
Combinatorial optimization in pattern
assembly (extended abstract)
Shinnosuke Seki
Helsinki Institute for Information Technology (HIIT)
Department of Information and Computer Science, Aalto University
shinnosuke.seki@aalto.fi

Talks at UCNC 2013 (Milan, Italy, July 1-5th, 2013)



An example of self-assembly
Lipid bilayer

The water, external environment, affects components (lipids),
but does not intend to lead them to the membrane structure.



Other examples of self-assembly
Self-assembly is an omnipresent phenomenon:

snow crystal

city

garaxy
pattern

virus capsid



Molecular assembly

Engineering Goal



DNA self-assembly
Why DNA?

DNA is the molecule of choice in many
labs [Doty 2012]:

I it is easy to synthesize
I its physical properties are

well-understood
I due to its information-bearing

properties



DNA self-assembly
DNA tile implementation

Winfree, Liu, Wenzler, and Seeman implemented interactive
DNA tiles in vitro [Winfree et al. 1998] as a DNA double-crossover
molecule:

4 single strands (red, yellow, purple, green), called sticky ends
provide this “tile” with the capability of interacting with other
“tiles”.



DNA self-assembly
Binary counter assembles from DNA tiles [Barish et al. 2009]

The gray box to the left is the seed (starting point of assembly
process) made of DNA origami [Rothemund 2006].
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Pattern assembly
What is a pattern?

For h,w , k ≥ 1, a k -colored (w×h)-pattern P
is a function from the region {(x , y) | 0 ≤ x <

w , 0 ≤ y < h} to the color set {1, 2, . . . , k}.

Example
The right is a 3-colored (gray, blue, orange)
5× 9-pattern, which is the well-known binary
counter pattern.
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Pattern assembly
Rectilinear TAS

A tile type t ∈ T is a DNA tile abstracted to be
a square of specific color:

Each side has a label (0, 1, . . . ) that models a
kind of sticky ends.

Rectilinear Tile-Assembly System (RTAS)
An RTAS is a pair (T , σL), where

T a finite set of tile types;

σL an L-shape seed.
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Pattern assembly
Rectilinear TAS

An RTAS with the following 4 tile types

assembles the binary counter pattern.

RTAS’ attachment rule
I Assembly begins with the L-shape seed;
I A tile attaches if both of its west and

south glues match.
I Assembly proceeds rectilinearly, from

south-west to north-east.
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Pattern Assembly
Rectilinear TAS

2-in 2-out logic gates
RTAS can have 4 tile types implement various 2-in 2-out logic
gates such as AND, OR, XOR, and half-adder.

Example
The 4 tile types for counter pattern assembly implement
half-adder.



Directed RTAS

Definition
An RTAS (T , σL) is directed if for any distinct t1, t2 ∈ T ,

I their west glues are different, or
I their south glues are different.

Unique pattern assemblability
A directed RTAS assembles a unique pattern.
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PATS
Definition

PATTERN SELF-ASSEMBLY TILE SET SYNTHESIS (PATS)
[Ma & Lombardi 2008]

GIVEN: a pattern P
FIND: a directed RTAS with min # of tile types

that assembles P.

Theorem ([Czeizler & Popa 2012])

PATS is NP-hard.
Proof. It is due to a polynomial-time reduction from 3SAT. Its concise proof
can be found in [Kari, Kopecki, S. 2013].



Constant colored PATS
Definition

“Any given logic circuit can be formulated as a colored rectangular pattern
with tiles, using only a constant number of colors [Czeizler & Popa 2012]”.

k -colored PATS(k -PATS)

GIVEN: a k -colored pattern P
FIND: a directed RTAS with min # of tile types

that assembles P.



Constant colored PATS
Our contribution

Main Theorem
60-PATS is NP-hard.

Proof.
A given 3SAT instance φ is reduced to a 60-colored pattern
P(φ) in a polynomial-time such that:

φ is satisfiable ⇐⇒ a directed RTAS assembles P(φ)

using at most 84 tile types.



Proof idea

P(φ) consists of the following sub-patterns:
I MAIN CIRCUIT (evaluating 3SAT)
I GADGETS
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Proof idea
Circuit for evaluating 3SAT instance

The 3SAT instance φ can be evaluated using 2-in 2-out logic
gates (OR, XNOR, and intersection).



Proof idea
Set T3SAT of 51 tile types for MAIN CIRCUIT

Tiles of these types evaluate φ according to the assignment, which are
encoded on the L-shape seed σL.
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Proof idea
MAIN CIRCUIT

MAIN CIRCUIT is intuitivevly a
snapshot of the evaluator cir-
cuit when all LEDs flush green,
that is, φ is satisfied.

Satisfiability→
assemblability
If φ is satisfiable, then encode
a satisfying assignment on the
L-shape seed and tiles in T3SAT

self-assemble MAIN CIRCUIT.
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Proof idea
Reduction

Satisfiability→ 84 tile types are enough
84 tile types are enough:

I T3SAT (of 51 tile types) for MAIN CIRCUIT;
I 33 tile types for 33 auxiliary colors (1 type per color) in GADGET.

We need to prove:

Unsatisfiability→ need for 85 tile types
With T3SAT, some LED position flushes red no matter what seed is, that is,
MAIN CIRCUIT would not self-assemble. If 84 were enough, we must find
something but T3SAT.
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Proof idea
Role of GADGET

GADGET endows P(φ) with the following property:

Lemma
In order for a directed RTAS to self-assemble P(φ) using 84 tile
types, the set T3SAT must be used.

Corollary
If φ is not satisfiable, then no directed RTAS with 84 tile types
can self-assemble P(φ).

Corollary
60-PATS is NP-hard.
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Approximability and PTAS

Corollary
For any c ≥ 60, there is no polynomial-time algorithm for
c-PATS with approximation ratio 85

84 .

Corollary
For any c ≥ 60, c-PATS does admit any polynomial-time
approximation scheme (PTAS).



Recent Developments

Theorem ([Johnsen, Kao, S. 2013])
29-PATS is NP-hard.

Proof.
This is due to a polynomial-time reduction from SUBSET SUM ψ to a
29-colored pattern P(ψ) as: ψ is summable iff there is a directed RTAS with
46 tile types that self-assembles P(ψ).

Corollary
For any c ≥ 29, there is no polynomial-time algorithm for
c-PATS with approximation ratio 47

46 .

Corollary
For any c ≥ 29, c-PATS does admit any PTAS.
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Future Works

I finding the minimum c such that c-PATS remains NP-hard
(conjectured to be 2).

I the design of good approximation algorithms for constant
colored PATS.
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