems, with the main challenge being to guarantee some
notion of compositionality. For instance, we would like our
framework to guarantee that if M1 conforms to N1 and M2

conforms to N2, then M1 × M2 conforms to N1||N2 (where
|| denotes dataflow composition). This is essential for scal-
able conformance checking, but also for incremental design,
where a HW component can replace another one without
compromising the properties of the overall system.

Another direction of future work is to develop tech-
niques for automatically generating dataflow processes such
as the ones used in the examples above from a vari-
ety of dataflow models (SDF, CSDF, HDF, ...). Devel-
oping specialized algorithms for checking conformance
with respect to these subclasses is an additional interesting
objective.

An alternative way to bridge the gap between dataflow
and hardware is to give them both semantics in terms of
the denotational actor model of [25]. This has already partly
been done in [25] for SDF but not for general dataflow. It
has also been done in [25] for different models of discrete
automata, but not for the Mealy and Moore machines which
are the standard hardware models. Once both dataflow and
hardware are given actor semantics, they “live in the same
world” and can therefore be compared using the refinement
relation defined in [25], or another relation such as the one
based on subsets of behaviors that we employ here.
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