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An example of self-assembly
Lipid bilayer

~— Phospholipid Bilayer ———
3 Hydrophilic
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The water, external environment, affects components (lipids),
but does not intend to lead them to the membrane structure.
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Other examples of self-assembly
Self-assembly is an omnipresent phenomenon:
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Molecular assembly

Engineering Goal
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DNA self-assembly

Why

DNA?

DNA is the molecule of choice in many
labs [Doty 2012]:

> it is easy to synthesize
» its physical properties are
well-understood

» due to its information-bearing
properties
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DNA self-assembly

DNA tile implementation

Winfree, Liu, Wenzler, and Seeman implemented interactive
DNA tiles in vitro [Winfree et al. 1998] as a DNA double-crossover
molecule:
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4 single strands (red, yellow, purple, green), called sticky ends
provide this “tile” with the capability of interacting with other
“tiles”.
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DNA self-assembly

Binary counter assembles from DNA tiles [Barish et al. 2009]

tiles bind by two inputs «

VO .,

The gray box to the left is the seed (starting point of assembly
process) made of DNA origami [Rothemund 2006].

Aalto University
School of Science
and Technology



DNA self-assembly

Binary counter assembles from DNA tiles [Barish et al. 2009]
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Pattern assembly

What is a pattern?

For h,w,k > 1, a k-colored (w x h)-pattern P
is a function from the region {(x,y) | 0 < x <
w,0 < y < h} to the color set {1,2, ..., k}.
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Pattern assembly
What is a pattern?

For h,w,k > 1, a k-colored (w x h)-pattern P
is a function from the region {(x,y) | 0 < x <
w,0 < y < h} to the color set {1,2,...,k}.

Example

The right is a 3-colored (gray, blue, orange)

5 x 9-pattern, which is the well-known binary
counter pattern.
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Pattern assembly
Rectilinear TAS

Atile type t € T is a DNA tile abstracted to be
a square of specific color:

ot

Each side has a label (0, 1, ...) that models a
kind of sticky ends.
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Pattern assembly
Rectilinear TAS

Atile type t € T is a DNA tile abstracted to be
a square of specific color:

ot

Each side has a label (0, 1, ...) that models a
kind of sticky ends.

Rectilinear Tile-Assembly System (RTAS)
An RTAS is a pair (T, o.), where

T afinite set of tile types;

E EE EE EE E

o, an L-shape seed.
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Pattern assembly
Rectilinear TAS

An RTAS with the following 4 tile types

S
0 E] = 0
A 0 om mo O e w1
0 1 0 1
B

assembles the binary counter pattern.

RTAS’ attachment rule

> Assembly begins with the L-shape seed;

Q
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Pattern assembly
Rectilinear TAS

An RTAS with the following 4 tile types

S
0 7l ) 0
half ’ !
A 0 0 o 0 1 b
s 1
B

assembles the binary counter pattern.

RTAS’ attachment rule

> Assembly begins with the L-shape seed;

Q

> A tile attaches if both of its west and
south glues match.
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Pattern assembly
Rectilinear TAS

An RTAS with the following 4 tile types

s
0 T 0
A 0 om =0 0 e
0 1 |
B

assembles the binary counter pattern.

RTAS’ attachment rule

> Assembly begins with the L-shape seed;

Q

> A tile attaches if both of its west and
south glues match.

> Assembly proceeds rectilinearly, from
south-west to north-east.
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Pattern assembly
Rectilinear TAS

An RTAS with the following 4 tile types

s
0 1 0
A 0 0 1 Om w1
0 0 1
B

assembles the binary counter pattern.

RTAS’ attachment rule

> Assembly begins with the L-shape seed;

Q

> A tile attaches if both of its west and
south glues match.

> Assembly proceeds rectilinearly, from
south-west to north-east.
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Pattern Assembly
Rectilinear TAS

2-in 2-out logic gates
RTAS can have 4 tile types implement various 2-in 2-out logic
gates such as AND, OR, XOR, and half-adder.

Example

The 4 tile types for counter pattern assembly implement
half-adder.

0
half
A adder C -0 0
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Directed RTAS

Definition

An RTAS (T,0,) is directed if for any distinct t, € T,
» their west glues are different, or
» their south glues are different.
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Directed RTAS

Definition

An RTAS (T,0,) is directed if for any distinct t, € T,
» their west glues are different, or
» their south glues are different.

Unique pattern assemblability
A directed RTAS assembles a unique pattern.
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PATS

Definition

PATTERN SELF-ASSEMBLY TILE SET SYNTHESIS (PATS)
[Ma & Lombardi 2008]

GIVEN: a pattern P
FIND: a directed RTAS with min # of tile types
that assembles P.

Theorem ([Czeizler & Popa 2012))
PATS is NP-hard.

Proof. It is due to a polynomial-time reduction from 3SAT. Its concise proof
can be found in [Kari, Kopecki, S. 2013].
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Constant colored PATS

Definition

“Any given logic circuit can be formulated as a colored rectangular pattern
with tiles, using only a constant number of colors [Czeizler & Popa 2012]".

k-colored PATS(k-PATS)

GIVEN: a k-colored pattern P
FIND: adirected RTAS with min # of tile types
that assembles P.
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Constant colored PATS

Our contribution

Main Theorem
60-PATS is NP-hard.

Proof.
A given 3SAT instance ¢ is reduced to a 60-colored pattern

P(¢) in a polynomial-time such that:

¢ is satisfiable <= adirected RTAS assembles P(¢)
using at most 84 tile types.
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Proof idea

P(¢) consists of the following sub-patterns:
» MAIN CIRCUIT (evaluating 3SAT)
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Proof idea

P(¢) consists of the following sub-patterns:
» MAIN CIRCUIT (evaluating 3SAT)
» GADGETS
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Proof idea

Circuit for evaluating 3SAT instance
The 3SAT instance ¢ can be evaluated using logic
gates (OR, XNOR, and intersection).




Proof idea
Set Tzsar of 51 tile types for MAIN CIRCUIT

1-type x 9 colors c1,1-C19
: : c 7 T : 4-types x 3 colors c4.1-¢
mEEEDDD VD@ !_\ -typ 4,1-C4.3

2-types x 15 colors ¢21-C2,15
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Proof idea
Set Tzsar of 51 tile types for MAIN CIRCUIT

1-type x 9 colors c1,1-C19
I E 1 0 1 0 bg

: : = 4-types x 3 colors c4,1-Cc43
1u u.w ee ee vv vv Dﬂ Dﬂ cleready

E E I e m om 1 0 bg
2-types x 15 colors ¢21-C2,15
[l R D &) m}
ngDug D . ng.ng1 1 u-u 151 UE
B e
C ] : [ e O I " I

4 0 m om 150 o

& g

Tiles of these types evaluate ¢ according to the assignment, which are
encoded on the L-shape seed o;.
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Proof idea

MAIN CIRCUIT

substituter substituter

substituter

MAIN CIRCUIT is intuitivevly a
snapshot of the evaluator cir-
cuit when all LEDs flush green,
that is, ¢ is satisfied.
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Proof idea

MAIN CIRCUIT

substituter

substituter

MAIN CIRCUIT is intuitivevly a
snapshot of the evaluator cir-
cuit when all LEDs flush green,
that is, ¢ is satisfied.

If ¢ is satisfiable, then encode
a satisfying assignment on the
L-shape seed and tiles in Tsgar
self-assemble MAIN CIRCUIT.

A Aalto University



Proof idea

Reduction

Satisfiability — 84 tile types are enough
84 tile types are enough:
> Tssar (of 51 tile types) for MAIN CIRCUIT;
> 33 tile types for 33 auxiliary colors (1 type per color) in GADGET.
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Proof idea

Reduction

Satisfiability — 84 tile types are enough

84 tile types are enough:
> Tssar (of 51 tile types) for MAIN CIRCUIT;
> 33 tile types for 33 auxiliary colors (1 type per color) in GADGET.

We need to prove:

Unsatisfiability — need for 85 tile types

With T3sar, some LED position flushes red no matter what seed is, that is,
MAIN CIRCUIT would not self-assemble. If 84 were enough, we must find
something but Tzgar.
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Proof idea

Role of GADGET

GADGET endows P(¢) with the following property:

Lemma

In order for a directed RTAS to self-assemble P(¢) using 84 tile
types, the set Tagar must be used.
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Proof idea

Role of GADGET

GADGET endows P(¢) with the following property:

Lemma
In order for a directed RTAS to self-assemble P(¢) using 84 tile
types, the set Tagar must be used.

Corollary

If ¢ is not satisfiable, then no directed RTAS with 84 tile types
can self-assemble P(¢).
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Proof idea

Role of GADGET

GADGET endows P(¢) with the following property:

Lemma
In order for a directed RTAS to self-assemble P(¢) using 84 tile
types, the set Tagar must be used.

Corollary

If ¢ is not satisfiable, then no directed RTAS with 84 tile types
can self-assemble P(¢).

Corollary
60-PATS is NP-hard.
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Approximability and PTAS

Corollary

For any ¢ > 60, there is no polynomial-time algorithm for
c-PATs with approximation ratio g—i.

Corollary

For any ¢ > 60, c-PATS does admit any polynomial-time
approximation scheme (PTAS).

A
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Recent Developments

Theorem ([Johnsen, Kao, S. 2013])
29-PATS is NP-hard.

Proof.

This is due to a polynomial-time reduction from SUBSET SuM %) to a
29-colored pattern P(%) as: ¢ is summable iff there is a directed RTAS with
46 tile types that self-assembles P(%)). [
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Recent Developments

Theorem ([Johnsen, Kao, S. 2013])
29-PATS is NP-hard.

Proof.

This is due to a polynomial-time reduction from SUBSET SuUM ¢ to a
29-colored pattern P(%) as: ¢ is summable iff there is a directed RTAS with
46 tile types that self-assembles P(%)). [

Corollary

For any ¢ > 29, there is no polynomial-time algorithm for
c-PATS with approximation ratio %.

Corollary
For any ¢ > 29, c-PATS does admit any PTAS.
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Future Works

» finding the minimum ¢ such that c-PATS remains NP-hard
(conjectured to be 2).

» the design of good approximation algorithms for constant
colored PATS.
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