
When Do We (Not) Need Complex
Assume-Guarantee Rules?

Antti Siirtola
University of Oulu

Stavros Tripakis
University of California, Berkeley

Aalto University

Keijo Heljanko
Helsinki Institute for Information Technology HIIT

Aalto University

Abstract—Assume-guarantee (AG) reasoning is a composi-
tional verification method where a verification task involving
many processes is broken into multiple verification tasks involving
fewer and/or simpler processes. Unfortunately, AG verification
rules, and especially circular rules are often complex and hence
hard to reason about. This raises the question whether complex
rules are really necessary, especially in view of formalisms that
already enable compositional reasoning via simple rules based
on precongruence. This paper investigates this question for two
formalisms: (1) labelled transition systems (LTS) with parallel
composition and weak simulation, and (2) interface automata
(IA) with composition and alternating simulation ≷I

O . In (1), not
all AG rules are sound and the precongruence rule cannot replace
all sound ones, but we can provide a generic and sound AG rule
that complements the precongruence rule. We show that in (2) all
AG rules are sound and can be replaced by a simple rule where
all premisses are of the form Pi ≷I

O Qi. Moreover, we show that
proofs in the LTS AG rule can be converted into proofs in the
simple IA rule. This suggests that circular reasoning is a built-in
feature of the IA formalism, and provided system components
can be modelled as IA, complex assume-guarantee rules are not
needed.

I. INTRODUCTION

Suppose that the goal is to do verification of a system
composed of two processes, P1 and P2. We want to show
that the composition of P1 and P2 satisfies some property
φ, denoted P1 ‖ P2 |= φ. Because of problems like state-
explosion, we may fail to prove directly P1 ‖ P2 |= φ. We
can then turn to compositional methods based on assume-
guarantee reasoning (e.g., see [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11]), process calculi [12], [13] and interface
automata [14], [15], [16], [17], [18], [19].

In compositional verification, typically we try to find
abstract versions Q1 and Q2 of P1 and P2, respectively. If
Q1 and Q2 are sufficiently small, we may be able to show
Q1 ‖ Q2 |= φ. What remains to be shown is that P1 ‖ P2

refines Q1 ‖ Q2, written P1 ‖ P2 � Q1 ‖ Q2. Since we
want to avoid constructing the whole reachable state space of
P1 ‖ P2, we usually cannot establish the refinement directly.
However, if the refinement relation is a precongruence, this
can be established by showing that P1 � Q1 and P2 � Q2.
Assuming that P1 ‖ P2 � Q1 ‖ Q2 and Q1 ‖ Q2 |= φ
imply P1 ‖ P2 |= φ, as it usually does, we are done. But
things may not be so simple, and it may be that P1 6� Q1

or P2 6� Q2, in which case we cannot directly exploit the
simple precongruence rule. In that case, we may need to use
a complex rule such as a circular assume-guarantee rule (see,
e.g., [4], [6], [11]).

There are various circular assume-guarantee (AG) rules
proposed in the literature, but they more or less follow the
form:

P1 ‖ Q2 � Q1 P2 ‖ Q1 � Q2
CAG1: Γ(P1, Q1, P2, Q2)

P1 ‖ P2 � Q1 ‖ Q2

The rule says that if process P1 (resp., P2), when run in
parallel with the abstract version Q2 (resp., Q1) of P2 (resp.,
P1), is a refinement of Q1 (resp., Q2) and the side condition
Γ(P1, Q1, P2, Q2) holds, then the composition of P1 and P2

is a refinement of the composition of Q1 and Q2. The rule
is circular, because, e.g., Q1 appears on the both sides of
the refinement in the premisses, on the right hand side of
the former premise and on the left hand side of the latter
premise. Reasoning with circular rules can be complicated
because a change in Q1 may result in a change in Q2 and so
on. Moreover, the most complex part of an AG rule is usually
hidden in the side condition, which is nevertheless typically
needed for the soundness of the rule.

Compositional frameworks, in particular process calculi
and interface theories such as interface automata [15] offer
mainly the precongruence rule. This means that the refinement
is a reflexive, transitive and compositional relation on the set
of processes. Here, we concentrate on the compositionality
property which is the most interesting part of precongruence
from the viewpoint of AG reasoning. The compositionality
property, abbreviated SIA in what follows, can be written as
follows:

P1 � Q1 · · · Pn � QnSIA: .
‖ni=1 Pi � ‖

n
i=1Qi

This rule is simple in two ways. First, the premisses are of
the simple form Pi � Qi, involving only a process Pi and its
abstraction Qi. Second, the rule has no side condition.

Since SIA already is a powerful tool, this raises the
question whether complex compositional verification rules are
really necessary. We study this question in this paper, in the
context of two formalisms: labelled transition systems (LTSs)
and interface automata (IA). The main contributions of the
paper are the following:

In the case of LTSs, not all assume-guarantee (AG) rules
are sound and the precongruence rule cannot replace all sound
ones (see Ex. 8), but we can provide a generic and sound AG
rule that complements the precongruence rule (Theorem 15).

In the case of IA, we show that all AG rules (given by
Definition 2) are sound and that they can be replaced by SIA
(Theorem 24). This suggests that circular reasoning is a built-in
feature of the IA formalism, in the sense that complex assume-
guarantee rules are not needed provided system components
can be modelled as IA. For example, most software systems,
where for each communication event, there is a single sender
but possibly multiple receivers, can be modelled as IA.

Finally, we show that any proof using the sound LTS
AG rule of Theorem 15 can be converted into a proof using
SIA (Theorem 26), provided a standard assumption on input-
determinism holds. The conversion may not give any com-
plexity gains but the result suggests that if we need to do AG
reasoning, it makes sense to give the IA formalism a try. That
is because everything you can prove by using the LTS AG rule
can be proved in the IA world as well and the AG proofs on
IA can be made at least conceptually simpler as complex rules
are not needed.

In order to formulate and prove our results, we introduce
a novel technical tool, a constriction operator. This is needed
to express the behaviour of a process in the presence of other
processes if the composition operator affects the alphabet.

The proofs can be found in the online appendix [20].

II. ASSUME-GUARANTEE RULES

We consider a set P of processes equipped with a com-
mutative and associative (partial) composition operator ‖:
P × P → P , a compositional refinement preorder, i.e., a
precongruence, � on P and a compositional equivalence, i.e.,
a congruence, ≡ on P such that ≡ is a subset of the kernel
{(P1, P2) ∈ P × P | P1 � P2, P2 � P1} of �. We say
that P1 and P2 are composable when P1 ‖ P2 is defined. We
assume that (1) composability is preserved under refinement,
i.e., if P and P1 are composable and P2 � P1, then P and
P2 are composable, too, (2) whenever P1, P2, P3 are pairwise
composable processes, then (P1 ‖ P2) and P3 are composable
as well and (P1 ‖ P2) ‖ P3 ≡ P1 ‖ (P2 ‖ P3) (partial
associativity), and (3) there is an identity process Pid such
that P ‖ Pid ≡ P for every process P ∈ P . This allows
us to extend the composition to finite families {Pi}ni=1 of
pairwise composable processes by defining ‖ni=1 Pi as the
process P1 ‖ · · · ‖ Pn when n ≥ 1, and the identity process
Pid otherwise.

In the rule CAG1 above, the composition operator is used
to express assumptions on the behaviour of the processes in
the presence of other processes. However, this works only
in simple cases where the composition operator does not
introduce any new behaviour. For example, if the composition
operator affects the alphabet, e.g., the composition operator
of the original IA formalism [14] or CCS (Calculus of Com-
municating Systems [12]) which synchronises matching input
and output events and turns them into the output or invisible
internal event, we need a more sophisticated way to express
and extract “the behaviour of a process P when run in parallel
with a process Q”.

To overcome this problem we introduce a (partial) con-
striction operator | : P×P → P , which is our main technical
tool. The notation P |Q reads the constriction of P with respect

to Q and intuitively means the behaviour of P when run in
parallel with Q.

Definition 1 (Constriction operator). A (partial) function | :
P × P → P is a constriction operator if

1) P1|P2
is defined whenever P1 and P2 are composable,

2) P |Pid
≡ P for all processes P ,

3) if P, P1 are composable and P1 ≡ P2, then P1|P ≡
P2|P and P |P1

≡ P |P2
,

4) if P,Q1, Q2 are pairwise composable, then
(P |Q1

)|Q2
≡ P |Q1‖Q2

, and
5) if P1, P2 and P2, Q are composable, then (P1|P2

) ‖
(P2|Q) ≡ P1 ‖ (P2|Q).

The second item states that constriction with respect to the
identity process has no observable effect. The third item says
that ≡ needs to be monotonic with respect to constriction.
The following item states that successive constrictions can
be combined. The last item captures the fundamental idea
of constriction: if P1 is run in parallel with a constriction of
P2, constricting P1 further with respect to a process P2 has
no observable effect. A constriction operator should not be
confused with a quotient operator [18] which, given a global
specification and the specification of a subsystem, gives the
specification of the subsystem yet to be implemented.

With the aid of a constriction operator, AG rules can be
expressed in the following form:

Definition 2 (AG rule). An assume-guarantee (AG) rule is an
inference rule of the form

P1|C1
� Q1 · · · Pn|Cn � Qn Γ(P1, Q1, . . . , Pn, Qn) ,
‖ni=1 Pi � ‖

n
i=1Qi

where

1) {Pi}ni=1 and {Qi}ni=1 are two non-empty sets of
pairwise composable processes

2) Γ : P2n → {false, true} is a side condition and
3) Ci := Qi,1 ‖ · · · ‖ Qi,ki for all i ∈ {1, . . . , n},

where ki ≥ 0 is an integer and {Qi,1, . . . , Qi,ki} ⊆
{Q1, . . . , Qn} \ {Qi}.

For example, rule CAG1 presented earlier is a special case
of the generic form above, where the constriction P1|Q2

is
defined simply as the parallel composition P1 ‖ Q2. (Provided
it is idempotent, ‖ satisfies the five requirements for |.) A
precongruence-based rule such as SIA can also be put in the
form of Definition 2, by defining P |Q := P . Finally, an acyclic
rule such as [10]

P1 � Q1 Q1 ‖ P2 � Q2
NAG1:

P1 ‖ P2 � Q2

can be seen as a special case of the precongruence rule, as its
end result P1 ‖ P2 � Q2 follows from P1 ‖ P2 � Q1 ‖ P2

(compositionality of � applied to the first premise P1 � Q1),
the second premise Q1 ‖ P2 � Q2, and transitivity of �.

An AG rule is non-circular if k1 = . . . = kn = 0, i.e.,
Ci = Pid for all i ∈ {1, . . . , n}, otherwise the rule is circular.

An AG rule is simple if it is non-circular and has no side
condition, i.e., the side condition is always true, otherwise the
rule is complex.

We say that an AG rule is sound if whenever the premisses
and the side condition are true, the conclusion holds as well.
An AG rule R1 is at least as general as an AG rule R2 , if
(i) whenever the premisses and the side condition of R2 are
true, then the premisses and the side condition of R1 hold as
well, and (ii) the conclusion of R1 implies the conclusion of
R2 .

Example 3. As a running example, we consider a system in
Figure 1, taken from [5], where two components, Gen and
Add communicate through binary channels x, y and z. Add
is an adder; it receives bits x and y and outputs z = x + y,
where addition is modulo 2. Gen is a generator; if it receives
0 from the channel z, it outputs 1 on both the channels x and
y, but if it receives 1 then the output is arbitrary. Obviously,
there is circular dependency between Gen and Add and if we
make no assumptions on the initial values of x and y, nothing
can be said about the value of z and vice versa. However, if
Gen starts by outputting 1 to both the channels x and y, then
it is intuitively obvious that only 0 is seen in the channel z and
1 in the channels x and y. On the other hand, intuition often
results in incomplete conclusions and the overall state space
may be too large for exhaustive exploration. That is why we
would like to use formal assume-guarantee reasoning to prove
that no other values are seen on the channels.

Gen Add
x

y

z

Fig. 1. System of two components connected to each other (example taken
from [5]).

III. LABELLED TRANSITION SYSTEMS

In this section, we recall basic definitions for labelled
transition systems (LTSs). We consider LTSs with a parallel
composition operator and weak simulation as a refinement
preorder. A labelled transition system [13] is basically a
directed graph whose vertices are called states, one of the states
is marked as initial, and edges are called transitions and they
are labelled by events. To put it more formally, we assume that
there is a countably infinite set of events among which there
is a single invisible event, denoted τ , representing the internal
actions of processes. The other events are called visible and
they are used for communication between processes and their
environment.

Definition 4 (LTS). A labelled transition system (LTS) is a
quadruple L := (S,E,−→, ŝ), where (1) S is a finite non-
empty set of states, (2) E is a finite set of visible events, (3)
−→ ⊆ S× (E∪{τ})×S is a set of transitions, and (4) ŝ ∈ S
is the initial state.

The set S of the states of L is denoted by st(L). The set
E is the alphabet of L, denoted Σ(L), and Στ (L) denotes
Σ(L) ∪ {τ}. The set of all LTSs is denoted by L.

We write s α−→ s′ short for (s, α, s′) ∈−→. For every state
s and every event α, we write s α−→, if there is a state s′ such
that s α−→ s′, and s 6 α−→ if there is no such state. Notation
s
α1···αn−→ s′ means that there are states s0, . . . , sn such that

s0 = s, sn = s′ and si−1
αi−→ si for all i ∈ {1, . . . , n}. Note

that n can be zero as well. Given a set A of visible events,
we say that an LTS L is A-enabled if s α−→ for every state s
and every event α ∈ A.

We write s τ
=⇒ s′ short for s τ ···τ−→ s′. Notation s

α
=⇒ s′,

where α is a visible event, means that there is a state s′′ such
that s τ

=⇒ s′′ and s′′ α−→ s′. For every state s and every event
α, we write s α

=⇒, if there is a state s′ such that s α
=⇒ s′,

and s 6 α=⇒ if there is no such state. L is A-deterministic if for
every state s and every event α ∈ A, s α

=⇒ s′1 and s α
=⇒ s′2

implies s′1 = s′2. For a set S of states and a set A of events,
we write clA(S) for the set {s′ | ∃s ∈ S : ∃α1, . . . , αn ∈ A :

s
α1···αn−→ s′} of all states reachable from any s ∈ S via events

in A. The reachable states of L are the states in clΣτ (L)({ŝ}).

Modelling system components as LTSs allows us to per-
form refinement checks between them. We use weak sim-
ulation as a notion of refinement, which preserves safety
properties. Intuitively, a specification LTS weakly simulates an
implementation LTS if every transition of the implementation
LTS can be matched by the specification modulo the invisible
events.

Definition 5 (Weak simulation). Let L1 and L2 be LTSs over
the same alphabet, i.e., Li = (Si, E,−→i, ŝi) for both i ∈
{1, 2}. A relation R ⊆ S1×S2 is a weak simulation (from L1

to L2) if (s1, s2) ∈ R and s1
α−→1 s

′
1 implies that there is s′2

such that s2
α

=⇒2 s
′
2 and (s′1, s

′
2) ∈ R.

L2 weakly simulates L1, denoted L1 �sim L2, if there is a
weak simulation R from L1 to L2 such that (ŝ1, ŝ2) ∈ R. We
write L1 ≡sim L2 if there is a weak simulation R from L1 to
L2 such that {(s, t) | (t, s) ∈ R} is a weak simulation from L2

to L1 and (ŝ1, ŝ2) ∈ R, i.e., R is a weak bisimulation between
L1 and L2. Obviously, a weak simulation is a preorder and a
weak bisimulation an equivalence on the set of LTSs.

Often, a system implementation involves several concurrent
components. That is why an LTS representing the system
implementation is typically constructed from smaller LTSs by
using parallel composition.

Definition 6 (Parallel composition on LTSs). Let Li be the
LTS (Si, Ei,−→i, ŝi) for both i ∈ {1, 2}. The parallel
composition of L1 and L2 is a quadruple

L1 ‖ L2 := (S1 × S2, E1 ∪ E2,−→, (ŝ1, ŝ2)) ,

where −→ is the set of all triples ((s1, s2), α, (s′1, s
′
2)) such

that

1) either α 6= τ and si
α−→i s

′
i for both i ∈ {1, 2};

2) or α ∈ Στ (L1) \ Σ(L2), s1
α−→1 s

′
1, s2 ∈ S2 and

s2 = s′2;
3) or α ∈ Στ (L2) \ Σ(L1), s2

α−→2 s
′
2, s1 ∈ S1 and

s1 = s′1.

Obviously, the parallel composition of LTSs results in
an LTS and the operator is commutative and associative. A

single state LTS Lid := ({ŝ}, ∅, ∅, ŝ) with the empty alphabet
and no transition is an identity element of ‖. Moreover,
weak simulation is preserved under parallel composition which
implies that weak simulation is a precongruence on the set
of LTSs. Similarly, weak bisimulation can be shown to be a
congruence on the set of LTSs.

Proposition 7. Let L1, L2, L3 be LTSs. Then the following
holds.

1) L1 ‖ L2 ≡sim L2 ‖ L1 (commutativity).
2) L1 ‖ (L2 ‖ L3) ≡sim (L1 ‖ L2) ‖ L3 (associativity).
3) L1 ‖ Lid ≡ L1 (identity).
4) If L1 �sim L2, then L1 ‖ L3 �sim L2 ‖ L3.

If L1 ≡sim L2, then L1 ‖ L3 ≡sim L2 ‖ L3

(compositionality).

IV. SOUND AG RULE FOR LTSS

In the calculus of LTSs, AG rules are not sound, in general.
In this section, we show that in addition to simple (thus
non-circular) rules, which are sound by the precongruence of
weak simulation, there is another class of sound AG rules
(Theorem 15). Similar results are also reported earlier [21],
but Theorem 15 is generic in the sense that it holds for any
constriction operator instead of a specific parallel composition
operator.

Example 8. To see the need for sound LTS AG rules, let
us consider our example system. The generator Gen and the
adder Add are naturally modelled as LTSs LG and LA shown
in Figure 2, where an event ab ∈ {00, 01, 10, 11} denotes
that a and b are received from/sent to the channels x and y,
respectively, and an event c ∈ {0, 1} means that c is received
from/sent to the channel z.

LG : 1

00
01
10
11

0

11

LA :
00
11

0

01
10

1

Fig. 2. LTSs LG and LA representing the behaviour of the generator Gen
and the adder Add as individual components.

Based on our understanding about the system, it should
be possible to abstract LG and LA as LTSs AG and AA
in Figure 3, which actually are the same LTS and clearly
formalise the fact that only 0 is seen in the channel z and
1 in the channels x and y. However, since LG 6�sim AG and
LA 6�sim AA, we cannot deduce that the parallel composition
of LG and LA satisfies AG ‖ AA = AG, i.e., LG ‖ LA �sim

AG ‖ AA, by only using the precongruence rule. Hence, we
need a circular AG rule of the form

L1|A2
�sim A1 L2|A1

�sim A2
Γ(L1, A1, L2, A2) .

L1 ‖ L2 �sim A1 ‖ A2

Unfortunately, such rules are not sound in general. For exam-
ple, if the side condition is always true and L1 and L2 are

LTSs that can perform an event a repeatedly and A1 and A2

are LTSs that block a, then the premisses of the AG rule hold
but the conclusion is false.

AG = AA : 0

11

Σ(AG) = Σ(AA) = {0, 1, 00, 01, 10, 11}

Fig. 3. LTSs AG and AA representing the expected behaviour of the
generator Gen and the adder Add within the system.

In order to present a sound LTS AG rule, we need to define
a constriction operator on LTSs first. A trivial choice for an
LTS constriction operator |t : L×L → L is to define L1|tL2

:=
L1. To see that there is a non-trivial LTS constriction operator,
we define the natural constriction of L1 w.r.t. L2 that only
captures the behaviours of L1 that are possible in the parallel
composition of L1 and L2. Formally, the natural constriction
is defined as the product of L1 and the determinised version
of L2 where only the events of L1 are explicitly recorded.

Definition 9 (Natural constriction on LTSs). Let Li :=
(Si, Ei,−→i, ŝi) be an LTS for both i ∈ {1, 2}. The natural
constriction of L1 with respect to L2 is a quadruple

(L1�L2
) := (S1×P(S2), E1,−→, (ŝ1, clΣτ (L2)\Σ(L1)({ŝ2}))),

where −→ is the set of all triples ((s1, Q2), α, (s′1, Q
′
2)) such

that Q2, Q
′
2 6= ∅ and

1) α ∈ Στ (L1)\Σ(L2), s1
α−→1 s

′
1 and Q2 = Q′2 ⊆ S2,

or
2) α ∈ Σ(L1) ∩ Σ(L2), s1

α−→1 s′1 and Q′2 =
clΣτ (L2)\Σ(L1)({s′2 ∈ S2 | ∃s2 ∈ Q2 : s2

α−→1 s
′
2}).

It is straightforward to check that the natural constriction of
L1 w.r.t. L2 is an LTS. Moreover, � satisfies our requirements
of the constriction operator.

Proposition 10. Let L,L1, L2, A1, A2 be LTSs. Then the
following holds.

1) L1�L2
is defined.

2) L�Lid
≡sim L .

3) If L1 ≡sim L2, then L1�L ≡sim L2�L and L�L1
≡sim

L�L2
.

4) (L�A1
)�A2

≡sim L�A1‖A2
.

5) (L1�L2
) ‖ (L2�A1

) ≡sim L1 ‖ (L2�A1
) .

Example 11. Regarding our example, the reachable part of the
natural constriction of LG w.r.t. AA is AG and the reachable
part of the natural constriction of LA w.r.t. AG is AA, i.e.,
LG�AA = AG and LA�AG = AA (modulo the states not
reachable). Hence, � is a non-trivial constriction operator.

Having defined a constriction operator, we can present a
generic and sound AG rule for LTSs. The only restriction is
the side condition, which requires that each event is blocked
by at most one LTS representing an abstract process. This cor-
responds to a realistic situation where for each communication
event, there is a single sender but possibly multiple receivers.
Most software systems satisfy this requirement.

Theorem 12 (Sound LTS AG rule for the natural constriction).
Let n be an integer such that n ≥ 2, L1, . . . , Ln, A1, . . . , An

LTSs, and for every i ∈ {1, . . . , n}, let Ci := Ai,1 ‖ · · · ‖
Ai,ki , where {Ai,1, . . . , Ai,ki} is a possibly empty subset of
{A1, . . . , An} \ {Ai}. Then

L1�C1
�sim A1 · · · Ln�Cn �sim An

Γ(A1, . . . , An)
‖ni=1 Li �sim ‖ni=1Ai

is a sound AG rule, where the side condition Γ(A1, . . . , An)
is as follows:

for each α ∈
⋃n
i=1 Σ(Ai) there is jα ∈ {1, . . . , n}

such that α ∈ Σ(Ajα) and for all i ∈ {1, . . . , n} \
{jα}, either α /∈ Σ(Ai) or Ai is {α}-enabled.

The enabledness condition cannot be removed in general.
To see this, let L1 and L2 be the single state LTS Chaosα :=
(ŝ, {α}, {(ŝ, α, ŝ)}, ŝ) which can perform α repeatedly and let
A1 and A2 be the single state LTS Stopα := (ŝ, {α}, ∅, ŝ)
which can only block α. Now the premisses L1 �A2 �sim A1

and L2 �A1 �sim A2 of the rule hold but the conclusion L1 ‖
L2 �sim A1 ‖ A2 is false. That is because the side condition
does not hold, either A1 or A2 should be {α}-enabled.

Example 13. Let us apply Theorem 12 to our example
system. Unfortunately, even though LG, LA, AG, AA satisfy
the premisses of the AG rule, AG and AA do not meet the
enabledness requirement of the side condition. However, if we
use abstractions A′G and A′A in Figure 4 instead, then we can
treat our system with the AG rule. Obviously, A′G is {0, 1}-
enabled whereas A′A is {00, 01, 10, 11}-enabled. Hence, the
side condition of the theorem holds. It is also easy to check
that LG�A′

A
= AG �sim A′G and LA�A′

G
= AA �sim A′A

meaning that the premisses are true as well. By the AG rule,
it implies that LG ‖ LA �sim A′G ‖ A′A. When we compute the
parallel composition A′G ‖ A′A, we see that A′G ‖ A′A = AG.
In other words, only 0 is seen in the channel z and 1 in the
channels x and y.

A′
G :

1
0

11

0

1

A′
A : 00

01
10
11

000
01

10
11

Fig. 4. LTSs A′G and A′A representing the behaviour of the abstract generator
Gen and the abstract adder Add .

A drawback of Theorem 12 is that it involves a natural
constriction, which is possibly expensive to compute. Instead,
we might want to use a constriction operator which is cheaper
to compute such as |h : (L1, L2) 7→ L3, where L3 is
obtained from L1 by removing states and transitions that are
not reachable in L1 ‖ L2. Note that L3 is (structurally) at most
as big as L1 whereas the natural constriction of L1 can be
exponentially bigger than L1. On the other hand, |h produces
an over-approximation of the natural constriction, which holds
for all other LTS constriction operators, too.

Lemma 14. Let | : L × L → L be a constriction operator.
Then L1�L2

�sim L1|L2 .

The lemma allows us to generalise Theorem 12 to all
LTS constriction operators, including |h. This enables us to

overcome a drawback of Theorem 12: the possibly expensive
computation of the natural constriction.

Theorem 15 (Sound LTS AG rule). Let n ≥ 2 be an integer,
L1, . . . , Ln, A1, . . . , An LTSs, and for every i ∈ {1, . . . , n},
let Ci := Ai,1 ‖ · · · ‖ Ai,ki , where {Ai,1, . . . , Ai,ki} is a
possibly empty subset of {A1, . . . , An} \ {Ai}. Then

L1|C1
�sim A1 · · · Ln|Cn �sim An

Γ(A1, . . . , An)
‖ni=1 Li �sim ‖ni=1Ai

is a sound AG rule, where the side condition Γ(A1, . . . , An)
is as follows:

for each α ∈
⋃n
i=1 Σ(Ai) there is jα ∈ {1, . . . , n}

such that α ∈ Σ(Ajα) and for all i ∈ {1, . . . , n} \
{jα}, either α /∈ Σ(Ai) or Ai is {α}-enabled.

Even though Theorems 12 and 15 allow us to verify our
example system in a compositional way, we are not quite happy
with them. First, the theorems involve a side condition that can
be restrictive in some cases. Second, the abstractions A′G and
A′A we had to use are not natural and not much smaller than
the original components LG and LA. Instead, we would like to
use smaller and natural abstractions AG and AA in Figure 3.
Next, we will show that this is indeed possible if we switch
to the IA framework.

V. INTERFACE AUTOMATA

In this section, we recall the basic framework of interface
automata with a composition operator and a refinement pre-
order, the alternating simulation. An interface automaton (IA)
is basically an LTS where the alphabet is split into inputs and
outputs [15]. But contrary to LTSs, where parallel composition
is a total function, in IA it is partial. Moreover, if, during
composition, one IA offers an output which cannot be accepted
by another IA, the corresponding global state is considered
incompatible, and must be unreachable. Like in [22], we use
explicit error states to model such incompatibilities.

Definition 16 (IA). An interface automaton (IA) is a sextuple
P := (S, I,O,−→, F, ŝ) , where

1) (S, I ∪ O,−→, ŝ) is an LTS such that I and O
are disjoint sets of visible events and −→ is input-
deterministic, i.e., s α−→ s1, s

α−→ s2, α ∈ I
implies s1 = s2 (this is needed for compositionality,
Proposition 20), and

2) F ⊆ S is a set of error states such that (s, α, s′), α ∈
O∪{τ}, s′ ∈ F implies s ∈ F (F is downward-closed
with respect to O ∪ {τ}, the output and invisible
events cannot be controlled by an environment).

The sets I and O, called the input and output alphabet of
P , respectively, are denoted by ΣI(P) and ΣO(P). P is called
closed if I is the empty set. We say that P is compatible if its
initial state is not an error state. The set of all IA is denoted
by I.

Given an LTS L := (S,E,−→, ŝ) and a set I of visible
events such that s α−→ s1, s

α−→ s2, α ∈ I implies s1 = s2

(input-determinism), we convert L to an IA

IA(L, I) := (S, I ∩ E,E \ I,−→, ∅, ŝ)

by splitting the alphabet into inputs E ∩ I and outputs E \ I .
Respectively, given a compatible IA P := (S, I,O,−→, F, ŝ),
we convert it to an LTS

LTS (P) := (S \ F, I ∪O,−→′, ŝ) ,

where

−→′ = −→∩ (S \ F)× (I ∪O ∪ {τ})× (S \ F) ,

by merging the input and output alphabet and by removing all
error states and incident transitions. Since an IA can be seen
as an LTS, we use the same notation for IA as with LTSs.

Modelling system components as IA allows us to perform
refinement and compatibility checks between them. Intuitively,
an implementation IA refines (or implements) a specification
IA if the implementation IA does not have more error states,
neither stronger input assumptions, nor weaker output guar-
antees than the specification IA. This notion of refinement is
formalised as alternating simulation [15], [17].

Definition 17 (Alternating simulation). Let P1 and P2 be
IA over the same input and output alphabet, i.e., Pi =
(Si, I, O,−→i, Fi, ŝi) for both i ∈ {1, 2}. A relation R ⊆
S1 × S2 is an alternating simulation (from P1 to P2) if

1) (s1, s2) ∈ R, s1 ∈ F1 implies s2 ∈ F2, and

for all (s1, s2) ∈ R such that s1 /∈ F1, s2 /∈ F2 the following
holds:

2) if s2
α−→2 s

′
2 and α ∈ I , then there is s′1 such that

s1
α−→1 s

′
1 and (s′1, s

′
2) ∈ R;

3) if s1
α−→1 s

′
1 and α ∈ O∪{τ}, then there is s′2 such

that s2
α

=⇒2 s
′
2 and (s′1, s

′
2) ∈ R.

P1 implements or refines P2, denoted P1 ≷IO P2, if there is an
alternating simulation R from P1 to P2 such that (ŝ1, ŝ2) ∈ R.
We write P1 ≡IO P2 if there is an alternating simulation
R from P1 to P2 such that {(s, t) | (t, s) ∈ R} is an
alternating simulation R from P2 to P1 and (ŝ1, ŝ2) ∈ R,
i.e., R is an output-weak bisimulation between P1 and P2.
Obviously, alternating simulation is a preorder and output-
weak bisimulation an equivalence on the set of IA. Moreover,
if IA are closed and compatible, then alternating simulation
reduces to weak simulation.

Proposition 18. Let P1 and P2 be closed IA such that P1 ≷IO
P2. If P2 is compatible, then LTS (P1) �sim LTS (P2).

We say that P1 and P2 are composable if they have no
common output, i.e., ΣO(P1) ∩ ΣO(P2) = ∅. When the com-
posable IA are composed, common inputs are synchronised,
the matching inputs and outputs are synchronised and turned
into outputs, and the invisible event and the events only in the
alphabet of one IA are executed individually in an interleaving
fashion. The error states of the IA-composition are those
where: (a) either one of the two IA is in an error state, (b) or
one IA has an enabled output event which is a disabled input
of the other, (c) or such state can be reached via non-inputs.

Definition 19 (Composition on IA). Let Pi :=
(Si, Ii, Oi,−→i, Fi, ŝi) be an IA for i ∈ {1, 2} such

that P1 and P2 are composable. The composition of P1 and
P2 is a sextuple

(P1 ‖ P2) := (S1 × S2, I, O,−→, F, (ŝ1, ŝ2)) ,

where I = (I1 \O2)∪ (I2 \O1), O = O1 ∪O2, −→ is the set
of all triples ((s1, s2), α, (s′1, s

′
2)) such that

1) there are i, j ∈ {1, 2} such that α /∈ Ij ∪Oj , si
α−→i

s′i, sj ∈ Sj and sj = s′j , or
2) α ∈ (I1 ∪ O1) ∩ (I2 ∪ O2) such that si

α−→i s
′
i for

both i ∈ {1, 2},

and F is the smallest subset of S1×S2 satisfying the following:

1) (F1 × S2) ∪ (S1 × F2) ⊆ F ;
2) if i, j ∈ {1, 2} and α ∈ Oi∩Ij such that si

α−→i and
sj 6

α−→j , then (s1, s2) ∈ F ;
3) if ((s1, s2), α, (s′1, s

′
2)) ∈ −→, where α ∈ O1 ∪O2 ∪

{τ} and (s′1, s
′
2) ∈ F , then (s1, s2) ∈ F .

Obviously, the composition of composable IA results in
an IA and the operator is commutative. Moreover, a sin-
gle state compatible IA Pid := ({ŝ}, ∅, ∅, ∅, ∅, ŝ) with the
empty alphabet and no transition is an identity element of
the composition. The composition operator is associative on
the set of pairwise composable IA, too. Finally, alternating
simulation and output-weak bisimulation are compositional
with respect to composition. Hence, alternating simulation is
a precongruence and output-weak bisimulation a congruence
on the set of IA.

Proposition 20. The following holds for all pairwise compos-
able IA P1, P2, P3.

1) P1 ‖ P2 ≡IO P2 ‖ P1 (commutativity).
2) P1 ‖ (P2 ‖ P3) ≡IO (P1 ‖ P2) ‖ P3 (associativity).
3) If P1 ≷IO P2, then P1 ‖ P3 ≷IO P2 ‖ P3. If P1 ≡IO

P2, then P1 ‖ P3 ≡IO P2 ‖ P3. (compositionality).

VI. AG RULES FOR IA = SOUND AG RULES FOR IA =
SIMPLE AG RULES FOR IA

In this section, we present the first main contribution of
this paper, namely, that all AG rules for IA are sound and can
be replaced by a simple rule.

We begin by introducing a natural IA constriction operator.
Intuitively, P1�P2

removes from P1 all its input transitions
which are irrelevant when P1 is composed with P2, because
P2 does not offer them as outputs. Formally, the construction
of the natural IA constriction is analogous to the construction
of the natural LTS constriction except that we also preserve
those output transitions of P1 that are unreachable in P1 ‖ P2

but may generate error states. This is needed for Item 6 of
Lemma 22, i.e., P1 ≷IO P1�P2

, which is the key result behind
the main theorem of the section.

Definition 21 (Natural constriction on IA). Let Pi :=
(Si, Ii, Oi,−→i, Fi, ŝi) be an IA for both i ∈ {1, 2} such
that P1 and P2 are composable. The constriction of P1 with
respect to P2 is a sextuple

(P1�P2
) := (S1 × P(S2), I1, O1,−→, F1 × P(S2), (ŝ1, Q̂2)) ,

where Q̂2 = clΣτ (P2)\Σ(P1)({ŝ2}) and −→ is the set of all
triples ((s1, Q2), α, (s′1, Q

′
2)) such that Q2 ⊆ S2 and

1) α ∈ Στ (P1)\Σ(P2), s1
α−→1 s

′
1 and Q2 = Q′2 ⊆ S2,

or
2) α ∈ O1 ∩ Σ(P2), s1

α−→1 s
′
1 and

Q′2 = clΣτ (P2)\Σ(P1)({s′2 ∈ S2 | ∃s2 ∈ Q2 : s2
α−→1

s′2}), or
3) α ∈ I1 ∩ Σ(P2), s1

α−→1 s
′
1 and

Q′2 = clΣτ (P2)\Σ(P1)({s′2 ∈ S2 | ∃s2 ∈ Q2 : s2
α−→1

s′2}) is non-empty.

It is straightforward to check that the natural constriction of
P1 w.r.t. P2 is an IA. Moreover, the operator not only satisfies
our requirements of the constriction operator but produces IA
that are greater in terms of alternating simulation than its
primary (left hand side) operand.

Lemma 22. Let P, P1, P2, Q1, Q2 be IA. Then the following
holds.

1) If P1, P2 are composable, then P1�P2
is defined.

2) P �Pid
≡IO P .

3) If P, P1 are composable and P1 ≡IO P2, then
P1�P ≡IO P2�P and P �P1

≡IO P �P2
.

4) If P,Q1, Q2 are pairwise composable, then
(P �Q1

)�Q2
≡IO P �Q1‖Q2

.
5) If P1, P2 and P2, Q are composable, then (P1�P2

) ‖
(P2�Q) ≡IO P1 ‖ (P2�Q).

6) If P1, P2 are composable, then P1 ≷IO P1�P2
.

Example 23. Let us illustrate the natural IA constriction oper-
ator on our running example. Consider the LTSs LG, AG, LA
and AA from Figure 2 and 3. Let us regard these LTSs as IA
PG := IA(LG, IG), QG := IA(AG, IG), PA := IA(LA, IA)
and QA := IA(AA, IA), respectively, where the input al-
phabets are IG = {0, 1} and IA = {00, 01, 10, 11}. This is
possible because LG and AG are IG-deterministic and LA and
AA are IA-deterministic. QG and QA are shown in Figure 5,
where inputs are marked with the question and outputs with
the exclamation mark. Analogously to LTSs, the constriction
of PG w.r.t. QA is QG, and the constriction of PA w.r.t. QG
is QA, i.e., PG�QA = QG and PA�QG = QA.

QG : 0?

11!

QA : 0!

11?

Fig. 5. IA QG and QA representing the expected behaviour of the generator
Gen and the adder Add within the system.

By using Lemma 22, we can show that every IA AG rule
on the natural constriction is sound and can be replaced by a
simple IA AG rule. This is the first main result of the paper.

Theorem 24 (Complex IA AG rules are unnecessary). Let n be
an integer such that n ≥ 2, {P1, . . . , Pn} and {Q1, . . . , Qn}
two sets of pairwise composable IA, Γ : I2n → {false, true} a
side condition, and for every i ∈ {1, . . . , n}, let Ei := Qi,1 ‖
· · · ‖ Qi,ki , where {Qi,1, . . . , Qi,ki} is a possibly empty subset
of {Q1, . . . , Qn} \ {Qi}. Then

P1�E1
≷IO Q1 · · · Pn�En ≷

I
O Qn

Γ(P1, Q1, . . . , Pn, Qn)
‖ni=1 Pi ≷

I
O ‖

n
i=1Qi

is a sound AG rule and

P1 ≷IO Q1 · · · Pn ≷IO Qn
SIA:

‖ni=1 Pi ≷
I
O ‖

n
i=1Qi

is a simple and sound AG rule at least as general as the one
above.

The theorem can be extended to any IA constriction
operator that satisfies Item 6 of Lemma 22, i.e., P1 ≷IO P1|P2

.
It is an open question whether there are also IA constriction
operators which do not satisfy the property.

Example 25. We can now see how the IA framework allows us
to solve the problem with our running example and achieve our
objective, namely, to use the models of Figure 3 as abstractions
for the models of Figure 2 in a simple AG rule. Specifically,
consider again the IA PG, QG, PA, QA from Ex. 23. Observe
that PG ≷IO QG and PA ≷IO QA. Hence, we can directly use
the SIA rule to deduce that

PG ‖ PA ≷IO QG ‖ QA .

Obviously, QG ‖ QA has no error state, which implies that
PG ‖ PA has no error state either. Moreover, since both
compositions PG ‖ PA and QG ‖ QA are closed IA, we have

LTS (PG ‖ PA) �sim LTS (QG ‖ QA) .

In other words, only 0 is seen in the channel z and 1 in the
channels x and y.

Theorem 24 says that in the IA framework all we need is
SIA. SIA, in turn, is better than the sound LTS AG rule of
Theorem 15 in two ways: there is no side condition and all
the premisses are simple, i.e., they do not involve constriction.
However, even though we were able to exploit SIA in place of
the sound LTS AG rule in our example system, we have not
yet shown whether we can do so in general. In the following
section, we will prove that this is indeed possible.

VII. REDUCING LTS AG RULE TO IA AG RULE

In this section, we present the second main contribution
of the paper. We show how our sound LTS AG rule can
be converted into a sound IA AG rule, provided the LTSs
can be interpreted as IA without violating the assumption on
input-determinism. The conversion is done by (i) making the
LTSs representing concrete processes input-enabled and (ii) by
removing unnecessary input transitions from abstract LTSs.

Given an LTS L := (S,E,−→, ŝ) and a set I of visible
events, we write en(L, I) for a quadruple

en(L, I) := (S∪{s̄}, E,−→∪−→′∪({s̄}×(I∩E)×{s̄}), ŝ) ,

where s̄ /∈ S is a new state, used as a sink, and

−→′ = {(s, α, s̄) | s ∈ S, α ∈ I ∩ E, s 6 α=⇒}
∪ {(s, α, s′) | α ∈ I ∩ E, s α

=⇒ s′} .

Obviously, en(L, I) is an (I ∩ E)-enabled LTS. We write
enIA(L, I) short for IA(en(L, I), I).

Theorem 26 (From LTS AG proofs to SIA proofs). Let
L1, . . . , Ln, A1, . . . , An and C1, . . . , Cn be LTSs satisfying
the premisses and the side condition of the sound LTS AG
rule of Theorem 15 and let Ii := {α ∈ Σ(Ai) | jα 6= i}
for all i ∈ {1, . . . , n}, where jα is as defined in Theorem 15.
Moreover, for every i ∈ {1, . . . , n}, let Li be Ii-deterministic,
Pi := enIA(Li, Ii) and Qi := IA(Ai�Ci , Ii).

Then {Pi}ni=1 and {Qi}ni=1 are sets of pairwise com-
posable IA satisfying the premisses of Theorem 24 and
‖ni=1 Li �sim LTS (‖ni=1 Pi) �sim LTS (‖ni=1Qi) �sim

‖ni=1Ai.

Note that the theorem applies to LTS AG proofs on any LTS
constriction operator but when the abstract LTSs are converted
into IA, the natural LTS constriction operator is used. The
theorem also says that the composition of the converted LTSs
model the same concrete system and abstract system as the
composition of original LTSs.

Example 27. Let us apply Theorem 26 to our running
example. Let L1 := LG and L2 := LA from Figure 2,
A1 := A′G and A2 := A′A from Figure 4, I1 := {0, 1}
and I2 := {00, 10, 10, 11}. These LTSs and sets of events
satisfy the assumptions of Theorem 26. By applying the
theorem, we obtain the concrete IA P1 := enIA(L1, I1)
and P2 := enIA(L2, I2) in Figure 6 and the abstract IA
Q1 := IA(A1�A2

, I1) and Q2 := IA(A2�A1
, I2), which turn

out to be equal to QG and QA, respectively, in Figure 5. As
can be seen, the abstractions capture the expected behaviour
of Gen and Add when they are composed with each other.
Moreover, even though the concrete IA are different from
PG and PA, their parallel composition is the same, i.e., the
reachable parts of P1 ‖ P2 and PG ‖ PA are equal. Hence,
LTS (P1 ‖ P2) is a correct model of our example system.

The application of Theorem 26 may not give any complex-
ity gains but if we need to do AG reasoning, it makes sense
to give the IA formalism a try. That is because everything you
can prove by using the LTS AG rule can be proved in the IA
world as well and the AG proofs on IA can be made at least
conceptually simpler as complex rules are not needed. This
suggests that circular reasoning is a built-in feature of the IA
formalism and if you can model your system components as
IA, complex assume-guarantee rules are not needed.

It is an open question whether we can prove a similar
theorem purely in the LTS framework, i.e., that all LTS AG
proofs can be made simple. However, it is unlikely that we
could do this by moving constriction to the abstract side. To
see this, consider the following example:

1) L1 is an LTS which executes first a and then b,
2) L2 is an LTS which blocks both a and b,
3) A1 is an LTS which blocks b but can execute a

repeatedly,
4) A2 is an LTS which blocks a but can execute b

repeatedly.

Now, the premisses of Theorem 12 hold: L1�A2
�sim A1 and

L2�A1
�sim A2. Also the side condition is true because A1

P1 :

1

00
01
10
11

0

11

0
1

0
1

01
P2 :

00
11

0

01
10

1

00
01

10
11

00
01

10
11

00
0110

11

Fig. 6. IA P1 and P2 representing the behaviour of the input-enabled
generator Gen and the adder Add components.

is {a}-enabled and A2 is {b}-enabled, i.e., a is thought as
an input of L1 and A1. Hence, the theorem is applicable,
However, there is no obvious way to move constriction to the
abstract side because L1 �sim A1�C does not hold no matter
how we choose C and even if we re-enable the input event a
after constriction.

VIII. RELATED WORK

Our work is most closely related to [11] which proposes
a sound and complete circular AG rule (C3) and shows that
every proof derived using the C3 rule can be translated into a
proof which uses a non-circular rule (NC). In [11], the specifi-
cations are given in LTL and processes execute synchronously,
whereas our focus is on refinement-based formalisms where
processes execute partly asynchronously.

Results similar to Theorem 15 have been presented in
other works, e.g., Rule (5) in [21], although it is worth noting
that Theorem 15 is generic in the sense that it holds for any
constriction operator instead of a specific parallel composition
operator. Still, Theorem 15 is not the main focus of this
paper, and it is stated merely to be able to state the result
of Theorem 26.

Non-circular assume-guarantee rules are provided in [10]
for LTSs, in [23] for IA, and in [24] for I/O components.
Moreover, the focus of two former papers is on the automatic
generation of abstract models using learning techniques.

Our work is also loosely related to works studying the
completeness of AG rules [11], [24]. However, we explore the

need for complex circular AG rules, not their completeness.
You should also note that a number of AG rules can be shown
to be complete, albeit in a straightforward and not very useful
way. For instance, SIA with transitivity

P1 ≷IO Q1 · · · Pn ≷IO Qn ‖ni=1Qi ≷
I
O R

‖ni=1 Pi ≷
I
O R

is trivially complete by setting Qi := Pi.

Contrary to the SIA rule which is set in the IA framework,
many AG rules are formulated within frameworks which
make no distinction between inputs and outputs (this is the
case, for instance, for the rules in [6], [11]). This is perhaps
surprising, given that identifying the assertions holding in the
interface between processes is recognised as very important
for compositional verification [11].

Compositional verification frameworks that do distinguish
inputs and outputs, other than IA, are input/output au-
tomata [25] and reactive modules [8]. AG rules similar to SIA
and NC have been proven for I/O automata as well as for
reactive modules. In both I/O automata and reactive modules
processes are forbidden to block inputs, whereas this is allowed
in IA, which can therefore be seen as a generalisation. (For
arguments on why this generalisation is useful, see [14], [16],
[26]).

Interface theories are not introduced with compositional
verification as their main goal. Instead, as argued in [26], they
are used as “lightweight” verification methods akin to type-
checking (only check compatibility of components without
checking any global property). Nevertheless, interface theories
can be used as a compositional verification tool (c.f. [23]), and
the question addressed in this paper is how this tool compares
to assume-guarantee frameworks.

IX. CONCLUSIONS

The main contributions of this paper are two. First, we
show that all circular assume-guarantee rules for interface
automata are sound and can be expressed in a simple non-
circular form without side conditions. Second, we show that
proofs in a sound LTS AG rule can be translated into proofs
using this simple IA rule.

These results suggest that circular reasoning is a built-in
feature of the IA formalism, and using IA makes compositional
proofs at least conceptually simpler. Hence, if you can model
your system components as IA, complex assume-guarantee
rules are not needed. Whether IA should be preferred in
practice depends however also on other types of considerations,
in particular algorithmic efficiency and availability of suitable
tools. While checking alternating simulation is as hard as
checking standard simulation from a worst-case complexity
perspective [27], there is still a shortage of tools implementing
this and other features of the IA framework.

You should also note that the theorems on sound LTS and
IA AG rules can be extended to AG rules of the form

P1|D1‖C1
� Q1|E1

· · · Pn|Dn‖Cn � Qn|En
Γ,

‖ni=1 Pi � ‖
n
i=1Qi

where Γ is the side condition of the corresponding theorem
and for all i ∈ {1, . . . , n},

1) Ci := Qi,1 ‖ · · · ‖ Qi,ki , where ki is a non-negative
integer and {Qi,1, . . . , Qi,ki} ⊆ {Q1, . . . , Qn} \
{Qi},

2) Di := Pi,1 ‖ · · · ‖ Pi,li , where li is a non-negative
integer and {Pi,1, . . . , Pi,li} ⊆ {P1, . . . , Pn} \ {Pi}.

3) Ei := Qi,1 ‖ · · · ‖ Qi,mi , where mi is a non-negative
integer and {Qi,1, . . . , Qi,mi} ⊆ {Q1, . . . , Qn} \
{Qi}.

In other words, we may allow the behaviour of abstract
processes to be constricted by other abstract processes as well
as the behaviour of concrete processes to be constricted by
both abstract and concrete processes. This is possible because
by the properties 3–4 of a constriction operator, we may write
premisses in the form (Pi|Di)|Ci � Qi|Ei and, provided
that the premisses and the side condition hold, conclude that
‖ni=1(Pi|Di) � ‖

n
i=1(Qi|Ei). After that, we can apply the

properties 3–5 of the constriction operator and deduce that
‖ni=1 Pi ≡ ‖

n
i=1(Pi|Di) � ‖

n
i=1(Qi|Ei) ≡ ‖

n
i=1Qi.

We formulated our results using IA and LTSs, since IA is
the most well-known interface theory. We expect similar results
to be obtainable in a synchronous setting, using synchronous
transition systems and the synchronous interfaces of [26].
Reporting on such results is a part of future work. In general,
we believe that results similar to Theorem 24 can be proved
for most compositional event-based formalisms, such as modal
IA [17], where each event is controlled by at most one process
and refinement allows for weakening input assumptions while
strengthening output guarantees.

Acknowledgements

This work was partially supported by the Academy of
Finland and by the NSF via projects COSMOI: Compositional
System Modeling with Interfaces and ExCAPE: Expeditions in
Computer Augmented Program Engineering, and by the iCy-
Phy Research Center supported by IBM and United Technolo-
gies. We would also like to thankfully acknowledge the funding
from the SARANA project in the SAFIR 2014 program and
the Academy of Finland projects 139402 and 277522.

REFERENCES

[1] J. Misra and K. Chandy, “Proofs of networks of processes,” IEEE Trans.
Softw. Eng., vol. 7, no. 4, pp. 417–426, Jul. 1981.

[2] A. Pnueli, “In transition from global to modular temporal reasoning
about programs,” in Logics and Models of Concurrent Systems, ser.
NATO ASI Series, K. R. Apt, Ed. Springer, 1985, vol. 13, pp. 123–
144.

[3] O. Grumberg and D. Long, “Model checking and modular verification,”
ACM Trans. Program. Lang. Syst., vol. 16, no. 3, pp. 843–871, 1994.

[4] M. Abadi and L. Lamport, “Conjoining specifications,” ACM Trans.
Program. Lang. Syst., vol. 17, no. 3, pp. 507–535, 1995.

[5] N. Shankar, “Lazy compositional verification,” in Compositionality: The
Significant Difference, ser. LNCS, W.-P. de Roever, H. Langmaack, and
A. Pnueli, Eds. Springer, 1998, vol. 1536, pp. 541–564.

[6] K. McMillan, “Verification of an Implementation of Tomasulo’s Algo-
rithm by Compositional bodel Checking,” in CAV ’98, ser. LNCS, A. J.
Hu and M. Y. Vardi, Eds., vol. 1427. Springer, 1998, pp. 110–121.

[7] T. Henzinger, S. Qadeer, and S. Rajamani, “You assume, we guarantee:
Methodology and case studies,” in CAV ’98, ser. LNCS, A. J. Hu and
M. Y. Vardi, Eds. Springer, 1998, vol. 1427, pp. 440–451.

[8] R. Alur and T. Henzinger, “Reactive modules,” Form. Method. Syst.
Des., vol. 15, pp. 7–48, 1999.

[9] W. P. de Roever, F. S. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech,
M. Poel, and J. Zwiers, Concurrency Verification: Introduction to
Compositional and Noncompositional Methods. Cambridge University
Press, 2001.

[10] J. M. Cobleigh, D. Giannakopoulou, and C. S. Păsăreanu, “Learning
assumptions for compositional verification,” in TACAS’03, ser. LNCS,
H. Garavel and J. Hatcliff, Eds. Springer, 2003, vol. 2619, pp. 331–346.

[11] K. S. Namjoshi and R. J. Trefler, “On the completeness of compositional
reasoning methods,” ACM Trans. Comput. Logic, vol. 11, no. 3, May
2010.

[12] R. Milner, A Calculus of Communicating Systems, ser. LNCS. Springer-
Verlag, 1980, vol. 92.

[13] A. W. Roscoe, Understanding Concurrent Systems. Springer, 2010.
[14] L. de Alfaro and T. Henzinger, “Interface automata,” ACM SIGSOFT

Software Engineering Notes, vol. 26, no. 5, pp. 109–120, 2001.
[15] ——, “Interface-based design,” in Engineering Theories of Software

Intensive Systems, ser. NATO Science Series, M. Broy, J. Grnbauer,
D. Harel, and T. Hoare, Eds. Springer, 2005, vol. 195, pp. 83–104.

[16] ——, “Interface theories for component-based design,” in EMSOFT ’01,
ser. LNCS, T. A. Henzinger and C. M. Kirsch, Eds. Springer, 2001,
vol. 2211, pp. 148–165.

[17] G. Lüttgen and W. Vogler, “Modal interface automata,” Log. Meth.
Comput. Sci., vol. 9, no. 3, 2013.

[18] J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, A. Legay, and
R. Passerone, “A modal interface theory for component-based design,”
Fundam. Inform., vol. 108, no. 1–2, pp. 119–149, 2011.

[19] S. Bauer, P. Mayer, A. Schroeder, and R. Hennicker, “On weak modal
compatibility, refinement, and the MIO Workbench,” in TACAS ’10, ser.
LNCS, J. Esparza and R. Majumdar, Eds. Springer, 2010, vol. 6015,
pp. 175–189.

[20] Online appendix, available: http://cc.oulu.fi/∼asiirtol/papers/cag app.
pdf.

[21] G. Frehse, Z. Han, and B. Krogh, “Assume-guarantee reasoning for
hybrid I/O-automata by over-approximation of continuous interaction,”
in CDC ’04, vol. 1. IEEE, Dec 2004, pp. 479–484.

[22] F. Bujtor and W. Vogler, “Error-pruning in interface automata,” in
SOFSEM ’14, ser. LNCS, V. Geffert, B. Preneel, B. Rovan, J. tuller,
and A. Tjoa, Eds. Springer, 2014, vol. 8327, pp. 162–173.

[23] M. Emmi, D. Giannakopoulou, and C. S. Păsăreanu, “Assume-guarantee
verification for interface automata,” in FM ’08, ser. LNCS, J. Cuéllar,
T. S. E. Maibaum, and K. Sere, Eds. Springer, 2008, vol. 5014, pp.
116–131.

[24] C. Chilton, B. Jonsson, and M. Kwiatkowska, “Compositional as-
sumeguarantee reasoning for input/output component theories,” Sci.
Comput. Program., vol. 91, no. A, pp. 115 – 137, 2014, special Issue
on FACS 12.

[25] N. Lynch and M. Tuttle, “An introduction to input/output automata,”
CWI Quarterly, vol. 2, pp. 219–246, 1989.

[26] S. Tripakis, B. Lickly, T. A. Henzinger, and E. A. Lee, “A theory of
synchronous relational interfaces,” ACM Trans. Program. Lang. Syst.,
vol. 33, no. 4, Jul. 2011.

[27] R. Alur, T. Henzinger, O. Kupferman, and M. Vardi, “Alternating
refinement relations,” in CONCUR ’98, ser. LNCS, D. Sangiorgi and
R. de Simone, Eds. Springer, 1998, vol. 1466, pp. 163–178.

