
Refinement Calculus of Reactive Systems∗

Viorel Preoteasa
Aalto University, Finland.

Stavros Tripakis
Aalto University, Finland.

University of California, Berkeley, USA.

ABSTRACT
Refinement calculus is a powerful and expressive tool for reasoning
about sequential programs in a compositional manner. In this pa-
per we present an extension of refinement calculus for reactive sys-
tems. Refinement calculus is based on monotonic predicate trans-
formers, which transform sets of post-states into sets of pre-states.
To model reactive systems, we introduce monotonic property trans-
formers, which transform sets of output infinite sequences into sets
of input infinite sequences. We show how to model in this seman-
tics refinement, sequential composition, demonic choice, and other
semantic properties of reactive systems. We also show how such
transformers can be defined by various formalisms such as linear
temporal logic formulas (suitable for specifications) and symbolic
transition systems (suitable for implementations). Finally, we show
how this framework generalizes previous work on relational inter-
faces to systems with infinite behaviors and liveness properties.

1. INTRODUCTION
Refinement calculus [3, 5] is a powerful and expressive tool

for reasoning about sequential programs. Refinement calculus is
based on a monotonic predicate transformer semantics which al-
lows to model total correctness (functional correctness and termi-
nation), unbounded nondeterminism, demonic and angelic nonde-
terminism, among other program features. The framework also al-
lows to express compatibility during program composition (e.g.,
whether the postcondition of a statement is strong enough to guar-
antee the precondition of another) and also to reason about program
evolution and substitution via refinement.

As an illustrative example, consider a simple assignment state-
ment performing division: z := x/y. Semantically, this statement
is modeled as a predicate transformer, denoted Div. Div is a func-
tion which takes as input a predicate q characterizing a set of pro-
gram states and returns a new predicate p such that if the program
is started in any state in p it is guaranteed to terminate and reach a

∗This work was supported in part by the Academy of Finland and
by the NSF via projects COSMOI: Compositional System Modeling
with Interfaces and ExCAPE: Expeditions in Computer Augmented
Program Engineering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ESWEEK’14, October 12 - 17 2014, New Delhi, India
Copyright 2014 ACM 978-1-4503-3052-7/14/10 ...$15.00.
http://dx.doi.org/10.1145/2656045.2656068

state in q (that is, p is the weakest precondition of q). For our di-
vision example, we would also like to express the fact that division
by zero is not allowed. To achieve this, we can define the predicate
transformer as follows:

Div(q) = {(x, y, z) | y 6= 0 ∧ (x, y, x/y) ∈ q}.
Having defined the semantics of the division statement, we can

now compose it with another statement, say, a statement that reads
the values of x and y from the console: (x, y) := read(). Mak-
ing no assumptions on what read does, we model it as the so-
called Havoc statement, which assigns arbitrary values to program
variables. Formally, read is modeled as the predicate transformer:

Havoc(q) =

{
> if q = >
⊥ otherwise

where> and⊥ denote the universal

and empty sets, respectively. Now, what happens if we compose the
two statements in sequence? That is, (x, y) := read(); z := x/y.
Refinement calculus tells us that sequential composition of state-
ments corresponds to function composition of their predicate trans-
formers, so the semantics of the composition is Havoc◦Div, which
can be shown to be equivalent to the predicate transformer Fail, de-
fined as Fail(q) = ⊥ for any q. This indicates incompatibility,
i.e., the fact that the composition of the two statements is invalid.
Indeed, without any assumptions on read, we cannot guarantee ab-
sence of division by zero.

We can go one step further and reason about program substitu-
tion via refinement. Assume we have another division statement,
but this time it calculates only some approximation of the result:
z := z′ such that abs(x/y − z′) ≤ ε. We model this new division
statement as a new predicate transformer Div′ defined as follows:
Div′(q) = {(x, y, z) | y 6= 0 ∧ (∀z′ : abs(x/y − z′) ≤ ε ⇒
(x, y, z) ∈ q)}. Refinement calculus allows us to state and prove
that Div refines Div′, and conclude that the Div statement can sub-
stitute the Div′ statement without affecting the properties of the
overall program.

Refinement calculus has been developed so far primarily for se-
quential programs. In this paper we present an extension of refine-
ment calculus for reactive systems [11]. Denotationally, a reactive
system can be seen as a system which accepts as input infinite se-
quences of values, and produces as output infinite sequences of val-
ues. Operationally, a reactive system can be seen as a machine with
input, output, and state variables, which operates in steps, each step
consisting of reading the inputs, writing the outputs, and updating
the state. Our framework allows us to specify a very large class
of reactive systems, including nondeterministic and non-receptive
systems, with both safety and liveness properties, both denotation-
ally and operationally. It also allows to define system composi-
tion and to talk about incompatibility, refinement, and so on. To
illustrate these features, we provide an example analogous to the
division example above.

Consider the two components shown in Figure 1 and specified
using the syntax of linear temporal logic [15]. Component A =
2 (x ≥ 0) specifies that its output x is never less than zero, while
component B = 2 3 (x = 1) requires that its input is infinitely
often equal to one. The output of A is connected to the input of B.
Using our framework, we can show that this composition is invalid,
that is, thatA andB are incompatible, because the output guarantee
of A is not strong enough to satisfy the input requirement of B.

A
2 (x ≥ 0) B

23 (x = 1)
x x

Figure 1: Two incompatible reactive systems

C
2 (y = 1 ⇒ 3 (x = 1)) B

23 (x = 1)
xy x

=

D (23 (y = 1)) ∧ (2 (y = 1 ⇒ 3 (x = 1))
y x

v
E

2 (y = 1 ⇒ x = 1)
y x

Figure 2: Two compatible systems (top), their composition
(middle), and a refinement (bottom)

The above is akin to behavioral type checking. We can also use
our framework to perform behavioral type inference. We can de-
duce, for instance, that component C = 2 (y = 1 ⇒ 3 (x = 1))
from Figure 2, which models a request-response property (always
y = 1 implies eventually x = 1) is compatible with compo-
nent B above, and infer automatically a new input requirement
2 3 (y = 1) for the composite system D.

Finally, we can reason about refinement, akin to behavioral sub-
typing. In the example of Figure 2, we can show that the executable
component E which sets output x = 1 whenever input y = 1 re-
fines the component D, and therefore conclude that E can substi-
tute D in any context.

The key technical contribution of our paper, which allows us to
develop a refinement calculus of reactive systems, is the notion of
monotonic property transformers. A property transformer is a func-
tion which takes as input an output property q and returns an input
property p. Properties are sets of traces, so that q is a set of out-
put traces and p is a set of input traces. In other words, similarly
to predicate transformers, which transform postconditions to pre-
conditions, property transformers transform out-conditions to in-
conditions.

Monotonic property transformers (MPTs) provide the semanti-
cal foundation for system specification and implementation in our
framework. We generally use higher order logic to specify MPTs,
but we also show how to MPTs can be defined using formalisms
more amenable to automation, such as linear temporal logic and
symbolic transition systems (similar to the formalism used by the
popular model-checker NuSMV). We also provide the basic oper-
ations on MPTs: composition, compatibility, refinement, variable
hiding, and so on. We study subclasses of MPTs specified by input-
output relations, and derive a number of interesting closure and
other properties on them. Finally, as an application of our frame-
work, we show how it can be used to extend the relational interfaces
framework of [17] from only safety (finite, prefix-closed) proper-
ties, to also infinite properties and liveness.

In the sequel we use higher order logic as implemented in Is-
abelle/HOL [14] to express our concepts. All results presented in
this paper were formalized in Isabelle, and our presentation trans-
lates directly into Isabelle’s formal language.

1.1 Related work

A number of compositional frameworks for the specification and
verification of input-output reactive systems have been proposed
in the literature. In the Focus framework [8] specifications are
relations on input-output streams. Focus is able to express infi-
nite streams and liveness properties, however, it focuses on input-
receptive systems. Other compositional frameworks that assume
input-receptiveness are Dill’s trace theory [10], IO automata [13],
and reactive modules [2]. Our framework allows to specify non-
input-receptive systems, that is, systems which specify some of
their inputs to be illegal. As argued in [17], the ability to specify il-
legal inputs enables lightweight verification, akin to type-checking.
In particular, it allows to define a behavioral notion of compatibility
during system composition, which goes beyond syntactic compat-
ibility (correct port matching) as illustrated by the examples given
above.

There are also compositional frameworks which allow to specify
non-input-receptive systems. Among such frameworks, our work
is inspired from refinement calculus, on one hand, and interface
theories on the other, such as interface automata [9] and relational
interfaces [17]. These interface theories, however, cannot express
liveness properties. The same is true with existing extensions of re-
finement calculus to infinite behaviors such as action systems [4, 6],
which do not have acceptance conditions (say, of type Büchi) and
therefore cannot express general liveness properties. Fair action
systems [7], augment action systems with fairness assumptions on
the actions, but it is unclear whether they can handle general live-
ness properties, e.g., full LTL. Our approach is based on a natural
generalization from predicate to property transformers, and as such
can handle liveness (and more) as part of system specification.

The Temporal Logic of Actions [12] can be used to specify sys-
tems with liveness properties, but their semantics is based on sets
of infinite traces, and it does not seem possible to express illegal in-
puts and compatibility. Event B [1] is a specification method based
on refinement calculus and action systems, and it supports building
of systems using stepwise refinement of events. Event B models
can be shown to preserve (bounded) liveness properties [18], but it
is also unclear whether they can be used to specify systems with
liveness properties.

2. PRELIMINARIES
We use capital letters X , Y , Σ, . . . to denote types, and small

letters to denote elements of these types x ∈ X,.... We denote by
Bool the type of the Boolean values true and false, and by Nat the
type of natural numbers. We use in general the sans-serif font to
denote constants (types and elements). We use ∧, ∨,⇒, ¬ for the
Boolean operations.

IfX and Y are types, thenX → Y denotes the type of functions
fromX to Y . We use a dot notation for function application, so we
write f.x instead of f(x) from now on. If f : X → Y → Z is
a function which takes the first argument from X and the second
argument from Y and the result is from Z, and if x ∈ X and
y ∈ Y then f.x.y denotes the function f applied to x and applied to
y. According to this interpretation function application associates
to left (f.x.y = (f.x).y) and correspondingly the function type
constructor (→) associates to right (X → Y → Z = X → (Y →
Z)). We use also lambda notation for constructing functions. For
example if x + y + 2 ∈ Nat is natural expression then (λx, y :
x + y + 2) : Nat → Nat → Nat is the function which maps x
and y to x + y + 2. We use the notation X × Y for the Cartesian
product of X and Y , and if x ∈ X and y ∈ Y , then (x, y) is a pair
from X × Y .

Predicates are functions with Boolean values with one or more

arguments (p : X → Y → Bool), and relations are predicates with
at least two arguments. For a relation r : X → Y → Bool we
denote by in.r : X → Bool the predicate given by

in.r = (∃y : r.x.y)

If r is a relation with more than two arguments then we define in.r
similarly by quantifying over the last argument of r:

in.r.x.y.z = (∃u : r.x.y.z.u)

We extend point-wise the operations on Bool to operations on pred-
icates. For example, if p is a predicate only on x, i.e., p : X →
Bool and q is a predicate on x and y, i.e., q : X → Y → Bool,
then:

(p ∧ q).x.y = p.x ∧ q.x.y

and we also have in this case:

p ∧ (in.q) = in.(p ∧ q)

We use ⊥ and > as the smallest and greatest predicates

⊥.x = false and >.x = true

The composition of relations r, r′ is denoted r ◦ r′ and it is a
relation given by:

(r ◦ r′).x.z = (∃y : r.x.y ∧ r.y.z)

We treat subsets of a type, and predicates with one argument as be-
ing the same and we use both notations x ∈ p and p.x to express the
fact that p is true in x. For constructing predicates we use lambda
abstraction (λx, y : x ≤ 10 ⇒ y > 10), and for predicates with
single arguments we use also set comprehension {x | x > 10}.

We assume that Σ is a type of program states. For example for
imperative programs over some variables x, y, z, . . ., a state s ∈ Σ
gives values to the program variables x, y, z, In general,
the systems that we consider may have different input and output
variables, and we can also have different state sets. For a system
with a variable x, Σx denotes the type of states which gives values
to x. For a state s ∈ Σ, x.s is the value of x in s and s[x := a] is
new state obtained from s by changing the value of x to a.

For reactive systems we model states as infinite sequences or
traces from Σ. Formally such an infinite sequence is an element
σ ∈ Σω = (Nat → Σ). For σ ∈ Σω , σi = σ.i, and σi ∈ Σω is
given by σi

j = σi.j = σi+j . We consider pair of traces (σ, σ′) as
being the same as traces of pairs (λi : (σi, σ

′
i)).

In the next subsection we introduce the linear temporal logic
which is the main logic that we use to specify reactive systems.

2.1 Linear temporal logic
Linear temporal logic (LTL) [15] is a logic used for specifying

properties of reactive systems. In addition to the connectives of
classical logic it contains modal operators referring to time. LTL
formulas can express temporal properties like something is always
true, or something is eventually true, and their truth values are given
for infinite sequences of states. For example the formula 2x = 1
(always x is equal to 1) is true for the infinite sequence σ if for all
i ∈ Nat x.σi = 1.

The semantics of an LTL formula is the set of all sequences for
which the formula is true. In this paper we use a semantic (al-
gebraic) version of LTL. For us an LTL formula is a predicate on
traces and the temporal operators are functions mapping predicates
to predicates. We call predicates over traces (i.e., sets of traces)
properties.

If p, q ∈ Σω → Bool are properties, then always p, eventually
p, next p, and p until q are also properties and they are denoted by

2 p, 3 p, # p, and p U q respectively. The property 2 p is true in
σ if p is true at all time points in σ, 3 p is true in σ if p is true at
some time point in σ, # p is true in σ if p is true at the next time
point in σ, and p U q is true in σ if there is some time in σ when q
is true, and until then p is true. Formally we have:

(2 p).σ = (∀n : p.σn)
(3 p).σ = (∃n : p.σn)
(# p).σ = p.σ1

(p U q).σ = (∃n : (∀i < n : p.σi) ∧ q.σn)

Quantification for properties is defined in the following way

(∀x : p).σ = (∀a : p.(σ[x := a]))

where a ranges over infinite traces of x values, and σ[x := a].i =
σi[x := ai]. When p is a predicate on traces x and y, then quantifi-
cation is defined as normally in predicate calculus, as in ∀a : p.a.b.

We lift normal arithmetic and logical operations to traces (x and
y) in the following way

x+ y = x0 + y0 and x ∧ y = x0 ∧ y0

Lemma 1. If p and q are properties, then we have: (∃x : 2 p) =
2 (∃x : p) and 2 (in.p) = in.(2 p).

Definition 2. We define the operator p L q = ¬(p U ¬q). In-
tuitively, p L q holds if, whenever p holds continuously up to step
n− 1, then q must hold at step n.

Lemma 3. If p and q are properties, then we have

1. (p L q).σ = (∀n : (∀i < n : p.σi)⇒ q.σn)

2. p L p = 2 p and true L p = 2 p

Using LTL properties we can express safety properties, expressing
that something bad never happens (e.g., 2 t ≤ 10◦ – the temper-
ature stays always below 10◦), as well as liveness properties, ex-
pressing that something good eventually happens (e.g., 2 3x = 0
– infinitely often x becomes 0).

3. MONOTONIC PROPERTY TRANSFORM-
ERS

Monotonic predicate transformers are a powerful formalism for
modeling programs. A program S from state space Σ1 to state
space Σ2 is formally modeled as a monotonic predicate transformer,
that is, a monotonic function from (Σ2 → Bool)→ (Σ1 → Bool),
with a weakest precondition interpretation. If S is a program and
q ∈ Σ2 → Bool is a predicate on Σ2 (set of final states), then
S.q is the set of all initial states from which the execution of S
always terminates and it terminates in a state from q. Monotonic
Boolean transformers (MBTs) [16] is a generalization of mono-
tonic predicate transformers, where instead of predicates (Σi →
Bool) arbitrary complete Boolean algebras are used. MBTs are
monotonic functions from a complete Boolean algebra B2 to a
complete Boolean algebra B1.

In this section we introduce monotonic property transformers
(MPTs), and we use them to model input-output reactive systems.
MPTs are MBTs from the complete Boolean algebra of Σy proper-
ties (Σω

y → Bool) to the complete Boolean algebra Σx properties
(Σω

x → Bool), where x and y are the input and output variables,
respectively. If S is a reactive system with input variable x and
output variable y, then a legal execution of S takes as input a se-
quence of values for x, σ = x0, x1, . . ., and produces a sequence
of values for y, σ′ = y0, y1, This execution may be nondeter-
ministic, that is, for the same input values σ we can obtain different

output values σ′. The execution of S from σ may also fail if σ does
not satisfy some requirements on the input variables. As a property
transformer, the system S is applied to a property q ∈ Σω

y → Bool,
i.e., to a set of sequences over the output variable y. Then, S re-
turns the set of all sequences over the input variable x from which
all executions of S do not fail and produce sequences in q.

Informally we say that the system S has local execution, or it is
local if S can be executed step by step. That is, starting with in-
put x0, S can choose output y0 and possibly go to a new state, and
then from the current state with input x1 can choose the next output
y1and the next state, and so on. The system S is executable if it is
local and deterministic, that is, the output and the next state is a
function of the input and the current state. We will define later for-
mally local and deterministic reactive systems. Using monotonic
property transformers we can model both specifications of reac-
tive systems as well as local and executable systems, and we can
use refinement to construct executable systems that refine abstract
specifications.

Using property transformers, we can specify systems that exhibit
various properties that we are interested in. For example the speci-
fication of a system S that guarantees the liveness property that the
output Boolean variable y is true infinitely often regardless of the
input, is given by

S.{y |2 3 y} = >

Note that the above equation does not define S completely, it
only specifies a constraint that S must satisfy. This is useful when
we want to specify some properties that the system must satisfy,
without completely defining the system itself. Below, in Section
3.1 we give a complete definition of a MPT which satisfies the re-
quirement above.

Similarly, the specification of a system S′ that guarantees the
liveness property that the output Boolean variable y is true infinitely
often when the integer input variable x is equal to one infinitely
often, is given by

{x |2 3x = 1} ⊆ S′.{y |2 3 y}

3.1 Basic operations on monotonic property
transformers

The point-wise extension of the Boolean operations to proper-
ties, and then to monotonic property transformers gives us a com-
plete lattice with the operations v, u, t, ⊥, > (observe that u
and t preserve monotonicity). All these simple lattice operations
are also meaningful as operations on reactive systems. The order
of this lattice (S v T ⇔ (∀q : S.q ⊆ T.q)) gives the refinement
relation of reactive systems. If S v T , then we say that T refines
S (or S is refined by T). If T refines S then we can replace S with
T in any context. This interpretation of the lattice order as refine-
ment follows from the modeling of reactive systems as monotonic
property transformers. For example if we assume that S and S′

introduced above are completely defined by

S.q =

{
> if {y |2 3 y} ⊆ q
⊥ otherwise

and

S′.q =

{
{x |2 3x = 1} if {y |2 3 y} ⊆ q
⊥ otherwise

then S and S′ are monotonic and S refines S′ (S′ v S). In this
example we see that if S′ is used within some context where for
certain inputs it guarantees outputs where y is true infinitely often,

then S can replace S′ because S guarantees the same property of
the output regardless of its input.

The operations u and t model (unbounded) demonic and an-
gelic nondeterminism or choice. The interpretation of the demonic
choice is that the system SuT is correct (i.e., satisfies its specifica-
tion) if both S and T are correct. In this choice someone else (the
demon) can choose to execute S or T , so they must both be correct.
On the other hand the angelic choice S t T is correct if one of the
systems S and T are correct. In this choice we have the control
over the choice, and we assume that we always choose the correct
alternative. Unbounded nondeterminism means that we could have
unbounded choices as for example in ⊔i∈I Si where I is infinite.
For example if we have two systems S and S′ which compute in x
the factorial of n, but S computes the correct result only for n ≤ 20
and S′ computes the correct result only for 10 ≤ n. Formally we
have

S.{x |x = n!} = {n |n ≤ 20}
S′.{x |x = n!} = {n | 10 ≤ n}

The demonic choice of S and S′ is capable of computing the facto-
rial only for numbers between 10 and 20, while the angelic choice
will compute the factorial for all natural numbers n.

We denote the bottom and the top of the lattice of property trans-
formers by Fail and Magic respectively. The transformer Fail does
not guarantee any property. For any property q, we have Fail.q =
⊥, i.e., there is no input sequence for which Fail will produce an
output sequence from q. On the other hand Magic can establish
any property q (Magic.q = >). The problem with Magic is that it
cannot be implemented.

Sequential composition of two systems S and T is simply the
functional composition of S and T (S ◦ T). For reactive systems
we denote this composition by S ; T ((S ; T).q = S.(T.q)). To
be able to compose S and T , the type of the output of S must be
the same as the type of the input of T .

The system Skip defined by (∀q : Skip.q = q) is the neutral
element for composition

Skip ; S = S ; Skip = S.

Definition 4. Two systems S and T are incompatible (w.r.t. the
sequential composition S ; T) if S ; T = Fail.

Intuitively, S and T are compatible if the outputs of S can be
controlled so that they are legal inputs for T . Controlling the out-
puts of S might mean restricting its own legal inputs.

If for example we have S and T given by

S.q =

{
> if {x |x > 5} ⊆ q
⊥ otherwise

and T.q = {x |x < 10}

then (S ; T).q = S.(T.q) = S.{x |x < 10} = ⊥, for any q.
Therefore, S and T are in this case incompatible. This is because
T requires its input to be smaller than 10, but S can only guarantee
that its output will be greater than 5, and there is no way to restrict
the input of S to make this guarantee stronger.

On the other hand, assuming that the input and output of S and
T have the same type, T and S are compatible w.r.t. the reverse
composition, i.e., T ; S is not Fail. Indeed, we have T.(S.q) =
{x |x < 10}, for any q.

Definition 5. For a property transformer S, the guard of S, de-
noted grd.S, is the set of input sequences for which the system
does not behave miraculously. Formally:

grd.S = ¬S.⊥

For example the guard of Magic is ⊥ and the guard of Fail is >.

Definition 6. For a property transformer S, the fail of S, denoted
fail.S, is the set of illegal input sequences, i.e., the set of input
sequences for which the system produces no output, or fails to es-
tablish any output property. Formally:

fail.S = ¬S.>

For example the fail of Magic is ⊥ and the fail of Fail is >.

3.2 Hiding local variables in property trans-
formers

In this subsection we introduce a hiding operator on property
transformers that we will use later to hide local variables. The
theorem of this subsection will allow us to compose two property
transformers, each having its own local variable, into a property
transformer with a pair of local variables, one component for each
system in the composition.

Definition 7. If S.a is a property transformer depending on the
parameter a ∈ A, then hide.A.S is the property transformer given
by

hide.A.S = ⊔

a∈A

S.a

We will use the hide operator to hide local variables in property
transformers. If S is a property transformer expression containing
free the variable a the we use the notation (hide a ∈ A : S) for
hide.A.(λa : S).

For example assume that we have the assignment x := x + a
where x is a program variable, and a some value. Then the property
transformer associated to this assignment is

S.a.q.x = q.(x+ a)

That is, x is in the set of initial values of S.a for establishing q if
x+ a is in q. We have

hide.A.S.q.x = (∀a ∈ A : q.(x+ a))

If q = {x | x ≤ 10}, then hide.A.S.q.x is true if x + a ≤ 10 for
all a ∈ A.

Definition 8. If S is a property transformer, then S is conjunc-
tive if S.(

⋂
Q) =

⋂
(S.Q) for all sets of properties Q, and S is

strictly conjunctive if S.(
⋂
Q) =

⋂
(S.Q) for all nonempty set of

properties Q.

Lemma 9. If S and T are (strictly) conjunctive, then S ; T is
(strictly) conjunctive.

Theorem 10. If S.a is conjunctive for all a ∈ A, then

(hide.A.S) ; (hide.B.T) = hide.(A×B).(λ(u, v) : (S.u) ; (T.v))

Moreover if S.a is strictly conjunctive for all a ∈ A, and B is
nonempty then

(hide.A.S) ; (hide.B.T) = hide.(A×B).(λ(u, v) : (S.u) ; (T.v))

3.3 Assert and demonic update transformers
We now define two special types of property transformers which

will be used to form more general property transformers by com-
position. For p, q ∈ Σω → Bool and r ∈ Σω

1 → Σω
2 → Bool

we define the assert property transformer {p} : (Σω → Bool) →
(Σω → Bool), and the demonic update property transformer [r] :
(Σω

2 → Bool)→ (Σω
1 → Bool) as follows:

{p}.q = p ∩ q
[r].q.σ = (∀σ′ : r.σ.σ′ ⇒ q.σ′)

The assert system {p} when executed from a sequence σ, behaves
as skip when p.σ is true, and it fails otherwise. The demonic up-
date statement [r] establishes a post condition q when starting in a
sequence σ if all sequences σ′ with r.σ.σ′ are in q.

IfR is an expression in x and y, then [x ; y | R] = [λx, y : R].
For example if R is z = x + y, then [x, y ; z | z = x + y] =
[λ(x, y), z : z = x + y] is the system which produces in the
output z the value x + y where x and y are the inputs. For assert
statements we introduce similar notation. If P is an expression in
x then {x | P} = {λx : P}. If P is x ≤ y, then {x, y | x ≤
y} = {λ(x, y) : x ≤ y}. The variables x and y are bounded in
[x ; y | R] and {x | P}, however when we compose some of
these property transformers we will try whenever possible to use
the same name for the output variables of a transformer which are
inputs to another transformer. For example we will use the notation:

{x, y | x ≤ y} ; [x, y ; z | z = x+ y] ; [z ; u | u = z2]

instead of the equivalent one:

{x, y | x ≤ y} ; [u, v ; x | x = u+ v] ; [u ; x | x = u2]

Sometimes we also need demonic transformers that copy some of
the input variables into some of the output variables:

S = [u, x ; y, v | (x = y) ∧ r.u.x.y.v]

In this case we drop the condition x = y from the relation of S and
we use the same name for x and y:

S = [u, x ; x, v | r.u.x.x.v]

If we want to rearrange the input variables into the output variables
and if we want to drop some input variables and introduce some
new arbitrary variables, then we use the syntax:

S = [x, y, u, z, x ; z, y, x, y, v]

This notation stands for

S = [λ(x, y, u, z, x′), (z′, y′, x′′, y′′, v) :
x = x′ = x′′ ∧ y = y′ = y′′ ∧ z = z′]

If S starts on a tuple where the first component is the same as the
last component (x = x′), then S terminates normally and it chooses
z′, y′, x′′, y′′, v such that x = x′ = x′′ ∧ y = y′ = y′′ ∧ z = z′.
On the other hand if S starts on a tuple where the first component is
different from the last component, then S terminates miraculously.

4. RELATIONAL PROPERTY TRANSFORM-
ERS

Definition 11. A relational property transformer (RPT) is a prop-
erty transformer of the form {p} ; [r]. The assert transformer {p}
imposes the restriction p on the input sequences, and the demonic
update [r] nondeterministically chooses output sequences accord-
ing to the relation r. For a RPT S = {p} ; [r] we call p the
precondition of S and r the input-output relation of S. For a RPT
{p} ; [r] we use the notation {p | r].

For RPTs we introduce also syntactic notation similar to the one
introduced for assert and demonic transformers:

{x ; y | P | R] = {x | P} ; [x ; y | R]

Next lemma introduces some results about assert and demonic
update transformers and about relational property transformers.

Lemma 12. If p, q ∈ Σω → Bool and r, r′ ∈ Rel, then

1. Skip = [x ; x] = {true}

2. Magic = [false], and Fail = {false}

3. {p} ; {p′} = {p ∧ p′}, and [r] ; [r′] = [r ◦ r′]

4. {p | r] ; {p′ | r′] =
{x ; z | p.x ∧ (∀y : r.x.y → p′.y) | (r ◦ r′).x.z]

5. {p | r] u {p′ | r′] = {p ∧ p′ | r ∨ r′]

6. {p | r] = {p | p ∧ r]

7. {p | r] v {p′ | r′]⇔
(∀x : p.x⇒ p′.x) ∧ (∀x, y : p.x ∧ r′.x.y ⇒ r.x.y)

8. grd.{p} = >, and grd.[r] = in.r

9. grd.({p | r]) = ¬p ∨ in.r

10. {p} is strictly conjunctive, and [r] is conjunctive

11. [x ; u, x | init.u] ; {u, x ; y | p.u.x | r.u.x.y]
= (hide u ∈ init : {x ; y | p.u.x | r.u.x.y])

The facts 1. – 5. from this lemma show that Skip, Magic, Fail, {p},
and [r] are relational property transformers, and that the relational
property transformers are closed under sequential composition and
demonic choice. The fact 6. allows using an assertion in a demonic
choice. In {p | p∧ r], p can be used to simplify the demonic choice
(p ∧ r). The fact 7. shows how to refine two RPTs, and the facts
8. and 9. show how to compute the guard of RPTs. The fact 10. will
be used together with Theorem 10 to combine the local variables of
the composition of two RPTs. Finally, fact 11. shows that adding
a local variable u ([x ; u, x | init.u]) is equivalent to hiding
parameters of property transformers. This last result will be used
later to compose property transformers with state.

4.1 Guarded systems
Relational property transformers are a strict subclass of mono-

tonic property transformers, but they still allow to describe systems
that may behave miraculously. Often we are interested in systems
that are guaranteed to never behave miraculously, i.e., in systems
defined by transformers S such that grd.S = >. In these cases we
use relational property transformers of the form {in.r | r]. We call
these RPTs guarded:

Definition 13. The guarded system of a relation r is the relational
property transformer {r] = {in.r | r].

For guarded systems we also introduce a notation similar to the
notation introduced for relational property transformers:

{x ; y | R] = {x ; y | in.R | R].

It is worth pointing out that the property transformer {in.r | r]
is as general as {p ∧ in.r | r] because we have {p ∧ in.r | r] =
{in.(p ∧ r) | p ∧ r]:

{p ∧ in.r | r]

= {Theorem 12}

{p ∧ in.r | p ∧ in.r ∧ r]

= {Theorem 12}

{in.(p ∧ r) | p ∧ r]

The lemma that follows states several important closure properties
for guarded systems.

Lemma 14. If p is a property and r, r′ are relations of appropriate
types, then

1. grd.{r] = >

2. Fail = {⊥] and Skip = {x ; x | >]

3. {p} = {x ; x | p.x] and {p} ; {r] = {p ∧ r]

4. {r] ; {r′] = {x ; z | in.r.x ∧ (∀y : r.x.y ⇒ in.r′.y) ∧
(r ◦ r′).x.z]

5. {r] u {r′] = {in.r ∧ in.r′ ∧ (r ∨ r′)]

Note that part 3 of the above lemma implies that assert transform-
ers are special cases of guarded systems. However, a demonic
update is generally not a guarded system. For instance, we have
grd.[⊥] = ⊥. The following lemma states, demonic updates are
guarded systems if and only if they impose no requirements on the
inputs.

Lemma 15. The demonic update transformer [r] is a guarded sys-
tem if and only if in.r = true and in this case we have [r] = {r].

Next we introduce some examples of guarded systems:

• Havoc = [x ; y | true]

• AssertLive = {x | 2 (3x)}

• LiveHavoc = AssertLive ; Havoc

• ReqResp = [x ; y | 2 (x→ 3 y)]

The fact that these systems are guarded follows from Lemmas 14
and 15. Havoc is a reactive system that assigns an arbitrary value
to y regardless of the value of the input sequence x. ReqResp is the
request-response system C introduced in the introduction. Note that
this system illustrates the ability of our framework to express un-
bounded nondeterminism since, for a given input sequence x, there
is an infinite set of y sequences that satisfy the request-response
LTL formula. (We can also express unbounded nondeterminism
for systems with infinite data types.)

For the above systems we have the following properties

• Havoc ; AssertLive = Fail

• Havoc ; LiveHavoc = Fail

• ReqResp ; LiveHavoc = LiveHavoc

The first two statements show that Havoc and AssertLive are in-
compatible and Havoc and LiveHavoc are also incompatible.

5. PROPERTY TRANSFORMERS BASED ON
SYMBOLIC TRANSITION SYSTEMS

So far, we have introduced (relational and guarded) monotonic
property transformers and showed how these can be defined us-
ing LTL. As a language, LTL is often more appropriate for system
specification, and less appropriate for system implementation. For
the latter purpose, it is often convenient to have a language which
explicitly refers to state variables and allows to manipulate them,
e.g., by defining the next state based on the current state and input.
In this section we introduce a symbolic transition system notation
which allows to do this, and show how this notation can be given
semantics in terms of property transformers.

For example, suppose we want a counter which accepts as in-
put infinite sequences of Boolean values, and returns infinite se-
quences of natural numbers where every output is the number of

true values seen so far in the input. Moreover, we want this counter
to accept inputs where the number of true values is bounded by
a given natural number n. If count.x.i is the number of trues in
x0, x1, . . . , xi, then this system can be defined in the following
way:

bcounter.n = {x | ∀i : count.x.i ≤ n} ; [x ; y | y = count.x]

Although this system is defined globally, when computing yi we
only need to know xi, and we need to know how many true values
we have seen so far in the input. We can store the number of true
values seen so far in a state variable u. Then, it would be natural
to define the counter locally, that is, define one step of the counter,
as follows:

{ui ≤ n} ; [ui, xi ; ui+1, yi |
ui+1 = (if xi then ui + 1 else ui) ∧ yi = ui+1]

where i is the index of the step, and we assume that initially u0 = 0.
In the above definition, ui refers to the current state (i.e., the state
at current step i) and ui+1 refers to the next state (i.e., the state at
next step i+ 1), while xi refers to the current input and yi refers to
the current output (both at current step i). At every step the assert
statement {ui ≤ n} tests if ui is less or equal to n. If this is
false then the system fails because the input requirement that the
number of true values never exceeds n is violated. If ui ≤ n then
we calculate the next state value ui+1 and the output value yi.

Generalizing from this example, a symbolic transition system is
a tuple (init, p, r), formed by a predicate init.u, a predicate p.u.x,
and a relation r.u.u′.x.y, where x is the input, u is the current state,
u′ is the next state, and y is the output. The predicate init is called
the local initialization predicate of the system, the predicate p is
called the local precondition of the system, and r is called the lo-
cal input-output relation of the system. The intuitive interpretation
of such a system is that we start with some initial state u0 ∈ init
and we are given some input sequence x0, x1, . . ., and if p.u0.x0
is true, then we compute the next state u1 and the output y0 such
that r.u0.u1.x0.y0 is true. Next, if p.x1.u1is true, then we com-
pute u2 and y1 such that r.u1.u2.x1.y1 is true, and so on. If at
any step p.ui.xi is false, then the computation fails, and the input
x0, x1, . . . is not accepted.

Note that the computation defined by the relation r can be non-
deterministic in both next state u′ and output y. That is, for given
values x and u for the input and current state, there could be mul-
tiple values for the next state u′ and output y such that r.u.u′.x.y
is true. We must carefully account for this non-determinism when
defining the property transformer based on such a symbolic tran-
sition system. To see the complications that may arise, consider
another example:

init.u = u and p.u.x = u and p.u.u′.x.y = (x = y)

In this system, if the current state is true then we choose arbitrarily
a new state u′ and we copy the input x into the output y. If the sys-
tem chooses u′ = false then in the next step the system will fail,
regardless of the input. This example shows that in a nondetermin-
istic system, for the same input there could be different choices of
internal states such that in one case the system succeeds while in
another it fails. In the example above the choice of state sequence
(∀i : ui = true) results in a successful computation, but all other
choices of state sequences fail. In our definition of property trans-
formers, we accept an input only if all choices of internal states
lead to no failures.

Formally, we say that an input sequence x0, x1, . . . is illegal for
a symbolic transition system if there is some k ∈ Nat and some
choice u0, u1, . . . of states and y0, y1, . . . of outputs such that

init.u0 and (∀i < k : r.ui.ui+1.xi.yi) and ¬p.uk.xk. For techni-
cal reasons, we need to generalize p to be a predicate not only on
the current state and input, but also on the next state (the need for
this will become clear in the sequel, see Theorem 18 and discus-
sion that follows). With this generalization, we define the illegal
predicate on symbolic transition systems and input sequences, as
follows:

illegal.init.p.r.x = (∃u, y, k : init.u0

∧ (∀i < k : r.ui.ui+1.xi.yy) ∧ ¬p.uk.uk+1.xk)

We can also formalize a run of a symbolic transition system,
using the predicate run. For sequences x, u, and y, the predicate
run.r.u.x.y is defined by:

run.r.u.x.y = (∀i : r.ui.ui+1.xi.yi) = 2 r.u.u1.x.y

where, recall, u1 denotes the sequence u1, u2, · · · , i.e., the se-
quence of states starting from the second state u1 instead of the
initial state u0. If the predicate run.r.u.x.y is true we say that there
is a run of the system with the inputs x, the outputs y and the states
u. We can now define monotonic property transformers based on
symbolic transition systems as follows:

Definition 16. Consider a symbolic transition system described by
(init, p, r). Such a system defines a monotonic property trans-
former called a local property transformer, and denoted {| init | p | r]],
as follows:

{| init | p | r]].q.x = ¬illegal.init.p.r.x
∧ (∀u, y : init.u ∧ run.r.u.x.y ⇒ q.y).

What the above definition states is that an input sequence x is in
the set of input sequences of {| init | p | r]] that are guaranteed to
establish q iff: (1) x is legal; and (2) for all choices of state traces
u and output traces y, if u0 satisfies init, and if there is a run of
the system with the inputs x, the outputs y and the states u, then y
must be in q.

The local transition from state u to u′ of a local system is

localtran.p.r.u.u′ = {x | p.u.u′.x} ; [x ; y | r.u.u′.x.y]

If Init, and P , and R are Boolean expression possibly contain-
ing free the variables u and u, u′, x and u, u′, x, y, respectively
then

{|x ; u ; y | Init | P | R]]
= {|λu : Init | λu, u′, x : P | λu, u′, x, y : R]]

For the counter example we have:

bcounter.n = {|x ; u ; y | u = 0 |
u ≤ n | u′ = (if x then u+ 1 else u) ∧ y = u′]]

and for the wrong choice example we have

Fail = {|x ; u ; y | u | u | y = x]]

that is, for all input sequences this system fails.

Lemma 17. The set of input sequences from which the system
{| init | p | r]] fails is equal to the set of its illegal input sequences:

fail.{| init | p | r]] = illegal.init.p.r

The definition of a local property transformer is close to our in-
tuition of what this system should be, however it is difficult to use
this definition if we want to prove refinement of (local) property
transformers, or if we want to compose two (local) property trans-
formers. For example if we want to prove a refinement like

{p | r] v {| init | p′ | r′]]

then we need to expand the definition of {| init | p′ | r′]] and reason
about individual values of traces (xi, yi, ui). This reasoning is at a
lower level than, for example, the reasoning about the refinement

{p} ; [r] v {p′′} ; [r′′]

which, by Lemma 12, is equivalent to

(∀x : p.x⇒ p′′.x) ∧ (∀x, y : p.x ∧ r′′.x.y ⇒ r.x.y)

In this property x, y may also stand for traces, but this formula does
not contain references to specific values (xi or yi) of these traces.

Next theorem shows that a local property transformer {| init | p | r]]
belong to the class of relational property transformers.

Theorem 18. For init, p, and r as in the definition of a local
property transformer we have:

{| init | p | r]] = [x ; u, x | init.u] ;
{u, x | (in.r L p).u.u1.x} ; [u, x ; y | 2 r.u.u1.x.y]

= {x | ∀u : init.u0 ⇒ (in.r L p).u.u1.x} ;
[x ; y | ∃u : init.u0 ∧ 2 r.u.u1.x.y]

Theorem 18 gives a representation of local property transformers
where we do not have anymore quantification over the domain of
the traces. This theorem also justifies our earlier generalization of
the local precondition to be a function not only on the current state
and the input, but also on the next state. This is so because the
precondition of the representation of a local property transformer
depends anyway on the next state (in.r.u.u1.x.y).

We call the precondition (in.r L p).u.u1.x from the representa-
tion of the local property transformer {| init | p | r]] the global
precondition of {| init | p | r]]. Similarly 2 r.u.u1.x.y is the
global input-output relation of {| init | p | r]].

The refinement of a general relational property transformer into
a local property transformer is given by the next lemma.

Lemma 19. For init, p, p′, r, r′ of appropriate types we have

{x ; y | p | r] v {| init | p′ | r′]]⇔
(∀u ∈ init : (∀x : p.x⇒ (in.r′ L p′).u.u1.x)
∧ (∀x, y : p.x ∧ 2 r′.u.u1.x.y ⇒ r.x.y))

5.1 Sequential composition of local transform-
ers

Lemma 12 and Theorem 10 allow us to calculate the result of the
sequential composition of two local systems. This composition is
given by the next theorem.

Theorem 20.

{| init | p | r]] ; {| init | p′ | r′]] =
[x ; u, v, x | init.u ∧ init′.v] ;
{u, v, x | (in.r L p).u.u1.x
∧ (∀y : 2 r.u.u1.x.y ⇒ (in.r′ L p′).v.v1.y)} ;

[u, v, x ; z | (2 (r ◦◦ r′).(u, v).(u1, v1).x.z]

where (r ◦◦ r′).(u, v).(u′, v′) = (r.u.u′ ◦ r′.v.v′)

Ideally the composition of two local systems S = {| init | p | r]]
and S′ = {| init′ | p′ | r′]] would be a local system corresponding
to the composition of the local transitions of S and S′. Unfortu-
nately this is not the case. We show what would be the local system
for the composition of the local transitions of S and S′. We have

localtran.p.r.u.u′ = {x | p.u.u′.x} ; [x ; y | r.u.u′.x.y]

localtran.p′.r′.v.v′ = {x | p′.v.v′.x} ; [x ; y | r′.v.v′.x.y]

and

localtran.p.r.u.u′ ; localtran.p′.r′.v.v′

= {Lemma 12}
{x | p.u.u′.x ∧ (∀y : r.u.u′.x.y ⇒ p′.v.v′.y)} ;

[(r.u.u′) ◦ (r′.v.v′)]

The sequential composition of the two systems has as state pairs
(u, v) and the initialization predicate, the local precondition, and
the local relation of the composition should be given by

init′′.(u, v) = init.u ∧ init′.v
p′′.(u, v).(u′, v′).x = p.u.u′.x ∧ (∀y : r.u.u′.x.y ⇒ p′.v.v′.y)

r′′ = r ◦ ◦r′

The local system of the composition of the local transitions of S
and S′ is

{| init′′ | p′′ | r′′]] =
[x ; u, v, x | init′′.(u, v)] ;
{u, v, x | (in.r′′ L p′′).(u, v).(u1, v1).x} ;
[u, v, x ; z | 2 r′′.(u, v).(u1, v1).x.z]

Unfortunately the equality S ; S′ = {| init′′ | p′′ | r′′]] is not true
in general for arbitrary local systems S and S′. We have

init′′.(u, v) = init.u ∧ init′.v and r′′ = r ◦◦ r′

but there exists p, r, p′, r′, u, v, and x such that

(in.r′′ L p′′).(u, v).(u1, v1).x 6= (in.r L p).u.u1.x
∧ (∀y : 2 r.u.u1.x.y ⇒ (in.r′ L p′).v.v1.y)

(1)

If we take

p.u.u′.x = true
r.u.u′.x.y = (u = 0 ∧ u′ = 1)
p′.v.v′.y = false
u.i = i

then (1) becomes true.
Intuitively S ; S′ 6= {| init′′ | p′′ | r′′]] because when executing

the system S ; S′, the precondition p′ of S′ is tested after a com-
plete execution of S, however in our example above, the execution
of S proceeds normally with the first step when started in the state
u = 0, but then next step is miraculous because r.1.u′.x.y is false.
Therefore the assertion of S′ containing p′ is not reached. On the
other hand the execution of {| init′′ | p′′ | r′′]] starting from the
same initial state u = 0 proceeds normally with the first step of S
({x | p.u.u′.x} ; [x ; y | r.u.u′.x.y]), and then tests p′, and it
fails because p′ is false.

5.2 Guarded local systems
As we have seen from the previous section, the composition of

two local transformers is not necessarily a local transformers. This
is because of the possible miraculous behavior of the systems. In
this section we restrict the local precondition of a local system such
that we do not have miraculous behavior anymore. We achieve this
by considering systems where the local precondition p is in.r.

Definition 21. The guarded local system of init and r is denoted
by {| init | r]] and it is given by

{| init | r]] = {| init | in.r | r]]

and the local precondition of a local guarded reactive systems with
state is in.r.

Theorem 22. For init, and r as in the definition of a local guarded
system we have:

{| init | r]] = [x ; u, x | init.u] ; {u, x ; y | 2 r.u.u1.x.y]

The next theorem shows that the sequential composition of two
guarded local systems is also a guarded local system.

Theorem 23. For init, init′, r, and r′ we have

{| init | r]] ; {| init′ | r′]] = {| init′′ | rel_comp.r.r′]]

where init′′.(u, v) = init.u ∧ init′.v and

rel_comp.r.r′.(u, v).(u′, v′).x.z =
(in.r.u.u′.x ∧ (∀y : r.u.u′.x.y ⇒

in.r′.v.v′.y) ∧ ((r.u.u′) ◦ (r′.v.v′)).x.z)

5.3 Stateless systems
We define stateless systems as a special case of the local sys-

tems, where the state u ranges over a singleton set {•} and where
init.u = true. In this case we have

Theorem 24. For p, and r as in the definition of a stateless local
reactive system we have:

{| init | p | r]] = {x ; y | (in.r L p).x | (2 r).x.y]

= {in.r L p | 2 r]

Based on this theorem we use the notation {in.r L p | 2 r] for a
stateless local reactive system.

The next theorem gives a procedure to calculate the sequential
composition of two stateless systems.

Theorem 25.

{in.r L p | 2 r] ; {in.r′ L p′ | 2 r′] =
{x | (in.r L p).x ∧ (∀y : 2 r.x.y ⇒ (in.r′ L p′).y)} ;

[2 (r ◦ r′)]

As in the case of general local systems with state, the com-
position of two stateless systems is not a stateless system. This
motivates us to introduce guarded stateless systems, similarly to
guarded local systems.

Definition 26. A guarded stateless system is a stateless system
where p = in.r.

Theorem 27. For any r: {in.r L in.r | 2 r] = {2 r] .

This is because we have

{in.r L in.r | 2 r] = {2 in.r | 2 r] = {in.(2 r) | 2 r] = {2 r]

We use the notation {2 r] for a stateless local guarded reactive sys-
tem.

Sequential composition of guarded stateless systems is also a
guarded stateless system:

Theorem 28. For r, and r′ we have

{2 r] ; {2 r′] = {2 (rel_comp.r.r′)]

where rel_comp is as defined before, but without the state param-
eters u, u′, v, and v′.

Next we introduce some special properties and we show that
stateless guarded local systems behave consistently with respect to
these properties.

Definition 29. For a property q, the i-th projection of q is a predi-
cate on states given by proj.q.i.s = (∃σ : q.σ∧σi = s) and a prop-
erty q is a piecewise local property if it satisfies the condition(∀σ :
(∀i : proj.q.i.σi)⇒ q.σ).

Equivalently, a property q is piecewise local if there exist some
predicates p0, p1, . . . such that (∀σ : σ ∈ q ⇔ (∀i : pi.σi)).

There are properties which are not local. For example the live-
ness property q = (2 (3x)) is not local because σ = (λi : false)
satisfies the condition (∀i : proj.q.i.(σ.i)), but σ 6∈ q.

Lemma 30. If r is a state relation, then

1. {2 r].q.x⇒ (∀i : {r].(proj.q.i).xi)

2. If q is piecewise local then
(∀i : {r].(proj.q.i).xi)⇒ {2 r].q.x

This lemma asserts that for the piecewise local property q and input
sequence x, all possible outputs of {2 r] starting from x are in q
if and only if for all steps i all possible outputs of {r] from xi are
in proj.q.i. So the global execution of {2 r] is equivalent to the
execution of {r] on all steps.

If we have a local system it does not necessarily mean that we
cannot study its behavior with respect to non piecewise local prop-
erties. For example let us consider a stateless local guarded system
that at each step computes y = x or y = x + 1, assuming that
x > 0:

S = {x ; y | 2 (x > 0 ∧ (y = x ∨ y = x+ 1))]

If we want to see under what conditions on the input x the output of
S satisfies the property q = 2 3 y < 10, then we should calculate
S.q:

S.q = 2 (x > 0 ∧3x < 9)

If we want to see under what conditions on the input the output of
S satisfies q′ = 2 3 y = 10, then we should calculate S.q′. In this
case we have S.q′ = ⊥. This is so because of the demonic choice
y = x or y = x + 1. For all values of x it is always possible to
choose y 6= 10.

6. APPLICATION: EXTENDING RELATIONAL
INTERFACES WITH LIVENESS

To illustrate the power of our framework, we show how it can
handle as a special case the extension of the relational interface
theory presented in [17] to infinite behaviors and liveness. We note
that the theory proposed in [17] allows to describe only safety prop-
erties, in fact, finite and prefix-closed behaviors. Extending to in-
finite behaviors and liveness properties is mentioned as an open
problem in [17].

A number of examples showcasing this extension have already
been provided in the introduction. Here we provide an additional
example:

init.u = (u = 0)
p.u.u′.x = (−1 ≤ u ≤ 3)
r.u.u′.x.y = ((x ∧ u′ = u+ 1) ∨ (¬x ∧ u′ = u− 1)
∨u′ = 0) ∧ (y = (u′ = 0))

This symbolic system accepts a Boolean input x and a Boolean
output y. If the input is true then state counter u is incremented. If
the input is false then u is decremented. Regardless of the input, the
system may also choose nondeterministically to set the counter to
zero. The output of the system is true whenever the counter reaches
zero. The system also restricts the value of the state to be between
−1 and 3. If the state goes out of this range the system will fail.
The system is supposed to start from state u = 0. The local system
for this relation is

{| init | p | r]] =
[x ; u x | u = 0] ; {u, x; | (in.r L p).u.u1.x} ;

[u, x ; y | 2 r.u.u1.x.y]
(2)

However we are interested in a system which is also capable of
ensuring the liveness property that y is true infinitely often. We
achieve this by adding the constraint 2 3 y to the input-output re-
lation of 2. So the full example is

EXAMPLE =
[x ; u x | u = 0] ; {u, x | (in.r L p).u.u1.x} ;

[u, x ; y | (2 r.u.u1.x.y) ∧ (2 3 y)]
(3)

In this example the condition −1 ≤ u ≤ 3 is a safety property,
and we designed the example such that this property is enforced
on the input. That is, some input is accepted by this system only
if this property is not violated. For example the input x0 = true,
x1 = false, . . . maintains this property. On the other hand the
property 2 3 y is a liveness property which is guaranteed by the
system, regardless of the input. If some input violates this property,
then that input is rejected. If we need we can move this property to
the precondition (adapted to the state variable) and then the system
will fail if the input is such that this property is false. We can prove
that our example system establishes the liveness property 2 3 y for
all inputs that do not fail, i.e. they satisfy

prec_g.x = (∀u : u0 = 0⇒ (in.r L p).u.u1.x)

We have

∀x : EXAMPLE.({y | 2 3 y}).x = prec_g.x (4)

We can now use the system EXAMPLE as specification and we
can, for instance, refine it to the system which always assigns true
to the output variable:

EXAMPLE v [x ; y | 2 y].

We can also assume that the input satisfies some additional prop-
erty. For example we can assume that x is alternating between true
and false:

{x | 2 (x = ¬#x)} ; EXAMPLE

Then we can show that this new system is refined by the original
symbolic transition system:

{x | 2 (x = ¬#x)} ; EXAMPLE
v {x | 2 (x⇔ ¬#x)} ; {| init | p | r]]
v {| init | p | r]]

because the additional property used as precondition ensures the
liveness property.

Using this formalism we can construct liveness specifications as
the example system, and we can refine them in appropriate con-
texts to systems which do not have any liveness property, but they
preserve the liveness property of the input.

From 4 we also obtain

EXAMPLE = EXAMPLE ; {y | 2 3 y}

We can use this property when constructing another system that
uses the output from EXAMPLE as input. Then we know that this
input satisfies the liveness property 2 3 y and we can design this
second system accordingly.

7. CONCLUSIONS
In this paper we introduced a property transformer semantics for

reactive systems which supports refinement, composition, compat-
ibility, demonic choice, unbounded nondeterminism, among other
interesting system properties. The semantics also supports angelic
choice: we haven’t specifically exploited this here and leave it for
future work. The semantics is compositional, and can be used to
specify and reason about both safety and liveness properties. Our

work generalizes previous work on relational interfaces to systems
with infinite behavior and liveness properties. Future work includes
extending the framework to continuous-time and hybrid systems.

8. REFERENCES
[1] J.-R. Abrial. Modeling in Event-B: System and Software

Engineering. Cambridge University Press, New York, NY,
USA, 1st edition, 2010.

[2] R. Alur and T. A. Henzinger. Reactive modules. Formal
Methods in System Design, 15:7–48, 1999.

[3] R.-J. Back. On the correctness of refinement in program
development. PhD thesis, Department of Computer Science,
University of Helsinki, 1978.

[4] R.-J. Back. Refinement calculus, part II: Parallel and reactive
programs. In Stepwise Refinement of Distributed Systems
Models, Formalisms, Correctness, pages 67–93. Springer,
1990.

[5] R.-J. Back and J. von Wright. Refinement Calculus. A
systematic Introduction. Springer, 1998.

[6] R.-J. Back and J. Wright. Trace refinement of action systems.
In B. Jonsson and J. Parrow, editors, CONCUR ’94:
Concurrency Theory, volume 836 of Lecture Notes in
Computer Science, pages 367–384. Springer Berlin
Heidelberg, 1994.

[7] R.-J. Back and Q. Xu. Refinement of fair action systems.
Acta Informatica, 35(2):131–165, 1998.

[8] M. Broy and K. Stølen. Specification and development of
interactive systems: focus on streams, interfaces, and
refinement. Springer, 2001.

[9] L. de Alfaro and T. A. Henzinger. Interface automata. In
Foundations of Software Engineering (FSE). ACM Press,
2001.

[10] D. L. Dill. Trace Theory for Automatic Hierarchical
Verification of Speed-independent Circuits. MIT Press,
Cambridge, MA, USA, 1989.

[11] D. Harel and A. Pnueli. On the development of reactive
systems. In K. R. Apt, editor, Logics and Models of
Concurrent Systems, pages 477–498. 1985.

[12] L. Lamport. The temporal logic of actions. ACM Trans.
Program. Lang. Syst., 16(3):872–923, May 1994.

[13] N. A. Lynch and M. R. Tuttle. An introduction to
input/output automata. CWI Quarterly, 2:219–246, 1989.

[14] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, volume 2283 of
LNCS. Springer, 2002.

[15] A. Pnueli. The temporal logic of programs. In Foundations of
Computer Science, 1977., 18th Annual Symposium on, pages
46–57, Oct 1977.

[16] V. Preoteasa. Refinement algebra with dual operator. Science
of Computer Programming, 92, Part B(0):179 – 210, 2014.

[17] S. Tripakis, B. Lickly, T. A. Henzinger, and E. A. Lee. A
theory of synchronous relational interfaces. ACM Trans.
Program. Lang. Syst., 33(4):14:1–14:41, July 2011.

[18] D. Yadav and M. Butler. Verification of liveness properties in
distributed systems. In Contemporary Computing, volume 40
of Communications in Computer and Information Science,
pages 625–636. Springer Berlin Heidelberg, 2009.

