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Introduction

Informational equivalence between
Woatson and Crick strands

Watson strand

O3
L

Crick strand

The Crick strand CAGT is obtained from the Watson strand
ACTG by the antimorphic involution 7 defined as 7(4) =T,
7(T) =4, 7(C) =G, 7(G) =C.

Observation
Two WK-complementary strands are equivalent w.r.t. the
information they encode.
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Introduction

A mathematical model of
Watson-Crick complementarity

Definition

A mapping 0 : ¥* — X* is called an antimorphic involution if
@ for any x,y € ¥*, 0(xy) = 6(y)0(x) (antimorphism), and
@ 02 is the identity (involutive).

Actually,

T(ACTG) = 7(G)7(ACT) = - - - = 7(G)7(T)7(C)7(A) = CAGT.

Observation
For an arbitrary antimorphic involution # and a word v € ¥*, u
and 0(u) are informationally equivalent.
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O-primitivity

A word u € X7 is primitive if forany t € ¥, u € tT implies
u=-=t.

Definition ([CKS08])

A word u € 7 is said to be f-primitive if for any t € X,
ue t{t,0(t)}* implies u = t.

Definition ([CKSO08])

The O-primitive root of u € ¥ is a f-primitive word t € ¥ T
s.t. ue t{t,0(t)}".

The uniqueness of f-primitive root is guaranteed.
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An extended Fine and Wilf
theorem

Let u,v € £ and @ be an antimorphic involution.

Theorem ([CKS08])

If there exist a € {u,0(u)}* and 3 € {v,0(v)}* which share a
prefix of length lem(|ul, |v|), then u,v € {t,0(t)}" for some
0-primitive word t € ¥ .

Theorem ([CKS08])

If there exist a € {u,0(u)}* and 3 € {v,0(v)}* which share a
prefix of length 2 max(|ul,|v|) + min(|ul, |v|) — ged(|ul, |v]),
then u,v € {t,0(t)}* for some O-primitive word t € ¥
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Lyndon-Schutzenberger equation

For words u, v,w € £*, an equation of the form

is called the Lyndon-Schiitzenberger equation originally
proposed in [LySc62].

Theorem
If¢,n,m > 2, then the above equation implies u,v,w € t* for
some primitive word t € 1.

Its concise proof is available at, e.g., [Lot83, HaNo04].
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An extended Lyndon
Schiitzenberger equation

We extend the LS-equation as follows:

ul...uZ:‘/l...VnWm...Wl’

for u,v,w € £t and ¢,n,m > 2, where uy,...,us € {u,0(u)},
Vi, ..., vp € {v,0(v)}, and wy, ..., wy, € {w,0(w)}.
Problem

Find conditions on £, n, m under which the exLS equation
implies u,v,w € {t,0(t)}* for some O-primitive word t € L.

When £, n, m guarantees the existence of such t, we say that
(¢, n, m) imposes 6-periodicity.
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£ Craier e impose #-periodicity
Proposition

If one of £,n,m is 2, then (¢, n, m) does not impose
0-periodicity.

ExLS equation

Example
Let @ be the mirror image on {a, b}. Let u = a*b?a**, v = (a*b%a")*a* p?,

and w = a* for some k,£ > 1. Then 0(u)“ ™ = v2w*.

Actually, when ¢ = k = 2, then
9(U)2U2 _ (34b232)2(32b2a4)2
= a'p*ap2atp? KPSt

(34b236b2)2(32)2 _ V2W2

Observation
£,n,m > 3 must hold for (¢, n, m) to impose 6-periodicity.
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An application of exFW theorem |
Many cases can be solved by applying the exFW theorem.

Proposition
(> 6,> 3,> 3) imposes 0-periodicity.

u u2 u3 uj ug
@Q@{ ,,,,,,,,, Q ,,,,,,,,,,,,,, Q
F + 1

V]_ V2V3 PEEEEY Vn Wm PEEEEY W1
Due to the symmetric roles of vi --- v, and wp, - -- wy in this
equation, one can assume that |vy - - v,| > |wy - - - wyyl, that is,

|V]_"'Vn‘ Z %‘ul...uﬂ_
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An application of exFW theorem I

Proof.

Since £ > 6, |vi---vy| > %\ul -+ up| > |ugupus]. Also note that
vi--- vy is a prefix of uy---up. These mean that vy -+ - uy and
v1 - -+ v share a prefix of length

max(3[u], 3|v) > 2max(|ul,|v]) + min(ul, |v]).

Thus the exFW theorem implies that u, v € {t,0(t)}" for
some #-primitive word t € ¥ . With this, the exLS equation
gives wy - - wp, € {t,0(t)}T. Since t is f-primitive, we can
conclude that w € {t,6(t)}™. O
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An application of exFW theorem
1

This proof technique works for the cases (5, > 5,> 5).

Proposition
(5,> 5,>5) imposes 0-periodicity.

The remaining cases (5,3 or 4, > 3) require combinatorial
arguments.
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Combinatorial argument on

(5,3,>3) |
Proposition
(5,3 or 4,> 3) impose O-periodicity.
u up u3 us Us
e T N e N D S
Vi V2 V3 W -+ - W1

If the border between vivovs and w,, - - - wy is on anything but
u3, then the exFW theorem is still applicable.
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Combinatorial argument on
(5,3,>3) Il

Even when the border is on u3, when |usus| < |Wp—1 - wa],
then the exFW theorem is applicable.
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The case when the border is on u3 and us = 6(us) is illustrated.

ExLS equation

us3 Ug Us
\A//\A//—\l
- -~ T T 1
Wm Wm—1 wy  wi
NN . NN
Nt )
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Combinatorial argument on

(5,3,> 3) IV
a(v,6(v))
“voro(v) vorf(v) X
y  vor ov) v or 6(v)
B(v,0(v))

For a f-primitive word v, we consider the overlap of the form
a(v,0(v)) - x =y - B(v,0(v)),

where a(v,0(v)), B(v,0(v)) € {v,0(v)}T, x,y € T, and
x|, [yl < Ivl.
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All possible overlaps of the above-mentioned form are given in
the following table (modulo a substitution of v by 6(v))
together with the characterization of their sets of solutions.

ExLS equation

Equation Solution
vix=yf(v),i>1 v=yp,x=0(y),p = 0(p),
and whenever i > 2, y = 6(y)
vx = yv v=(pqY*Ip, x=qp, y = pq
for some p,q € £, j >0
vO(v)x = yvl(v), v=(pqY'p, x=0(pq), y = pq,
with j > 0, gp = 6(qp)
vitIx = yo(v)'v,i > 1 v =r(tr)"Tmr(tr)", x = (tr)"r(tr)", y = r(tr)"t"
vO(v) x =yt i >1 v=(rt)"r(rt)" ", y = (rt)"r(rt)™, x = (rt)""r
vO(v)'x = yw'O(v), i >2 | v=_(>rt)"r(rt)™"r, y = (rt)"r(rt)", x = (tr)™r(tr)"
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Future
Directions

References

Combinatorial argument on

Theorem
(5,> 3,> 3) imposes 0-periodicity.

(5,3,> 3) VI
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l n m | 6-periodicity | How to prove
ExLS equation >6 >3 >3 YES exFW theorem
5 >5 >5 YES exFW theorem
5 4 >4 YES combinatorial arguments
5 3 >3 YES
4 >3 >3 OPEN ?
3 >3 >3 OPEN
2 NO examples
2 NO
2 NO
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Future directions

@ Solving the open cases of exLS equation;
® Concise proof technique;

© Further extensions of exLS equation; e.g., to n words of

up -+ up € {v1,0(v1) Y {va, 0(v2) }'2 - - {vi, O(vir) }
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