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Variants of counter machine 
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Formal definition of pushdown counter 

machines 
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For 𝑘 ≥ 0, a pushdown 𝑘-counter machine is a 7-tuple 𝑄, Σ, Γ, 𝛿, 𝑞0,𝑍0, 𝐹 , 

where  

 𝑄 a finite set of states 

 Σ, Γ input and stack alphabets 

 𝑍0 the bottom stack symbol 

 𝑞0 the initial state 

 𝐹 a set of accepting states 

and 𝛿 is a relation 𝑄 × Σ × Γ × *0,1+𝑘→ 𝑄 × *S,R+ × Γ∗ × −1, 0, +1 𝑘. 

 



Reversal-bounded counter machines 
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For a positive integer 𝑘 ≥ 1, a counter machine is 𝑟-reversal if for each of its 

counters, the number of alternations between non-decreasing mode and non-

increasing mode – called reversal – is upper-bounded by 𝑟 in any computation.   

Definition [Baker and Book 1974, Ibarra 1978] 

in any accepting 

computation.   

Definition (Equivalent*) 

A finite automaton augmented with 2 counters is Turing-complete.  

[Minsky 1961] 

* This equivalence needs a help of finite state control to remember how many reversals each counter 

has made.  



𝑟-reversal counter and 1-reversal counter 
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One can simulate a counter that makes 𝑟-reversals by counters that make 1 

reversal.  

 

 

 

 

This lemma enables us to focus on the 1-reversal counter machines.  

For any positive integer 𝑟 ≥ 1, an 𝑟-reversal counter can be simulated by 
𝑟+1

2
        

1-reversal counters.  

Lemma 



Classes of counter machines 
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• the class of deterministic 𝑘-counters machines DCM(𝑘) 

• The class of (non-deterministic) 𝑘-counters 
machines 

NCM(𝑘) 

• The class of deterministic pushdown 𝑘-counters 
machines 

DPCM(𝑘) 

• The class of pushdown 𝑘-counters machines NPCM(𝑘) 

• The class of 2-way deterministic 𝑘-counters 
machines 

2DCM(𝑘) 

For a machine class 𝑀, by ℒ(𝑀), we denote the set of all languages 

accepted by a machine in 𝑀.  



Classes of counter machines (cont.) 
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 DFA = DCM 0  

 NFA = NCM 0  

 DPDA = DPCM 0  

 NPDA = NPCM 0  

 DCM =  DCM 𝑘𝑘≥0  is the class of deterministic counter machines.  

 

Note that ℒ DFA = ℒ NFA ⊊ ℒ(DPDA) ⊊ ℒ(NPDA). 



Semilinear sets 
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A subset 𝑄 ⊆ 𝑁𝑘 is a linear set if there exist 𝑘-dimensional integer vectors 

𝑣0, 𝑣1, … , 𝑣𝑛 such that  

 

 𝑄 = 𝑣0 + 𝑡1𝑣1 +⋯+ 𝑡𝑛𝑣𝑛  𝑡1, … , 𝑡𝑛 ∈ 𝑁+. 

 

A set is semilinear if it is a finite union of linear sets.  



Bounded semilinear languages 
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A language 𝐿 ⊆ Σ∗ is bounded if there exist 𝑘 ≥ 1 and 𝑥1, 𝑥2, … , 𝑥𝑘 ∈ Σ
+ 

such that  

  𝐿 ⊆ 𝑥1
∗𝑥2

∗  ⋯ 𝑥𝑘
∗. 

 

If 𝑥1, 𝑥2, … , 𝑥𝑘 are letters, 𝐿 is especially said to be letter-bounded.  

For a bounded language 𝐿 ⊆ 𝑥1
∗𝑥2

∗  ⋯ 𝑥𝑘
∗, let  

 

 𝑄 𝐿 = (𝑖1, … , 𝑖𝑘)  𝑥1
𝑖1𝑥2

𝑖2  ⋯𝑥𝑘
𝑖𝑘 ∈ L+. 

 

If this set is semilinear, then we say that 𝐿 is bounded semilinear.  

Definition 



Finite-turn machines 
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For an integer 𝑡 ≥ 0, a 2-way machine is 𝑡 -turn if the machine can accept an 

input with at most 𝑡 “turns” of the input head.  

A 2-way machine is finite-turn if it is a 𝑡-turn for some 𝑡 ≥ 0. 

Finite-turn 

For an integer c ≥ 1, a 2-way machine is c -crossing if every accepted input 

admits a computation by the machine during which the input head crosses the 

boundary between any two adjacent symbols no more than 𝑐 times.  

A 2-way machine is finite-crossing if it is a 𝑐-turn for some c ≥ 1. 

Finite-crossing 

Finite-turn Finite-crossing 



Main theorem 
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The following 5 statements are equivalent for every bounded language 𝐿: 

1. 𝐿 is bounded semilinear;  

2. 𝐿 can be accepted by a finite-crossing 2DPCM;  

3. 𝐿 can be accepted by a finite-turn 2DPDA whose stack is reversal-

bounded;  

4. 𝐿 can be accepted by a finite-turn 2DCM(1);  
5. 𝐿 can be accepted by a 1DCM.  

Main Theorem  



Main theorem 
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The following 5 statements are equivalent for every bounded language 𝐿: 

1. 𝐿 is bounded semilinear;  

2. 𝐿 can be accepted by a finite-crossing 2DPCM;  

3. 𝐿 can be accepted by a finite-turn 2DPDA whose stack is reversal-bounded;  

4. 𝐿 can be accepted by a finite-turn 2DCM(1);  
5. 𝐿 can be accepted by a 1DCM.  

Main Theorem  

4 → 3 → 2 and 5 → 2 trivially hold since   

• finite−turn 2DCM(1) ⊆ finite−turn 2DPDA ⊆ finite−crossing 2DPCM, 

and  

• 1DCM ⊆ finite−crossing 2DPCM.  
Let us prove  

• 1 → 4, 1 → 5 

• 2 → 1 

1 

2 5 

3 4 



Proof direction for 1 → 4, 1 → 5 
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                      Language 

Accepted by 

𝑳 ⊆  𝒂𝟏
∗⋯𝒂𝒌

∗ 

𝑸(𝑳) is semilinear 

𝑳 ⊆ 𝒙𝟏
∗⋯𝒙𝒌

∗ 

𝑸(𝑳) is semilinear 

 
𝟏NCM 

 

result 1 

[Ibarra 78] 

 

Use result 1 and non-

deterministic guess.  

finite−turn 𝟐DCM(𝟏) 
or 

𝟏DCM 

Linear Diophantine-

equations turn out to be  

solvable by these machines 

 

1 → 4, 1 → 5 



Letter-bounded to bounded 
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 Let 𝐿 ⊆ 𝑥1
∗⋯𝑥𝑘

∗ s.t. 𝑄(𝐿) is semilinear.  

 Given a word 𝑤,  

 𝑤 ∈ 𝐿 ⇔ ∃ 𝑖1, … , 𝑖𝑘 ∈ 𝑄 𝐿 , 𝑤 =  𝑥1
𝑖1⋯𝑥𝑘

𝑖𝑘 .  

 

 Let 𝐿′ = 𝑎1
𝑖1⋯𝑎𝑘

𝑖𝑘  𝑖1, … , 𝑖𝑘 ∈ 𝑄 𝐿 + , and construct a 1NCM 𝑀′ for it.  

 

 1NCM 𝑀 for 𝐿  

1. reads 𝑤;  

2. non-deterministically decomposes it as 𝑤 = 𝑥1
𝑖1⋯𝑥𝑘

𝑖𝑘 ;  

3. runs 𝑀′ on 𝑎1
𝑖1⋯𝑎𝑘

𝑖𝑘 , and returns 𝑀′’s decision as its decision for 𝑤 and 𝐿.  



Proof direction for 1 → 4, 1 → 5 
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Use result 1 and non-
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or 
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1 → 4, 1 → 5 

• How can a deterministic machine non-deterministic decompose an input? 

• Our answer is “this decomposition does not require non-

determinism.” 



Deterministic decomposition 
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 Let 𝑐 be a sufficiently-large constant.  

 This is efficiently computable from a given language 𝐿 ⊆ 𝑥1
∗⋯𝑥𝑘

∗ s.t. 𝑄(𝐿) is 
semilinear.  

 Let 𝐿′ = 𝐿 ∩ 𝑥1
≥𝑐𝑥2

≥𝑐⋯𝑥𝑘
≥𝑐.  

 

 

 

 

 

 Based on this theorem, we can figure out that looking-ahead by some 

constant distance on an input tape settles the decomposition.  

Let 𝑢, 𝑣 be primitive words. If 𝑢∗ and 𝑣∗ share their prefix of length 𝑢 + 𝑣 −
gcd( 𝑢 , |𝑣|), then 𝑢 = 𝑣.  

Theorem [Fine and Wilf 1965] 



Main theorem 

2011/8/18 Automata and Formal Languages (AFL 2011) 19 

The following 5 statements are equivalent for every bounded language 𝐿: 

1. 𝐿 is bounded semilinear;  

 

2. 𝐿 can be accepted by a finite-crossing 2DPCM;  

Main Theorem  



Proof for 2 → 1 

2011/8/18 Automata and Formal Languages (AFL 2011) 20 

If a letter-bounded language is accepted by a finite-crossing 2DPDA 𝑀, then it is 

accepted by a finite-crossing 2DCM. 

Lemma 

Proof idea 

• In a computation by a finite-crossing 2DPDA, contents of 

𝑀’s stack consist of constant # of blocks of the form 

𝑢𝑣𝑖𝑤 (pumped structure).  

• Each of these blocks correspond to a writing phase 
during which the stack is never popped.  

• # of “long” writing phases is bounded by a constant 𝑐.  
• We build a 2DCM(𝑐), and let its counters to store 

𝑖1, 𝑖2, 𝑖3, …, and let its finite state control to remember 

𝑢1, 𝑣1, 𝑤1 , … 
𝑢1𝑣1

𝑖1𝑤1 

𝑢2𝑣2
𝑖2𝑤2 

𝑢3𝑣3
𝑖3𝑤3 

stack 

⋮ 



Proof for 2 → 1 
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If a letter-bounded language is accepted by a finite-crossing 2DPCM, then it is 

accepted by a finite-crossing 2DCM. 

Lemma 

The previous result is generalized for a broader class of finite-crossing 

2DPCM. 



Proof for 2 → 1 
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A bounded language that is accepted by a finite-crossing 2DPCM is effectively 

semilinear. 

Theorem 

Proof.  

Let 𝑀 be a finite-crossing 2DPCM 𝑐  for some 𝑐 ≥ 0 s.t. 𝐿(𝑀) ⊆ 𝑥1
∗⋯𝑥𝑘

∗.  

 

1. It is easy to construct a finite-crossing 2DPCM(c) for 

𝑎1
𝑖1⋯𝑎𝑘

𝑖𝑘  𝑥1
𝑖1⋯𝑥𝑘

𝑖𝑘 ∈ 𝐿(𝑀)+.  

2. This language is letter-bounded, and hence, this machine can be converted 

into an equivalent finite-crossing 2DCM.  

3. It is known that if a letter-bounded language is accepted by a finite-crossing 

2NCM, then the language is bounded semilinear.  

4. Thus, 𝑄(𝐿 𝑀 ) is semilinear.  



Main theorem 
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The following 5 statements are equivalent for every bounded language 𝐿: 

1. 𝐿 is bounded semilinear;  

2. 𝐿 can be accepted by a finite-crossing 2DPCM;  

3. 𝐿 can be accepted by a finite-turn 2DPDA whose stack is reversal-

bounded;  

4. 𝐿 can be accepted by a finite-turn 2DCM(1);  
5. 𝐿 can be accepted by a 1DCM.  

Main Theorem (Proved!!)  

Is every bounded language accepted by a finite-crossing 2NPCM bounded 

semilinear.  

Open 
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