Characterizations of Bounded Semilinear Languages by One-way and Two-way Deterministic Machines

Oscar H. Ibarra¹ and Shinnosuke Seki²

1. Department of Computer Science, University of California, Santa Barbara, USA

2. Department of Systems Biosciences for Drug Discovery, Kyoto University, Japan

Conceptual diagram of a counter machine

Automata and Formal Languages (AFL 2011) 2011/8/18

Conceptual diagram of a counter machine

$$\delta(p, a, 1, 1, \dots, 0) = (q, R, 0, -1, \dots, +1)$$

Automata and Formal Languages (AFL 2011) 2011/8/18

3

Variants of counter machine

- Pushdown counter machines
- 2-way counter machines

Automata and Formal Languages (AFL 2011) 2011/8/18

Formal definition of pushdown counter machines

For $k \ge 0$, a pushdown k-counter machine is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_{0,}Z_{0,}F)$, where

- Q a finite set of states
- Σ, Γ input and stack alphabets
- Z_0 the bottom stack symbol
- q_0 the initial state
- *F* a set of accepting states

and δ is a relation $Q \times \Sigma \times \Gamma \times \{0,1\}^k \rightarrow Q \times \{S,R\} \times \Gamma^* \times \{-1,0,+1\}^k$.

Reversal-bounded counter machines

A finite automaton augmented with 2 counters is Turing-complete. [Minsky 1961]

Definition (Equivalent^{*})

For a positive integer $k \ge 1$, a counter machine is *r*-reversal if for each of its counters, the number of alternations between non-decreasing mode and non-increasing mode – called reversal – is upper-bounded by r in any acceptingion. computation.

*This equivalence needs a help of finite state control to remember how many reversals each counter has made.

One can simulate a counter that makes r-reversals by counters that make 1 reversal.

Lemma
For any positive integer $r \ge 1$, an r-reversal counter can be simulated by $\left[\frac{r+1}{2}\right]$
1-reversal counters.

This lemma enables us to focus on the 1-reversal counter machines.

Classes of counter machines

DCM(k)	• the class of deterministic <i>k</i> -counters machines
NCM(k)	 The class of (non-deterministic) k-counters machines
DPCM(k)	• The class of deterministic pushdown <i>k</i> -counters machines
NPCM(k)	• The class of pushdown k-counters machines
2DCM(k)	• The class of 2-way deterministic <i>k</i> -counters machines

For a machine class M, by $\mathcal{L}(M)$, we denote the set of all languages accepted by a machine in M.

- DFA = DCM(0)
- NFA = NCM(0)
- DPDA = DPCM(0)
- NPDA = NPCM(0)
- $DCM = \bigcup_{k \ge 0} DCM(k)$ is the class of deterministic counter machines.

Note that $\mathcal{L}(DFA) = \mathcal{L}(NFA) \subsetneq \mathcal{L}(DPDA) \subsetneq \mathcal{L}(NPDA)$.

A subset $Q \subseteq N^k$ is a linear set if there exist k-dimensional integer vectors v_0, v_1, \dots, v_n such that

$$Q = \{v_0 + t_1v_1 + \dots + t_nv_n \mid t_1, \dots, t_n \in N\}.$$

A set is semilinear if it is a finite union of linear sets.

Bounded semilinear languages

A language $L \subseteq \Sigma^*$ is **bounded** if there exist $k \ge 1$ and $x_1, x_2, ..., x_k \in \Sigma^+$ such that

$$L \subseteq x_1^* x_2^* \cdots x_k^*.$$

If $x_1, x_2, ..., x_k$ are letters, L is especially said to be letter-bounded.

Definition

For a bounded language $L \subseteq x_1^* x_2^* \cdots x_k^*$, let

 $Q(L) = \{(i_1, \dots, i_k) \mid x_1^{i_1} x_2^{i_2} \cdots x_k^{i_k} \in L\}.$

If this set is semilinear, then we say that L is bounded semilinear.

Finite-turn machines

Finite-turn

For an integer $t \ge 0$, a 2-way machine is t -turn if the machine can accept an input with at most t "turns" of the input head.

A 2-way machine is finite-turn if it is a *t*-turn for some $t \ge 0$.

Finite-crossing

For an integer $c \ge 1$, a 2-way machine is c -crossing if every accepted input admits a computation by the machine during which the input head crosses the boundary between any two adjacent symbols no more than c times. A 2-way machine is finite-crossing if it is a c-turn for some $c \ge 1$.

Main Theorem

The following 5 statements are equivalent for every bounded language L:

- 1. L is bounded semilinear;
- 2. L can be accepted by a finite-crossing 2DPCM;
- *3. L* can be accepted by a finite-turn 2DPDA whose stack is reversalbounded;
- 4. L can be accepted by a finite-turn 2DCM(1);
- *5. L* can be accepted by a 1DCM.

Main theorem

Main Theorem

The following 5 statements are equivalent for every bounded language L:

- 1. L is bounded semilinear;
- 2. L can be accepted by a finite-crossing 2DPCM;
- 3. L can be accepted by a finite-turn 2DPDA whose stack is reversal-bounded;
- 4. *L* can be accepted by a finite-turn 2DCM(1);
- 5. L can be accepted by a 1DCM.

 $4 \rightarrow 3 \rightarrow 2 \text{ and } 5 \rightarrow 2$ trivially hold since

- finite-turn 2DCM(1) ⊆ finite-turn 2DPDA ⊆ finite-crossing 2DPCM, and
- 1DCM \subseteq finite-crossing 2DPCM.

Let us prove

- $1 \rightarrow 4, 1 \rightarrow 5$
- $2 \rightarrow 1$

Proof direction for $1 \rightarrow 4, 1 \rightarrow 5$

Language Accepted by	$L \subseteq a_1^* \cdots a_k^*$ $Q(L) \text{ is semilinear}$	$L \subseteq x_1^* \cdots x_k^*$ $Q(L) \text{ is semilinear}$
1NCM	result I [Ibarra 78]	Use result I and non- deterministic guess.
finite—turn 2DCM(1) or 1DCM	Linear Diophantine- equations turn out to be solvable by these machines	$1 \rightarrow 4, 1 \rightarrow 5$

Letter-bounded to bounded

- Let $L \subseteq x_1^* \cdots x_k^*$ s.t. Q(L) is semilinear.
- Given a word *w*,

 $w \in L \Leftrightarrow \exists (i_1, \dots, i_k) \in Q(L), w = x_1^{i_1} \cdots x_k^{i_k}.$

• Let $L' = \{a_1^{i_1} \cdots a_k^{i_k} | (i_1, \dots, i_k) \in Q(L)\}$, and construct a 1NCM M' for it.

- 1NCM M for L
 - I. reads w;
 - 2. non-deterministically decomposes it as $w = x_1^{i_1} \cdots x_k^{i_k}$;
 - 3. runs M' on $a_1^{i_1} \cdots a_k^{i_k}$, and returns M''s decision as its decision for w and L.

Proof direction for $1 \rightarrow 4, 1 \rightarrow 5$

Language Accepted by	$L \subseteq a_1^* \cdots a_k^*$ $Q(L) \text{ is semilinear}$	$L \subseteq x_1^* \cdots x_k^*$ $Q(L) \text{ is semilinear}$
1NCM	result I [Ibarra 78]	Use result I and non- deterministic guess.
finite—turn 2DCM(1) or 1DCM	Linear Diophantine- equations turn out to be solvable by these machines	$(1 \rightarrow 4, 1 \rightarrow 5)$

- How can a deterministic machine non-deterministic decompose an input?
- Our answer is "this decomposition does not require nondeterminism."

Deterministic decomposition

- Let *c* be a sufficiently-large constant.
 - This is efficiently computable from a given language $L \subseteq x_1^* \cdots x_k^*$ s.t. Q(L) is semilinear.
- Let $L' = L \cap x_1^{\geq c} x_2^{\geq c} \cdots x_k^{\geq c}$.

Theorem [Fine and Wilf 1965]

Let u, v be primitive words. If u^* and v^* share their prefix of length |u| + |v| - gcd(|u|, |v|), then u = v.

 Based on this theorem, we can figure out that looking-ahead by some constant distance on an input tape settles the decomposition.

Main theorem

Main Theorem

The following 5 statements are equivalent for every bounded language L:

- 1. L is bounded semilinear;
- 2. L can be accepted by a finite-crossing 2DPCM;
- *3. L* can be accepted by a finite-turn 2DPDA whose stack is reversalbounded;
- *4. L* can be accepted by a finite-turn 2DCM(1);
- *5. L* can be accepted by a 1DCM.

Proof for $2 \rightarrow 1$

Lemma

If a letter-bounded language is accepted by a finite-crossing 2DPDA *M*, then it is accepted by a finite-crossing 2DCM.

Proof idea

- In a computation by a finite-crossing 2DPDA, contents of M's stack consist of constant # of blocks of the form uvⁱw (pumped structure).
- Each of these blocks correspond to a writing phase during which the stack is never popped.
- # of "long" writing phases is bounded by a constant c.
- We build a 2DCM(c), and let its counters to store *i*₁, *i*₂, *i*₃, ..., and let its finite state control to remember (*u*₁, *v*₁, *w*₁), ...

stack

Proof for $2 \rightarrow 1$

The previous result is generalized for a broader class of finite-crossing 2DPCM.

Lemma

If a letter-bounded language is accepted by a finite-crossing 2DPCM, then it is accepted by a finite-crossing 2DCM.

Proof for $2 \rightarrow 1$

Theorem

A bounded language that is accepted by a finite-crossing 2DPCM is effectively semilinear.

Proof.

Let *M* be a finite-crossing 2DPCM(*c*) for some $c \ge 0$ s.t. $L(M) \subseteq x_1^* \cdots x_k^*$.

- I. It is easy to construct a finite-crossing 2DPCM(c) for $\{a_1^{i_1} \cdots a_k^{i_k} | x_1^{i_1} \cdots x_k^{i_k} \in L(M)\}.$
- 2. This language is letter-bounded, and hence, this machine can be converted into an equivalent finite-crossing 2DCM.
- 3. It is known that if a letter-bounded language is accepted by a finite-crossing 2NCM, then the language is bounded semilinear.
- 4. Thus, Q(L(M)) is semilinear.

Main theorem

Main Theorem (Proved!!)

The following 5 statements are equivalent for every bounded language L:

- 1. L is bounded semilinear;
- 2. L can be accepted by a finite-crossing 2DPCM;
- *3. L* can be accepted by a finite-turn 2DPDA whose stack is reversalbounded;
- 4. L can be accepted by a finite-turn 2DCM(1);
- 5. L can be accepted by a 1DCM.

Open

Is every bounded language accepted by a finite-crossing 2NPCM bounded semilinear.

Acknowledgements

This research was supported by

- National Science Foundation Grant
- Natural Sciences and Engineering Research Council of Canada Discovery Grant and Canada Research Chair Award in Biocomputing to Lila Kari
- Funding Program for Next Generation World-Leading Researchers (NEXT Program) to Yasushi Okuno

Automata and Formal Languages (AFL 2011) 2011/8/18

References

[Baker and Book 1974]

B. S. Baker and R.V. Book. Reversal-bounded multipushdown machines. *Journal of Computer and System Sciences* 8: 315-332, 1974.

[Fine and Wilf 1965]

N. J. Fine and H. S. Wilf. Uniqueness theorem for periodic functions. *Proc. Of the American Mathematical Society* 16: 109-114, 1965.

[lbarra 1978]

O. H. Ibarra. Reversal-bounded multicounter machines and their decision problems. *Journal of the ACM* 25: 116-133, 1978.

References

[Minsky 1961]

M. L. Minsky. Recursive unsolvability of Post's problem of "tag" and other topics in theory of turing machines.

Annals of Mathematics 74: 437-455, 1961.