Characterizations of Bounded Semilinear Languages by One-way and Two-way Deterministic Machines

Oscar H. Ibarra1 and Shinnosuke Seki2

1. Department of Computer Science, University of California, Santa Barbara, USA
2. Department of Systems Biosciences for Drug Discovery, Kyoto University, Japan
Conceptual diagram of a counter machine

finite state control

input tape

a b

can be tested for zero

c_1 c_2 ... c_k

counters
Conceptual diagram of a counter machine

\[\delta(p, a, 1, 1, \ldots, 0) = (q, R, 0, -1, \ldots, +1) \]
Variants of counter machine

- Pushdown counter machines
- 2-way counter machines
Formal definition of pushdown counter machines

For $k \geq 0$, a pushdown k-counter machine is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, where

- Q is a finite set of states
- Σ, Γ are input and stack alphabets
- Z_0 is the bottom stack symbol
- q_0 is the initial state
- F is a set of accepting states

and δ is a relation $Q \times \Sigma \times \Gamma \times \{0,1\}^k \to Q \times \{S,R\} \times \Gamma^* \times \{-1,0,+1\}^k$.
Reversal-bounded counter machines

A finite automaton augmented with 2 counters is Turing-complete. [Minsky 1961]

Definition [Baker and Book 1974, Ibarra 1978]

For a positive integer $k \geq 1$, a counter machine is \textit{r-reversal} if for each of its counters, the number of alternations between non-decreasing mode and non-increasing mode – called \textit{reversal} – is upper-bounded by r in any accepting computation.

* This equivalence needs a help of finite state control to remember how many reversals each counter has made.
r-reversal counter and 1-reversal counter

One can simulate a counter that makes r-reversals by counters that make 1 reversal.

Lemma

For any positive integer $r \geq 1$, an r-reversal counter can be simulated by $\left\lfloor \frac{r+1}{2} \right\rfloor$ 1-reversal counters.

This lemma enables us to focus on the 1-reversal counter machines.
Classes of counter machines

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCM(k)</td>
<td>The class of deterministic k-counters machines</td>
</tr>
<tr>
<td>NCM(k)</td>
<td>The class of (non-deterministic) k-counters machines</td>
</tr>
<tr>
<td>DPCM(k)</td>
<td>The class of deterministic pushdown k-counters machines</td>
</tr>
<tr>
<td>NPCM(k)</td>
<td>The class of pushdown k-counters machines</td>
</tr>
<tr>
<td>2DCM(k)</td>
<td>The class of 2-way deterministic k-counters machines</td>
</tr>
</tbody>
</table>

For a machine class M, by $\mathcal{L}(M)$, we denote the set of all languages accepted by a machine in M.
Classes of counter machines (cont.)

- $\text{DFA} = \text{DCM}(0)$
- $\text{NFA} = \text{NCM}(0)$
- $\text{DPDA} = \text{DPCM}(0)$
- $\text{NPDA} = \text{NPCM}(0)$
- $\text{DCM} = \bigcup_{k \geq 0} \text{DCM}(k)$ is the class of deterministic counter machines.

Note that $\mathcal{L}(\text{DFA}) = \mathcal{L}(\text{NFA}) \subsetneq \mathcal{L}(\text{DPDA}) \subsetneq \mathcal{L}(\text{NPDA})$.
Semilinear sets

A subset $Q \subseteq N^k$ is a **linear set** if there exist k-dimensional integer vectors v_0, v_1, \ldots, v_n such that

$$Q = \{v_0 + t_1 v_1 + \cdots + t_n v_n \mid t_1, \ldots, t_n \in N\}.$$

A set is **semilinear** if it is a finite union of linear sets.
Bounded semilinear languages

A language $L \subseteq \Sigma^*$ is **bounded** if there exist $k \geq 1$ and $x_1, x_2, \ldots, x_k \in \Sigma^+$ such that

$$L \subseteq x_1^* x_2^* \cdots x_k^*.$$

If x_1, x_2, \ldots, x_k are letters, L is especially said to be **letter-bounded**.

Definition

For a bounded language $L \subseteq x_1^* x_2^* \cdots x_k^*$, let

$$Q(L) = \{(i_1, \ldots, i_k) \mid x_1^{i_1} x_2^{i_2} \cdots x_k^{i_k} \in L\}.$$

If this set is semilinear, then we say that L is **bounded semilinear**.
Finite-turn machines

Finite-turn

For an integer $t \geq 0$, a 2-way machine is t-turn if the machine can accept an input with at most t “turns” of the input head. A 2-way machine is finite-turn if it is a t-turn for some $t \geq 0$.

Finite-crossing

For an integer $c \geq 1$, a 2-way machine is c-crossing if every accepted input admits a computation by the machine during which the input head crosses the boundary between any two adjacent symbols no more than c times. A 2-way machine is finite-crossing if it is a c-turn for some $c \geq 1$.
Main theorem

Main Theorem

The following 5 statements are equivalent for every bounded language L:

1. L is bounded semilinear;
2. L can be accepted by a finite-crossing 2DPCM;
3. L can be accepted by a finite-turn 2DPDA whose stack is reversal-bounded;
4. L can be accepted by a finite-turn 2DCM(1);
5. L can be accepted by a 1DCM.
The following 5 statements are equivalent for every bounded language L:

1. L is bounded semilinear;
2. L can be accepted by a finite-crossing 2DPCM;
3. L can be accepted by a finite-turn 2DPDA whose stack is reversal-bounded;
4. L can be accepted by a finite-turn 2DCM(1);
5. L can be accepted by a 1DCM.

$4 \rightarrow 3 \rightarrow 2$ and $5 \rightarrow 2$ trivially hold since

- finite-turn 2DCM(1) \subseteq finite-turn 2DPDA \subseteq finite-crossing 2DPCM, and
- 1DCM \subseteq finite-crossing 2DPCM.

Let us prove

- $1 \rightarrow 4, 1 \rightarrow 5$
- $2 \rightarrow 1$
Proof direction for $1 \rightarrow 4, 1 \rightarrow 5$

<table>
<thead>
<tr>
<th>Accepted by</th>
<th>Language Accepted by</th>
<th>$L \subseteq a_1^* \cdots a_k^*$ (Q(L)) is semilinear</th>
<th>$L \subseteq x_1^* \cdots x_k^*$ (Q(L)) is semilinear</th>
</tr>
</thead>
<tbody>
<tr>
<td>1NCM</td>
<td></td>
<td>result 1 [Ibarra 78]</td>
<td>Use result 1 and non-deterministic guess.</td>
</tr>
<tr>
<td>finite-turn 2DCM(1)</td>
<td></td>
<td>Linear Diophantine-equations turn out to be solvable by these machines</td>
<td>$1 \rightarrow 4, 1 \rightarrow 5$</td>
</tr>
<tr>
<td>or 1DCM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Let $L \subseteq x_1^* \cdots x_k^*$ s.t. $Q(L)$ is semilinear.

Given a word w,

$$w \in L \iff \exists (i_1, \ldots, i_k) \in Q(L), w = x_1^{i_1} \cdots x_k^{i_k}.$$

Let $L' = \{a_1^{i_1} \cdots a_k^{i_k} \mid (i_1, \ldots, i_k) \in Q(L)\}$, and construct a 1NCM M' for it.

1NCM M for L

1. reads w;
2. non-deterministically decomposes it as $w = x_1^{i_1} \cdots x_k^{i_k}$;
3. runs M' on $a_1^{i_1} \cdots a_k^{i_k}$, and returns M''s decision as its decision for w and L.

Proof direction for $1 \rightarrow 4, 1 \rightarrow 5$

| Language Accepted by | $L \subseteq a_1^* \cdots a_k^*$
$Q(L)$ is semilinear | $L \subseteq x_1^* \cdots x_k^*$
$Q(L)$ is semilinear |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1NCM</td>
<td>result 1</td>
<td>Use result 1 and non-deterministic guess.</td>
</tr>
</tbody>
</table>
| finite-turn 2DCM(1)
or 1DCM | Linear Diophantine-equations turn out to be solvable by these machines | 1 \rightarrow 4, 1 \rightarrow 5 |

- How can a deterministic machine non-deterministic decompose an input?
- Our answer is “this decomposition does not require non-determinism.”
Deterministic decomposition

- Let c be a sufficiently large constant.
 - This is efficiently computable from a given language $L \subseteq x_1^* \cdots x_k^*$ s.t. $Q(L)$ is semilinear.
- Let $L' = L \cap x_1 \geq c x_2 \geq c \cdots x_k \geq c$.

Theorem [Fine and Wilf 1965]

Let u, v be primitive words. If u^* and v^* share their prefix of length $|u| + |v| - \gcd(|u|, |v|)$, then $u = v$.

- Based on this theorem, we can figure out that looking-ahead by some constant distance on an input tape settles the decomposition.
Main theorem

The following 5 statements are equivalent for every bounded language L:

1. L is bounded semilinear;

2. L can be accepted by a finite-crossing 2DPCM;

3. L can be accepted by a finite-turn 2DPDA whose stack is reversal-bounded;

4. L can be accepted by a finite-turn 2DCM(1);

5. L can be accepted by a 1DCM.
Proof for $2 \rightarrow 1$

Lemma

If a letter-bounded language is accepted by a finite-crossing 2DPDA M, then it is accepted by a finite-crossing 2DCM.

Proof idea

- In a computation by a finite-crossing 2DPDA, contents of M's stack consist of constant # of blocks of the form uv^iw (pumped structure).
- Each of these blocks correspond to a writing phase during which the stack is never popped.
- # of “long” writing phases is bounded by a constant c.
- We build a 2DCM(c), and let its counters to store $i_1, i_2, i_3, ...$, and let its finite state control to remember $(u_1, v_1, w_1), ...$
Proof for $2 \rightarrow 1$

The previous result is generalized for a broader class of finite-crossing 2DPCM.

<table>
<thead>
<tr>
<th>Lemma</th>
</tr>
</thead>
<tbody>
<tr>
<td>If a letter-bounded language is accepted by a finite-crossing 2DPCM, then it is accepted by a finite-crossing 2DCM.</td>
</tr>
</tbody>
</table>
Proof for 2 → 1

Theorem

A bounded language that is accepted by a finite-crossing 2DPCM is effectively semilinear.

Proof.

Let \(M \) be a finite-crossing 2DPCM(c) for some \(c \geq 0 \) s.t. \(L(M) \subseteq x_1^* \cdots x_k^* \).

1. It is easy to construct a finite-crossing 2DPCM(c) for \(\{a_1^{i_1} \cdots a_k^{i_k} \mid x_1^{i_1} \cdots x_k^{i_k} \in L(M)\} \).
2. This language is letter-bounded, and hence, this machine can be converted into an equivalent finite-crossing 2DCM.
3. It is known that if a letter-bounded language is accepted by a finite-crossing 2NCM, then the language is bounded semilinear.
4. Thus, \(Q(L(M)) \) is semilinear.
Main theorem

Main Theorem (Proved!!)

The following 5 statements are equivalent for every bounded language L:

1. L is bounded semilinear;
2. L can be accepted by a finite-crossing 2DPCM;
3. L can be accepted by a finite-turn 2DPDA whose stack is reversal-bounded;
4. L can be accepted by a finite-turn 2DCM(1);
5. L can be accepted by a 1DCM.

Open

Is every bounded language accepted by a finite-crossing 2NPCM bounded semilinear.
Acknowledgements

This research was supported by

- National Science Foundation Grant
- Natural Sciences and Engineering Research Council of Canada Discovery Grant and Canada Research Chair Award in Biocomputing to Lila Kari
- Funding Program for Next Generation World-Leading Researchers (NEXT Program) to Yasushi Okuno
References

[Baker and Book 1974]

[Fine and Wilf 1965]

[Ibarra 1978]
O. H. Ibarra. Reversal-bounded multicounter machines and their decision problems.
References

[Minsky 1961]

M. L. Minsky. Recursive unsolvability of Post’s problem of “tag” and other topics in theory of turing machines.