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Notation

Σ alphabet

Σ∗ the set of all words over Σ

u, v ,w words

L, L1, L2, L3 given languages

R ,R1,R2,R3 given regular languages

X ,Y unknown variables

+ union of sets

Lc complement of L, i.e., Lc = Σ∗ \ L

2L power set of L
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Parallel operations

Example ([Kari91])

Parallel insertion ⇐ is defined as follows: for a word
u = a1a2 · · · an(ai ∈ Σ) and a language L,

u ⇐ L = La1La2L · · · Lan−1LanL.

Question

How to control parallel insertion (where to insert L)?
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p-schema-based insertion

Let F = {(u1, u2, . . . , un−1, un) | n ≥ 1, u1, . . . , un ∈ Σ∗}.

Definition

For f = (u1, u2, . . . , un) ∈ F, insertion �f based on f is defined as:

u �f L =

{

u1Lu2L · · · un−1Lun if u = u1u2 · · · un

∅ otherwise.

We call F ⊆ F a p-schema because it can specify how to
parallel-insert a language L into a word u.
We can extend �F naturally into an operation between languages
as:

L1 �F L2 =
⋃

u∈L1,f ∈F

u �f L2.
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Various instances of p-schema-based insertion

Syntactic and Semantic instances of p-schema-based insertion
L1 �F L2 include

operation p-schema

catenation L1L2 Σ∗ × {λ}
reverse catenation L2L1 {λ} × Σ∗

insertion {xL2y | xy ∈ L1} Σ∗ × Σ∗

parallel insertion L1 ⇐ L2

⋃

n≥0

(

{λ} × Σ × · · · × Σ
︸ ︷︷ ︸

n times

×{λ}

)

inserting exactly 2 L’s Σ∗ × Σ∗ × Σ∗

(x , y)-contextual insertion Σ∗x × yΣ∗

Parallel insertion next to b ∈ Σ {(u1, . . . , un) | n ≥ 1,
u1, . . . , un ∈ (Σ \ {b})∗b}.
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p-schema-based deletion

Definition

For f = (u1, u2, . . . , un) ∈ F, deletion �f based on f is defined as:

w �f L =

{

{u1u2 · · · un} if w ∈ u1Lu2L · · · un−1Lun

∅ otherwise

�f is also extended to an operation between languages as follows:

L1 �F L2 =
⋃

w∈L1,f ∈F

w �f L2.
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Classes of p-schemata

Definition

For a p-schema F , its schema language ψ(F ) is defined over
Σ ∪ {#} as:

ψ(F ) = {u1#u2# · · · un−1#un | (u1, u2, . . . , un−1, un) ∈ F}.

Let C be a class of languages over Σ ∪ {#}. We say that a
p-schema F is in C if ψ(F ) ∈ C.

regular p-schema

A p-schema F is regular if ψ(F ) is regular.
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Objectives

Question

Is it decidable whether language equations of the following forms:

1 X �F L2 = L3 and X �F L2 = L3

2 L1 �X L2 = L3 and L1 �X L2 = L3

3 L1 �F X = L3 and L1 �F X = L3

have a solution or not?
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Existence of maximum solution and decision algorithm I

Do language equations of the previous forms have the (unique)
maximum solution if they have a solution?

No for L1 �F X = L3 and L1 �F X = L3

Yes for the others

algorithm [Kari91]

1 Construct the candidate of maximum solution,

2 Substitute it into the equation,

3 Test whether both sides become equal.
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Existence of maximum solution and decision algorithm II

Corollary

For regular languages R1,R2,R3 and a regular p-schema F , it is
decidable whether

X �F R2 = R3

X �F R2 = R3

R1 �X R2 = R3

R1 �X R2 = R3

has a solution or not.
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Different approach to language equations

In contrast, L1 �F X = L3 and L1 �F X = L3 may not have the
unique maximum solution but multiple maximal solutions.

Example

Let Leven = {a2m | m ≥ 0}, Lodd = {a2n+1 | n ≥ 0}, and
F = Σ∗ + (Σ∗ × Σ∗ × Σ∗).

Leven �F Leven = Leven �F Lodd = Leven;
Leven �F Leven = Leven �F Lodd = Leven.

Actually, both Leven and Lodd are maximal solutions to
Leven �F X = Leven and Leven �F X = Leven.

We propose another approach to solving these equations based on
the notion of syntactic congruence.
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Syntactic congruence

Definition

For a language L, the syntactic congruence ≡L is an equivalence
relation defined as: for u, v ∈ Σ∗,

u ≡L v
def
⇐⇒ ∀x , y ∈ Σ∗, xuy ∈ L ⇐⇒ xvy ∈ L

Theorem ([Rabin and Scott, 1959])

The index of ≡L is finite iff L is regular.

Theorem

For a regular language R, each equivalence class in Σ∗/ ≡R is a
regular language.
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Solving L1 �F X = L3 I

Lemma

Let L1, L3 ⊆ Σ∗. Then for any w ∈ Σ∗ and L2 ⊆ Σ∗,

(L1 �F ({w}+L2))∩Lc
3 6= ∅ ⇐⇒ (L1 �F ([w ]≡Lc

3
+L2))∩Lc

3 6= ∅.

Assume that u = u1u2u3u4 ∈ L1, (u1, u2, u3, u4) ∈ F ,
w1,w2 ∈ [w ]≡L

, and v ∈ L2 s.t. u1w1u2vu3w2u4 ∈ Lc
3. Then,

u1w1u2vu3w2u4 ∈ Lc
3 ⇐⇒ u1wu2vu3w2u4 ∈ Lc

3

⇐⇒ u1wu2vu3wu4 ∈ Lc
3.

Observe that this word is in L1 �F ({w} + L2).
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Solving L1 �F X = L3 II

Syntactic solution

For a language L, a solution to a given equation is syntactic w.r.t.
L if it is a union of equivalence classes in Σ∗/ ≡L.

Proposition

For languages L1, L3, L1 �F X = L3 has a solution iff it has a
syntactic solution w.r.t. L3.

To decide whether L1 �F X = L3, therefore, it suffices to check
whether or not it has a syntactic solution w.r.t. L3. Recall that if
L3 is regular, then

there exist at most finite numbers of syntactic solutions, (the
index of ≡L3

is finite)

Lila Kari, Shinnosuke Seki Schema for parallel insertion and deletion



Parallel insertion and deletion schema
Language equations

Conclusion
References

Solving L1 ffF X = L3
Solving L1 F X = L3
Undecidability

Solving L1 �F X = L3 III

such syntactic solutions are regular, and

solely determined by L3

Proposition

For regular languages R1,R3 and a regular p-schema F , it is
decidable whether R1 �F X = R3 has a solution.

Note that all maximal solutions to L1 �F X = L3 are syntactic
w.r.t. L3.

Theorem

For regular languages R1,R3 and a regular p-schema F , the set of
all maximal solutions to R1 �F X = R3 is effectively constructible.
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Solving the inequality L1 �F X ⊆ L3

Theorem

For regular languages R1,R3 and a regular p-schema F , the set of
all maximal solutions to R1 �F X ⊆ R3 is effectively constructible.

An application

Note that L∗ = {λ} �F L. Due to the above theorem, for a given
regular language R , we can construct all the maximal languages X
such that X ∗ ⊆ R .
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Solving multiple-variables equations with p-schema based

insertion

Remember that syntactic solutions of L1 �F Y = L3 are solely
determined by L3.

Theorem

For a regular language R3 and p-schema F , it is decidable whether
X �F Y = R3 has a solution.

Proof.

N.B. |Σ∗/ ≡R3
| is finite. So for each candidate Rc of syntactic

solutions, let us check whether X �F Rc = R3 has a solution.

Theorem

For regular languages R1,R3, it is decidable whether
R1 �X Y = R3 has a solution.
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Solving L1 �F X = L3 I

Lemma

Let L1 ⊆ Σ∗. For any word w ∈ Σ∗ and a language L2 ⊆ Σ∗,

L1 �F ({w} + L2) = L1 �F ([w ]≡L1
+ L2).

Corollary

(L1 �F ({w}+L2))∩Lc
3 6= ∅ ⇐⇒ (L1 �F ([w ]≡L1

+L2))∩Lc
3 6= ∅.

Proposition

For languages L1, L3, the equation L1 �F X = L3 has a solution
iff it has a syntactic solution w.r.t. L1.
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Solving L1 �F X = L3 II

Lemma

For an arbitrary a complete set R(L1) of representatives of
Σ∗/ ≡L1

,

L1 �F L2 = L1 �F {w ∈ R(L1) | w ∈ L2}.

Theorem

For regular languages R1,R3, a regular p-schema F , a complete
system R(R1) of representatives of Σ∗/ ≡R1

, the set of all
solutions to R1 �F X = R3 which are a subset of R(R1) is
effectively constructible.
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Solving L1 �F X = L3 III

Corollary

For regular languages R1,R3, and a regular p-schema F , the set of
all syntactic solutions to R1 �F X = R3 is effectively
constructible, and hence, so is the set of its maximal solutions.

Corollary

For regular languages R1,R3, and a regular p-schema F , the set of
all minimal solutions to R1 �F X = R3 modulo ≡R1

is effectively
constructible.
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Solving multiple-variable equations with p-schema based

deletion

Recall that syntactic solutions to L1 �F Y = L3 is determined by
L1 (not L3).

Theorem

For regular languages R1,R3, it is decidable whether
R1 �X Y = R3 has a solution.

Open problem

Is it decidable whether X �F Y = R3 for a regular language R3

and p-schema F?
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Undecidability

Let NCM(1) be the class of languages accepted by a finite
automaton augmented with 1 one-reversal counter.

Proposition

If one of L1, L3,F is in NCM(1), then it is undecidable whether
L1 �F X = L3 (L1 �F X = L3) has a solution or not.
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Conclusion

Contributions

1 p-schema-based insertion and deletion

2 algorithms to solve L1 �F X = L3 and L1 �F X = L3

Future works

1 Once we weaken the regularity condition on L3, our algorithm
does not work any more to solve L1 �F X = L3. For
instance, if L3 ∈ DCM(1), can we solve this equation?

2 Can we solve X �F Y = R3 for a regular language R3 and a
regular p-schema F?
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Apology

I sincerely apologize for the following 2 errors and any of your
inconveniences caused by these.

1 Proposition 1 requires k2 = 0

2 In Theorem 11, DPCM should be replaced with REG.
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Thank you very much for listening so attentively.
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