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Abstract

Hairpin completion is an abstract operation modeling a DNA bio-
operation which receives as input a DNA strand w = xαyα, and outputs
w′ = xαyᾱx, where x denotes the Watson-Crick complement of x. In
this paper, we focus on the problem of finding conditions under which the
iterated hairpin completion of a given word is regular. According to the
numbers of words α and α that initiate hairpin completion and how they
are scattered, we classify the set of all words w. For some basic classes of
words w containing small numbers of occurrences of α and α, we prove
that the iterated hairpin completion of w is regular. For other classes
with higher numbers of occurrences of α and α, we prove a necessary and
sufficient condition for the iterated hairpin completion of a word in these
classes to be regular.

1 Introduction

A DNA strand can be abstractly viewed as a word over the alphabet {A, C, G, T},
where in A is Watson-Crick complementary to T and C to G, and two comple-
mentary DNA single strands of opposite orientation bind together to form a
double DNA strand (intermolecular structure). Also, if subwords of a DNA
strand are complementary, the strand may bind to itself forming intramolecular
structures such as stem-loops, also known more commonly as hairpins (Figure 1
(2)). Hairpins can be a building block of a larger-scale structure of RNA strands,
and play a role in determining various chemical and thermodynamical proper-
ties (stability, functions) of the structure, and make significant contributions to
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Figure 1: Hairpin completion by polymerase chain reaction. The operation
input is xαyα, the output is xαyᾱx, and the primer is α.

the genetic information processing as illustrated in their function as a stopper
for messenger RNA (mRNA) transcription. A CG-rich sequence of an mRNA
folds into its Watson-Crick complement on the RNA and forms a stable hairpin.
Transcription of the mRNA is terminated when RNA polymerase reaches the
hairpin. At that time, nusA protein bound to the polymerase interacts with
the hairpin and takes the polymerase off the mRNA. This hairpin-driven mech-
anism is called intrinsic termination [21]. As such, hairpins tend to interfere
with reactions, and therefore were given the cold shoulder by DNA computing
experimentalists. See [1, 2, 9, 10, 17] about this problem and about some of the
“good” designs of DNA strands that are free of hairpins.

Hairpin is not a foe to all DNA computing experiments; many molecular
computing machineries have been proposed which make good use of hairpins.
Such hairpin-driven systems include DNA RAM [11, 19, 20] and Whiplash PCR
[7, 18]. In particular, Whiplash PCR features a self-directed polymerase chain
reaction (PCR) of DNA strand, which practically motivates the investigation
of a formal language operation called hairpin completion. Hairpin completion
proceeds as follows (Figure 1): Starting from a DNA strand w = xαyα, a
segment α at the 3’-end of w binds to its Watson-Crick complementary strand
α on the strand (annealing). A polymerase chain reaction then extends w at
its 3’-end in the 5′ → 3′ direction so as to generate the strand xαyᾱx (let us
call α and α that bind with each other to initiate this PCR reaction primers).
Despite the intrinsic 5′ → 3′ polarity of polymerases, a mechanism exists to
make polymerase reaction work in the 3′ → 5′ direction (Okazaki fragment
[16]).

As an abstract model of the above-mentioned self-directed PCR, Cheptea,
Mart́ın-Vide, and Mitrana proposed the hairpin completion in [3], and since
then this abstract operation has been studied on its algorithmic and formal lin-
guistic aspects [5, 13, 14, 15] together with its variant called bounded hairpin
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completion [8, 12], where the length of extension in one operation is bounded by
a constant. Ito et al. [8] and Kopecki [12] proved that all classes in the Chomsky
Hierarchy are closed under iterated bounded hairpin completion. In contrast,
the class of regular languages was proved not to be closed under iterated (un-
bounded) hairpin completion [3], and a surprising fact is that iterated hairpin
completion of a single word can be non-regular [12]. In this paper, we focus
on a problem proposed by Kopecki in [12]; is it decidable whether the iterated
hairpin completion of a given word is regular? The iterated hairpin completion
of a singleton language (a word) is known to be in NL [3], but can be non-regular
as shown in the following example.

Example 1. Let α = ak and w = αbαcαᾱd̄ᾱ, where a, ā, b, b̄, c, c̄, d, d̄ are all dis-
tinct letters. Then the intersection of the iterated hairpin completion of w with
(αbαc(αb)+αd)2αbαcαᾱd̄ᾱ(b̄ᾱ)+c̄ᾱb̄ᾱ is {(αbαc(αb)iαd)2αbαcαᾱd̄ᾱ(b̄ᾱ)ic̄ᾱb̄ᾱ |
i ≥ 1}. This intersection is not context-free, and therefore, neither is the iter-
ated hairpin completion.

In this paper, we give a partial answer to the regularity-test decidability
problem. We focus our attention on the number of primers occurring on a given
word as its factors and on how these primers are scattered over the given word.
All the words are classified in accordance with these two criteria, and for some
basic classes, we give a necessary and sufficient condition for the iterated hairpin
completion of a word in the class to be regular.

2 Preliminaries

Let Σ be an alphabet, Σ∗ be the set of all words over Σ, and for an integer k ≥ 0,
Σk be the set of all words of length k over Σ. The word of length 0 is called the
empty word, denoted by λ, and let Σ+ = Σ∗ \ {λ}. A subset of Σ∗ is called a
language over Σ. For a word w ∈ Σ∗, we employ the notation w when we mean
the word as well as the singleton language {w} unless confusion arises. For a
language L ⊆ Σ∗, we denote by L∗ the set {w1 · · ·wn | n ≥ 0, w1, . . . , wn ∈ L}.

We equip Σ with a function ¯ : Σ → Σ satisfying ∀a ∈ Σ, a = a; such
a function is called an involution. This involution ¯ is naturally extended to
words as: for a1, a2, . . . , an ∈ Σ, a1a2 · · · an = an · · · a2 a1. For example, over
the 4-letter alphabet ∆ = {A, C, G, T}, if we define an involution d : ∆ → ∆ as
d(A) = T, d(T) = A, d(C) = G, and d(G) = C, then d, being thus extended, maps
the Watson strand of a complete DNA double strand into its Crick strand. For a
word w ∈ Σ∗, we call w the complement of w, being inspired by this application.
Another example is the mirror image, which is an involution mi : Σ∗ → Σ∗

defined as mi(a) = a for all a ∈ Σ and extended as such. For a language
L ⊆ Σ∗, L = {w | w ∈ L}.

For words u,w ∈ Σ∗, if w = xuy holds for some words x, y ∈ Σ∗, then u is
called a factor of w; a factor of w that is strictly shorter than w is said to be
proper. If the equation holds with x = λ (y = λ), then the factor u is especially
called a prefix (resp. a suffix) of w. The prefix relation can be regarded as a
partial order ≤p over Σ∗; u ≤p w means that u is a prefix of w. Analogously,
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by w ≥s v we mean that v is a suffix of w. For a word w ∈ Σ∗ and a language
L ⊆ Σ∗, a factor v of w is minimal with respect to L if v ∈ L and none of the
proper factors of v is in L.

A nonempty word w ∈ Σ+ is primitive if w = xi implies i = 1 for any
nonempty word x ∈ Σ+. It is well-known that for any nonempty word w, there
exists a unique primitive word u with w ∈ u+. Such u is called the primitive
root of w and denoted by ρ(w). Two words x, y ∈ Σ∗ commute if xy = yx, and
this is known to be equivalent to ρ(x) = ρ(y). See [4] for details of primitivity
and commutativity of words and related results.

Now we introduce the operation investigated in this paper, that is, hairpin
completion, and define it formally. Imagine that we have a DNA sequence
5′ − CAATCGTATGAT− 3′. The suffix GAT can find its d-image as a factor ATC on
this sequence. Hence, this DNA sequence may bend over into a hairpin form by
GAT binding with ATC. This formation of hairpin structure leaves CA as a free
sticky-end, and DNA polymerase converts it into the complete double strand by
extending its 3’-end by TG = d(CA). This exemplifies the mechanism of hairpin
completion. We call two words whose thus binding initiate hairpin completion
primers. In the above example, GAT and ATC are primers.

An important fact is that primers must be so long that the formed partial
hairpin is thermodynamically stable enough to serve as a scaffold for the ex-
tension phase. In fact, primers used in natural DNA synthesis or in PCR are
usually of length 10-30 nucleotides. Throughout this paper, the primer length
is fixed to be a constant k. Let α ∈ Σk be a primer. If a given word w ∈ Σ∗ has
a factorization uαvα for some u, v ∈ Σ∗ and α ∈ Σk, then its right hairpin com-
pletion with respect to α results in the word uαvαū. As long as α is clear from
context, this operation is simply called (single-primer) right hairpin completion.
By w →RHα w′, or by w →RH w′, we mean that w′ can be obtained from w
by right hairpin completion (with respect to α). The left hairpin completion
is defined analogously as an operation to derive u′αv′αu′ from αv′αu′, and the
relation →LHα

is naturally introduced. By →∗
LH and →∗

RH, we denote the re-
flexive transitive closure of →LH and that of →RH, respectively. The relation
→H is defined as the union of →LH and →RH.

For a given language L ⊆ Σ∗, we define the set of words obtained by left
hairpin completion from L, and the set of words obtained by iterated left hairpin
completion from L, respectively, as follows:

LHα(L) = {w′ | ∃w ∈ L,w →LHα w′}, LH∗
α(L) = {w′ | ∃w ∈ L,w →∗

LHα
w′}.

Analogously, RHα(L) and RH∗
α(L) are defined based on →RH and →∗

RH, and
Hα(L) and H∗

α(L) are defined based on →H and →∗
H.

Proposition 1. For a word w ∈ Σ∗, RH∗
α(w) = LH∗

α(w).

Let us conclude the preliminaries by a brief investigation on the case when
Σ is unary. On such an alphabet Σ = {a}, there is only one involution de-
finable, that is, ā = a (identity). Hence, α = α = ak. By definition of hair-
pin completion, one can easily observe that for a word w ∈ Σ∗, if |w| ≤ 2k,
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then H∗
α(w) = {w}. On the other hand, if |w| > 2k, then the prefix α = ak

(primer) of w can bind with the second rightmost occurrence of α = ak on
w, and hairpin completion extends w to the left by a. This suggests that
H∗

α(w) = {ai | i ≥ |w|}. In both cases, H∗
α(w) is regular. Therefore, in the

rest of this paper, we assume that |Σ| ≥ 2.

3 Word structures relevant to the power of it-
erated hairpin completion

In this section, we describe several structural properties of a word w that will
be relevant for the characterization of its iterated hairpin completion H∗

α(w),
where α ∈ Σk is a fixed parameter.

3.1 Properties of α-prefix, commutativity, and primitivity

A word u ∈ Σ∗ is called an α-prefix of a word w ∈ Σ∗ if uα is a prefix of w.
In a similar manner, a word v ∈ Σ∗ is an α-suffix of w if α v is a suffix of w.
If w = yαv begins with α, then this prefix can bind with the occurrence of α
(unless they overlap with each other), and left hairpin completion results in vw.
By Prefα(w) and Suffα(w), we denote the set of all α-prefixes and that of all
α-suffixes of w, respectively. One can easily observe that Suffα(w) = Prefα(w).
Throughout this paper, we let Prefα(w) = {u0, . . . , um−1} and Suffα(w) =
{v0, . . . , vn−1} for some m,n ≥ 0. It will be convenient to assume that these
α-prefixes are sorted in the ascending order of their length. Likewise, we assume
that |v0| < |v1| < · · · < |vn−1|.

Our investigation on the properties of α-prefix and α-suffix of a word begins
with a basic observation.

Proposition 2. For a word w ∈ αΣ∗, the following statements hold: (1) for any
u ∈ Prefα(w), α ≤p uα; and (2) for any x1, . . . , xs ∈ Prefα(w), α ≤p x1 · · ·xsα;

Proof. The first statement derives directly from the definition of α-prefix and the
assumption that w begins with α. For the second one, induction on s works.
Due to the first statement, α ≤p xsα so that proving α ≤p x1 · · ·xs−1xsα is
reduced to proving α ≤p x1 · · ·xs−1α.

From this proposition, we can easily deduce that for a word w ∈ Σ∗α and
y1, . . . , yt ∈ Suffα(w), α yt · · · y1 ≥s α, which means α ≤p y1 · · · ytα. This
deepens the above observation further as follows.

Corollary 3. For a word w ∈ αΣ∗∩Σ∗α, any word in (Prefα(w)∪Suffα(w))
∗α

has α as its prefix.

Due to the second statement of Proposition 2, α ≤p x1α ≤p x1x2α ≤p

· · · ≤p x1x2 · · ·xsα holds for α-prefixes x1, . . . , xs ∈ Prefα(w). Hence, from a
word x1x2 · · ·xsαw

′α, one-step right hairpin completion can produce at least
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the words x1x2 · · ·xsαw
′α{λ, x1, x1x2, . . . , x1x2 · · ·xs}.1 Now, if we know that

one-step hairpin completion extends the word to the right by u, what can we
say about the word u? Firstly, as long as |u| ≤ |x1 · · ·xs|, we can say that
uα ≤p x1 · · ·xsα by definition of hairpin completion. Moreover, Corollary 3
enables us to find 0 ≤ i < s such that |x1 · · ·xi| < |u| ≤ |x1 · · ·xi+1|. Then, one
can let u = x1 · · ·xiz for some prefix z of xi+1. Since zα ≤p xi+1α ≤p w, z is an
α-prefix of w. By defining ind(xi+1) to be the index satisfying uind(xi+1) = xi+1,
we have z ∈ {u0, u1, . . . , uind(xi+1)} (recall that elements of Prefα(w) are sorted
with respect to their length). Thus, the next lemma holds.

Lemma 4. Let x1, . . . , xs ∈ Prefα(w). If a word u satisfies uα ≤p x1 · · ·xsα,
then there exists an integer 0 ≤ i < s such that u = x1 · · ·xiz for some z ∈
{u0, u1, . . . , uind(xi+1)}.

A more natural setting is that each of x1, . . . , xs be an element of either
Prefα(w) or Suffα(w) for left hairpin completion can produce the complement
of a α-suffix of w to the left of w. We need to generalize the function ind by
extending its domain as: if xi = vj ∈ Suffα(w), then ind(xi) = j.

Lemma 5. Let x1, . . . , xs ∈ Prefα(w) ∪ Suffα(w). If a word u satisfies uα ≤p

x1 · · ·xsα, then there exists an integer 0 ≤ i < s such that u = x1 · · ·xiz, where{
z ∈ {u0, u1, . . . , uind(xi+1)} if xi+1 ∈ Prefα(w);

z ∈ {v0, v1, . . . , vind(xi+1)} if xi+1 ∈ Suffα(w).

Proof. As done previously, we can find 0 ≤ i < s and a nonempty word z ∈ Σ+

satisfying u = x1 · · ·xiz and zα ≤p xi+1α. Since this prefix relation can be
rewritten as ᾱxi+1 ≥s ᾱz, if xi+1 is an α-suffix of w, so is z. The case when
xi+1 ∈ Prefα(w) is clear from the previous argument.

Having considered prefix relations among α-prefixes and α-suffixes of a word,
now we proceed our study to more general factor relationships among them.

Lemma 6. Let w ∈ αΣ∗. If ujα ≥s uiα for some 1 ≤ i < j < m, then
uj ∈ {u0, u1, . . . , uj−1}ui.

Proof. We can let xuiα = ujα for some x ∈ Σ∗. Combining this with Proposi-
tion 2, we have xα ≤p ujα so that x ∈ Prefα(w). Since |x| < |uj |, x is one of
u0, u1, . . . , uj−1.

Lemma 7. Let w ∈ αΣ∗ ∩ Σ∗α. If v1α is a factor of u1α, then u1 = v1.

Proof. Due to the assumption on w, u0 = v0 = λ, and hence, u1 and v1 are the
shortest nonempty α-prefix and α-suffix of w, respectively. Let u1α = xv1αy
for some x, y ∈ Σ∗. Unless y = λ, from xv1α ≤p u1α, the word xv1 would be a
nonempty α-prefix of w that is strictly shorter than u1, a contradiction. Thus, y
must be empty so that u1α = xv1α. Now, Lemma 6 leads us to x = u0 = λ.

1x1x2 · · ·xs = xs · · ·x2 x1.
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Finally, let us introduce interesting results that illustrate the close relation-
ship between α-prefixes, commutativity, and primitivity, essential notions in
combinatorics on words.

Lemma 8. Let w ∈ αΣ∗ and u ∈ Prefα(w). Then ρ(u), ρ(u)2, . . . , ρ(u)|u|/|ρ(u)| ∈
Prefα(w).

Proof. Due to the first statement of Proposition 2, u ∈ Prefα(w) enables us
to let αy = uα for some y ∈ Σ+. Its solution is well-known to be u = (st)n

and α = (st)is for some n, i ≥ 0 and s, t ∈ Σ∗ such that ρ(u) = st. Hence,
uα = (st)i+ns = ρ(u)α(ts)n−1 = ρ(u)2α(ts)n−2 = · · · = ρ(u)nα.

An immediate implication of this lemma is that the shortest nonempty α-
prefix of a word that begins with α must be primitive. We should make one
more step forward. Imagine that a word w has an α-prefix u. If w →RH wu
is possible, then w →RH wρ(u) is also possible. Thus, repeating the extension
of w by ρ(u) to the right |u|/|ρ(u)| times amounts to extending w by u once.
In other words, the process to extend a word by u is not essential unless u is
primitive because it can be always simulated by multiple processes to extend a
word by ρ(u).

The next lemma proves that all nonempty α-prefixes of length at most |α|
commute with each other, and hence, only the shortest one is essential in the
above sense.

Lemma 9. For nonempty words x1, x2 ∈ Σ+, if α ≤p x1α ≤p x2α and |x2| ≤
|α| hold, then ρ(x1) = ρ(x2).

Proof. It suffices to consider the case when |x1| < |x2|. Combining |x1| ≤ |α|
with α ≤p x1α, we can deduce that the word x1α has a period |x1|. Likewise,
x2α has a period |x2|, and hence, x1α also has this period. As a result, x1α
has two periods |x1|, |x2|, and moreover it is of length at least the sum of these
periods. Thus, Fine and Wilf’s theorem [4, 6] leads us to the conclusion of this
lemma.

3.2 Non-crossing words and their properties

A word w0 ∈ Σ∗ is an (m,n)-α-word, or simply an (m,n)-word when α is clear
from the context, if |Prefα(w0)| = m and |Suffα(w0)| = n. Informally speaking,
an (m,n)-word is a word on which α occurs m times and α does n times. If
α = α, then we regard an occurrence of α also as that of α, and as such, any
word is an (m,m)-word for some m ≥ 0.

We say that w0 is non-α-crossing if the rightmost occurrence of α precedes
the leftmost one of α on w0. When α is understood from the context, we simply
say that w0 is non-crossing. Otherwise, the word is α-crossing or crossing. Note
that if α = α, then for a word w which is either a (0, 0)-word or (1, 1)-word,
H∗

α(w) = {w}, and otherwise (w is an (m,m)-word for some m ≥ 2), w can
be considered crossing. Thus, whenever the non-α-crossing word is concerned,
we assume that α 6= α. The definition of a word being non-α-crossing does not
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force the word to begin with α or end with α. However, it is not until α is a
primer that this notion becomes useful in our work. Thus, the word should be in
either αΣ∗ or Σ∗α. Actually, in the rest of this paper, we assume both of these
conditions and consider only single-primer iterated hairpin completion; thus, we
can assume that w0 ∈ αΣ∗ ∩Σ∗α. As let previously, elements of Prefα(w0) are
denoted by u0, u1, . . . , um−1, those of Suffα(w0) by v0, v1, . . . , vn−1, and they
are sorted so that this assumption imposes u0 = v0 = λ.

Our main focus lies on the characterization of non-crossing words whose iter-
ated hairpin completion is regular in terms of combinatorics on words. Thus, in
this subsection, we prove some combinatorial properties of non-crossing words.

Let us begin with two basic observations: the first one is about the longest
α-prefix and α-suffix of w0 and the second one is about the closure property
of a word being non-crossing under hairpin completion. Especially, this closure
property forms the foundation of our discussions in the rest of this paper.

Proposition 10. um−1 = vn−1 if and only if m = n and for all 0 ≤ i < m,
ui = vi.

Proposition 11. Let α ∈ Σk with α 6= α, and w0 ∈ αΣ∗∩Σ∗α be a non-crossing
word. Then any word in H∗

α(w0) is non-crossing.

By definition, hairpin completion can extend w0 ∈ αΣ∗ ∩ Σ∗α to the right
by ui for some 0 ≤ i < m if and only if |ui|+2|α| ≤ |w0|, i.e., the occurrence of
α just to the right of ui on w0 does not overlap with the suffix α of w0. Thus, if
w0 →RH w0ui is valid, then w0 →RH w0uj is also valid for any 0 ≤ j ≤ i. These
observations motivate us to ask the question of whether w0 →RH w0um−1 or
w0 →LH vn−1w0 is always valid.

Lemma 12. Let w0 be a non-crossing (m,n)-word with Prefα(w0) = {u0, . . . , um−1}
and Suffα(w0) = {v0, . . . , vn−1}. Then |um−2|+ |vn−1|+ 2|α| < |w0|.

Proof. Suppose that this inequality did not hold. Being non-crossing, w0 can
be written as w0 = um−2wvn−1 for some w ∈ αΣ∗ ∩ Σ∗α with |w| ≤ 2|α|;
this length condition imposes w = w. Let x be a nonempty word satisfying
um−1 = um−2x. Since w0 is non-crossing, um−1α ≤p um−2w must hold, from
which we have xα ≤p w. Combining this with w = w enables us to find an
α-suffix x vn−1 of w0, but this would be strictly longer than the longest α-suffix
of w0, a contradiction.

Thus, w0 →RH w0um−2 and w0 →LH vn−2w0 are valid, and so are w0 →RH
w0ui and w0 →LH vjw0 for 0 ≤ i ≤ m− 2 and 0 ≤ j ≤ n− 2. This lemma does
not rule out the possibility that w0 cannot be extended to the right by um−1 by
hairpin completion. This is because the occurrence of α to the right of um−1

might overlap with the suffix α. The analogous argument is valid for vn−1 and
left hairpin completion. However, Lemma 12 leads us to one important corollary
on non-crossing (m,n)-words for m,n ≥ 2 that hairpin completion can extend
w0 to the right by the complement of any of its α-prefix and to the left by the
complement of any of its α-suffix.
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Corollary 13. Let w0 ∈ αΣ∗ ∩Σ∗α be a non-crossing (m,n)-word with m,n ≥
2. Then Hα(w0) = {w0} ∪ {v0, v1, . . . , vm−1}w0 ∪ w0{u0, u1, . . . , un−1}.

We conclude this section with a characterization of a non-α-crossing word
in terms of minimal factors with respect to the language αΣ∗ ∩ Σ∗α. With
Proposition 11, this characterization will bring a unique factorization theorem
(Theorem 15) of any word w in H∗

α(w0) as w = xw0y for some words x, y, and
furthermore, we can easily observe that x is generated by left hairpin comple-
tions and y is by right hairpin completions.

Lemma 14. Let α ∈ Σk with α 6= α. A word w0 ∈ αΣ∗ ∩ Σ∗α is non-crossing
if and only if it contains exactly one minimal factor v from αΣ∗ ∩ Σ∗α.

Proof. Let us consider the contrapositive of the converse implication. So, if w0

is crossing, then we can find an occurrence of α (let us denote it by α0) which
precedes an occurrence of α (α1). α0 is guaranteed to be preceded by another
occurrence of α (α2) because w0 begins with α. Thus, the factor of w0 that
spans from α2 to α0 is a minimal factor from αΣ∗ ∩ Σ∗α. By the same token,
the factor of w0 that spans from α1 to its right adjacent occurrence of α becomes
another minimal factor.

In order to prove the direct implication, suppose that w0 contains two min-
imal factors from αΣ∗ ∩ Σ∗α. These two factors must overlap with each other
because otherwise the suffix α of the first factor precedes the prefix α of the
second one and w would be crossing. However, if they overlap, then the over-
lapped part would be in αΣ∗ ∩Σ∗α, and this contradicts the minimality of the
two factors.

Theorem 15. Let α ∈ Σk with α 6= α, and w0 ∈ αΣ∗ ∩ Σ∗α be a non-crossing
word. On any word in H∗

α(w0), w0 occurs exactly once as a factor.

Proof. This is from the two facts that any word in H∗
α(w0) is non-crossing

(Proposition 11) and that these words contain at least one occurrence of w0 as
a factor by definition of hairpin completion.

4 Iterated hairpin completion of non-crossing
words

This section contains the main contribution of this paper: characterizations
of the regularity of iterated hairpin completion of a non-crossing (m,n)-word
w0 ∈ αΣ∗ ∩ Σ∗α (recall that α 6= α is assumed). Throughout this section,
w0 is thus assumed with Prefα(w0) = {u0, u1, . . . , um−1} and Suffα(w0) =
{v0, v1, . . . , vn−1}, where elements of each set is sorted in the order of their
lengths; so u0 = v0 = λ.

Let us begin with a proof that one-sided hairpin completion of a non-crossing
word is regular (Theorem 16). Then we will show that the iterated hairpin
completion of a non-crossing (m, 1)-word for any m ≥ 1 or (2, 2)-word is always
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regular (Theorems 17 and 19). Using these results and combinatorial results
shown in Section 3, we characterize the set of all non-crossing (3, 2)-words whose
iterated hairpin completion is regular, in terms of commutativity (Theorem 24).

Theorem 16. For a non-crossing word w0 ∈ αΣ∗ ∩ Σ∗α, both LH∗
α(w0) and

RH∗
α(w0) are regular.

Proof. First, we prove the regularity of RH∗
α(w0). Let w be an α-prefix of w0.

A right hairpin completion of w0 can produce w0w. Note that the suffix ᾱw
of this resulting word does not contain α due to the non-crossing assumption
on w0, and this means that the longest α-prefix of w0w is the same as that of
w0. Thus, the language RH∗

α(w0) can be obtained by iterated bounded hairpin
completion from w0, and hence, is regular [12].

For the regularity of LH∗
α(w0), it suffices to observe that w0 is also non-

crossing. Using the result just proved, RH∗
α(w0) is regular, and according to

Proposition 1, LH∗
α(w0) = RH∗

α(w0). Note that the class of regular languages
is closed under ¯.

4.1 Iterated hairpin completion of non-crossing (m, 1)-words

In this subsection, we consider the case n = 1 (w0 is an (m, 1)-word), and prove
that H∗

α(w0) is regular. For m = 1, it is easy to see that hairpin completion
cannot generate any word but w0, that is, H∗

α(w0) = {w0}. Hence, we assume
m ≥ 2.

Lemma 12 means that hairpin completion can extend w0 to the right by any
of u0, u1, . . . , um−2, As mentioned previously, in contrast, w0 is thus extendable
by um−1 only if |um−1|+ 2|α| ≤ |w0|. As a result, if m = 2 but this inequality
does not hold, then H∗

α(w0) = {w0}. Hence, we can advance our discussion on
the assumption that w0 →RH w0u1 is valid.

Note that w0u1 is a non-crossing (m, 2)-word. Applying Lemma 12 to this
word, we can see that |um−1| + 2|α| < |w0u1|. Hence, hairpin completion can
extend w0u1 further to the right not only by any of u0, u1, . . . , um−2 but also
by um−1. We can strengthen this observation that any of w0u1, . . . , w0um−1 is
thus extendable.

Let us define the following regular language:

Rm1(w0) = {w0} ∪
{
xs · · ·x1w0y1 y2 · · · yt

∣∣ y1 ∈

{
{u0, u1, . . . , um−2, um−1} if |um−1|+ 2|α| ≤ |w0|
{u0, u1, . . . , um−2} otherwise

s ≥ 0, t ≥ 1, xs, . . . , x1, y2, . . . , yt ∈ {u0, u1, . . . , um−1},
and max1≤i≤s{ind(xi)} ≤ max1≤j≤t{ind(yj)}

}
.

We claim that this language is the language obtained from w0 by iterated hairpin
completion.

First, we prove that H∗
α(w0) ⊇ Rm1(w0). Let w ∈ Rm1(w0). By definition,

any word in Rm1(w0) can be factorized as w = xs · · ·x1w0y1 y2 · · · yt. Compare
the leftmost factor xs to the complement of the rightmost factor yt with respect
to their index. Consider the case when ind(xs) ≤ ind(yt). Recall that this
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means xs = uind(xs) and yt = uind(yt), and that uind(xs)α ≤p uind(vt)α. Thus,
w0y1 · · · yt ≥s α yt ≥s αxs. This means that xs−1 · · ·x1w0y1 · · · yt →LH w is
valid. By the same token, xs · · ·x1w0y1 · · · yt−1 →RH w is valid when ind(xs) >
ind(yt). Due to max1≤i≤s{ind(xi)} ≤ max1≤j≤t{ind(yj)}, the repetition of this
process eventually leads us to a word w0y1 · · · yj for some 1 ≤ j ≤ t such that
w0y1 · · · yj →∗

H w. Because of the condition on y1 and our discussion above,
w0 →RH w0y1 →RH · · · →RH w0y1 · · · yj is valid so that w ∈ H∗

α(w0). Hence,
H∗

α(w0) ⊇ Rm1(w0).
Secondly, we prove the opposite inclusion by induction on the length of

derivation by hairpin completion. Clearly w0 ∈ Rm1(w0). Let us assume that a
word in H∗

α(w0) can be written as xs · · ·x1w0y1 · · · yt with max1≤i≤s{ind(xi)} ≤
max1≤j≤t{ind(yj)}. Let ` = max1≤j≤t{ind(yj)}. If hairpin completion ex-
tends this word to the left by x, then α y1 · · · yt ≥s αx and this means x ∈
{u0, u1, . . . , u`}+ (see Lemma 4). Thus, there exist some s′ > s and xs′ , . . . , xs+1 ∈
{u0, u1, . . . , u`} such that x = xs′ · · ·xs+1 and max{ind(xs′), . . . , ind(xs+1), ind(xs), . . . , ind(x1)} ≤
`. It it trivial that this inequality remains valid in the right hairpin completion.

Theorem 17. Let w0 ∈ αΣ∗ ∩ Σ∗α be a non-crossing (m, 1)-word for some
m ≥ 1. Then H∗

α(w0) is regular.

The key idea in the above discussion is that if a word in H∗
α(w0) begins with

the longest α-prefix um−1 of w0 and the word is of length at least |um−1| +
2|α|, then hairpin completion can extend it to the right by the complement of
any α-prefix of w0. This idea has a broader range of applications. Let w0 ∈
αΣ∗ ∩ Σ∗α be a non-crossing (m,n)-word for some m,n ≥ 1 with Prefα(w0) =
{u0, u1, . . . , um−1} and Suffα(w0) = {v0, v1, . . . , vn−1}. Proposition 10 says that
if um−1 = vn−1, then Suffα(w0) = Prefα(w0). For m ≥ 2, the rightmost
occurrence of α on w0 does not overlap with the suffix α of w0 (Lemma 12).
Thus, H∗

α(w0) = {u0, . . . , um−1}∗w0{u0, . . . , um−1}∗.

Corollary 18. Let w0 ∈ αΣ∗ ∩Σ∗α be a non-crossing (m,n)-word. If um−1 =
vn−1, then H∗

α(w0) is regular.

4.2 Iterated hairpin completion of non-crossing (2, 2)-words

In contrast to the result obtained in the previous subsection, Example 1 shows
that there exists a non-crossing (m, 2)-word whose iterated hairpin completion
is non-regular with m = 3. This result motivates the study of non-crossing
(2, 2)-words reported here. Let w0 ∈ αΣ∗ ∩ Σ∗α be a non-crossing (2, 2)-word.
We can employ Corollary 13 to see that Hα(w0) = {w0, v1w0, w0u1}, which
means

H∗
α(w0) = {w0} ∪ H∗

α(v1w0) ∪H∗
α(w0u1).

We will prove the regularity of the second and third terms of the above equation
in order to prove that of H∗

α(w0). For this goal, it is useful to observe here that
a word xw0y in H∗

α(w0) can be extended to the right by the complement of any
of the α-prefixes of x as well as xu0 and xu1, and to the left by the complement
of any of the α-suffixes of y as well as v0 y and v1 y.
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Let R22L = v∗1(v1w0)v1
∗ ∪ (v+1 u1)

∗v∗1(v1w0)v1
∗(u1 v1

+)+. We will show that
this language is exactly the set of words obtained by iterated hairpin completion
from v1w0.

In order to prove that H∗
α(v1w0) ⊇ R22L, it suffices to present the following

process:

v1w0 →∗
RH v1w0v1

j0 →RH v1w0v1
j0u1 v1

→∗
RH v1w0v1

j0u1 v1
j1 →RH v1w0v1

j0u1 v1
j1u1 v1

→∗
RH v1w0v1

j0u1 v1
j1 · · ·u1 v1

jt−1u1 v1

→∗
LH vi01 v1w0v1

j0u1 v1
j1 · · ·u1 v1

jt−1u1 v1 →LH v1u1v
i0
1 v1w0v1

j0u1 v1
j1 · · ·u1 v1

jt−1u1 v1

→∗
LH vi11 u1v

i0
1 v1w0v1

j0u1 v1
j1 · · ·u1 v1

jt−1u1 v1

→∗
LH vis1 u1 · · · vi11 u1v

i0
1 v1w0v1

j0u1 v1
j1 · · ·u1 v1

jt−1u1 v1

→∗
RH vis1 u1 · · · vi11 u1v

i0
1 v1w0v1

j0u1 v1
j1 · · ·u1 v1

jt−1u1 v1
jt .

Next, we prove the opposite inclusion by induction on the length of derivation
by hairpin completion from v1w0. Obviously, v1w0 ⊆ R22L. Assume that all
words obtained from v1w0 by at most i hairpin completions are in R22L. Let
wi be such a word and consider a word wi+1 such that wi →H wi+1. Consider
the case when this is a right hairpin completion. The rightmost occurrence of
α on wi is the second α on its (unique) factor w0. Therefore, if we let wi+1 =
wix, then xα ≤p (v+1 u1)

∗v∗1v1u1α. Since u1 and v1 are the respective shortest
nonempty α-prefix and α-suffix of w0, Lemma 5 implies that x ∈ (v+1 u1)

∗v∗1 .

Note that R22L is closed under catenating a word in (v+1 u1)∗v∗1 to the right.
Thus, wi+1 ∈ R22L. The case when wi →LH wi+1 can be proved in a symmetric
manner.

Due to the symmetry of u1 and v1, we can easily construct a regular language
R22R which is equivalent to H∗

α(w0u1). Now the regularity of H∗
α(w0) has been

proved.

Theorem 19. If w0 ∈ αΣ∗ ∩ Σ∗α is a non-crossing (2, 2)-word, then H∗
α(w0)

is regular.

4.3 Iterated hairpin completion of non-crossing (3, 2)-words

Theorem 19 and Example 1 motivate our investigation of non-crossing (3, 2)-
words. Actually, Theorem 24, our main contribution, provides a characteriza-
tion of the regularity of iterated hairpin completion of a non-crossing (3, 2)-word
in terms of the commutativity of the α-prefixes and α-suffixes of the word.

Let w0 ∈ αΣ∗∩Σ∗α be a non-crossing (3, 2)-word (so α 6= α) with Prefα(w0) =
{u0, u1, u2} and Suffα(w0) = {v0, v1}. Note that u1 (v1) must be primitive; oth-
erwise, its primitive root is also an α-prefix (resp. α-suffix) of w0 (Lemma 8)
and w0 would not be a (3, 2)-word any more. As a result, u1 commute with
v1 (u2) if and only if u1 = v1 (resp. u2 = u2

1). Recall also that u2 6= v1 must
hold for w0 to be (3, 2)-word (Proposition 10). Thus, if u2 and v1 commute,
then u2 = v21 and u1 = v1. In other words, the commutativity between u2 and
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v1 is reduced to the commutativity between u1 and u2 and the commutativity
between u1 and v1, and hence, is not essential.

Corollary 13 states that Hα(w0) = {w0} ∪ {v1w0, w0u1, w0u2}. Let us ask
the question of whether iterated hairpin completion can generate a same word
from w0u1 and w0u2. We partially answer this question in a broader setting for
arbitrary m ≥ 3 and n ≥ 1.

Lemma 20. Let w0 ∈ αΣ∗∩Σ∗α be a non-crossing (m,n)-word for some m ≥ 3
and n ≥ 1 with Prefα(w0) = {u0, u1, . . . , um−1}. For integers i, j with 1 ≤ i <
j < m, if ujα ≥s uiα, then H∗

α(w0uj) ⊆ H∗
α(w0ui); otherwise, H∗

α(w0uj) ∩
Σ∗w0uiΣ

∗ = ∅.

Proof. The suffix relation means uj ∈ {u1, . . . , uj−1}ui (Lemma 6) so that
let uj = xui for some x ∈ {u1, . . . , uj−1}. Lemma 12 implies that hair-
pin completion can extend w0ui to the right by any of u1, . . . , uj−1 so that
w0ui →RH w0ui x = w0uj is valid. Thus, the inclusion holds. Conversely, if
the intersection is not empty, then Theorem 15 implies that αuj = αui y for
some y ∈ Σ+. Due to Lemma 6, this equation gives y ∈ {u1, . . . , uj−1}; thus,
uj ∈ {u1, . . . , uj−1}ui.

We can employ Lemma 20 in our current setting of non-crossing (3, 2)-words
to observe that if u2 = u2

1, then H∗
α(w0u2) ⊆ H∗

α(w0u1); otherwise, H∗
α(w0u2)∩

Σ∗w0u1Σ
∗ = ∅. Thus, for example, if u2 6= u2

1, then H∗
α(w0u2)∩H∗

α(w0u1) = ∅.
In this subsection, we first prove that the commutativity of u1 with v1 or

with u2 is a sufficient condition for H∗
α(w0) to be regular.

Lemma 21. If u1 = v1, then H∗
α(w0) is regular.

Proof. Since u1 = v1, we can let w0 = wu1 with some w ∈ αΣ∗ ∩Σ∗α, which is
a non-crossing (3, 1)-word with u1, u2 being its nonempty α-prefix. Lemma 12
implies that |u1|+2|α| < |w|, which means that hairpin completion can extend
w to the right by u1 and result in w0. If |u2| + 2|α| ≤ |w|, then wu2 can be
thus generalized, though it is not essential here whether this is possible or not.
Let us consider only the case when it is possible. Then H∗

α(w), which is regular
due to Theorem 17, is {w} ∪ H∗

α(wu1) ∪ H∗
α(wu2). As we have seen above, if

wu2 ∈ Hα(w), then either Σ∗wu1Σ
∗ ∩ H∗

α(wu2) = ∅ or H∗
α(wu1) ⊇ H∗

α(wu2).
In any case, H∗

α(w0) = H∗
α(w) ∩ Σ∗wu1Σ

∗, and hence, is regular.

Now it is easy to see that H∗
α(w0) is regular when u2 commutes with v1.

Since w0 is a (3, 2)-word, v1 must be primitive and u2 is equal to either v1 or
v21 . In the former case, however, u1 is a proper prefix of v1 so that w0 ≥s αu1

and w0 would not be a (3, 2)-word any more. Thus, the latter must be the case.
Then, the prefix v1 of u2, which is the primitive root of u2, is an α-prefix of w0

(Lemma 8), and hence, in order for w0 to be a (3, 2)-word, u1 = v1 must hold,
and this brings the conclusion according to Lemma 21.

Lemma 22. If u2 = u2
1, then H∗

α(w0) is regular.
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Proof. Lemma 21 makes it sufficient to consider the case when u1 does not
commute with v1. Lemma 12 implies that Hα(w0) = {w0, v1w0, w0u1, w0u1

2}
and w0u1 →RH w0u1

2. Hence, H∗
α(w0) = {w0} ∪ H∗

α(v1w0) ∪ H∗
α(w0u1). We

will show the regularity of the second and third terms of this equation.
First, we prove that H∗

α(w0u1) is regular. One can let w0 = u1w, where
w ∈ αΣ∗∩Σ∗α is a (2, 2)-word with Prefα(w) = {λ, u1} and Suffα(w) = {λ, v1}.
It is left to the readers to check that

H∗
α(w) = wu1

∗ ∪H∗
α(u1wu1) ∪H∗

α(u1v1wu1) ∪H∗
α(v1w).

As done in the proof of Lemma 21, the non-commutativity of u1 with v1 implies
that (H∗

α(u1v1wu1) ∪ H∗
α(v1w)) ∩ Σ∗u1wΣ

∗ = ∅. Thus, H∗
α(w) ∩ Σ∗u1wΣ

∗ =
H∗

α(w0u1). Since w is a non-crossing (2, 2)-word,H∗
α(w) is regular (Theorem 19),

and hence, H∗
α(w0u1) is regular, too.

Next, we prove the regularity of H∗
α(v1w0). We can let w0 = w′v1 for

some (3, 1)-word w′. This means that v1w
′ is a (4, 1)-word with Prefα(v1w

′) =
{λ, v1, v1u1, v1u

2
1} and the empty α-suffix. Thus,

H∗
α(v1w

′) = {v1w′} ∪ H∗
α(v1w

′v1) ∪H∗
α(v1w

′u1 v1) ∪H∗
α(v1w

′u1
2v1).

Using the essentially same argument as above, we obtainH∗
α(v1w

′)∩Σ∗v1w
′v1Σ

∗ =
H∗

α(v1w0). Since the iterated hairpin completion of non-crossing (4, 1)-word is
regular (Theorem 17), H∗

α(v1w
′) is regular and this implies the regularity of

H∗
α(v1w0).

Thus, any two of u1, u2, v1 must not commute in order for H∗
α(w0) not to be

regular. Let us add one more sufficient condition for H∗
α(w0) to be regular.

Lemma 23. If u2 = u1v1, then H∗
α(w0) is regular.

Proof. Due to Lemma 21, it suffices to prove this lemma under the assumption
u1 6= v1, which is equivalent to that u1 does not commute with v1 under our
problem setting.

Note that H∗
α(w0) = {w0} ∪H∗

α(v1w0)∪H∗
α(w0u1) ∪H∗

α(w0v1 u1). As done
before, we will check that the second, third, and fourth terms of the union
above are regular. The regularity of the third one follows from Prefα(w0u1) =
{λ, u1, u1v1}, Suffα(w0u1) = {λ, u1, v1 u1}, and Corollary 18.

In order to check that the second term is regular, let w0 = wv1, where w is
a non-crossing (3, 1)-word. Then v1w is a (4, 1)-word, and

H∗
α(v1w) = {v1w} ∪ H∗

α(v1wv1) ∪H∗
α(v1wu1 v1) ∪H∗

α(v1wv1 u1 v1).

Since v1wv1 →RH v1wv1 u1 v1 and H∗
α(v1wu1 v1) ∩ Σ∗v1wv1Σ

∗ = ∅, we have
H∗

α(v1w0) = Hα(v1wv1) = H∗
α(v1w) ∩ Σ∗v1wv1Σ

∗. The regularity of H∗
α(v1w)

is due to Theorem 17 so that Hα(v1w0) is regular.
What remains to be considered is the fourth term. One can let w0v1 u1 =

u1v1w
′ for some non-crossing (1, 4)-word w′. Then H∗

α(w
′) = {w′}∪H∗

α(u1w
′)∪

H∗
α(u1v1w

′) ∪H∗
α(u1v

2
1w

′), and we can easily see that H∗
α(u1v1w

′) = H∗
α(w

′) ∩
Σ∗u1v1w

′Σ∗. Since w′ is a (1, 4)-word,H∗
α(w

′) is regular, and hence,H∗
α(w0v1 u1)

is regular, too.
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Theorem 24. Let w0 ∈ αΣ∗∩Σ∗α be a non-crossing (3, 2)-word with Prefα(w0) =
{λ, u1, u2} and Suffα(w0) = {λ, v1}. Then H∗

α(w0) is regular if and only if one
of the following three conditions holds: (1) u1 commutes with v1; (2) u1 com-
mutes with u2; or (3) u2 = u1v1.

Proof. Let R = {u2u
i
1v1w0u1

ju2 | i, j ≥ 2}, which is a regular language. We
will prove that, under the assumption that none of the conditions 1-3 holds,
H∗

α(w0) ∩ R = {u2u
i
1v1w0u1

iu2 | i ≥ 2} holds so that H∗
α(w0) is not regular.

Let us denote this intersection by L.
As mentioned previously, if the second condition does not hold (this is equiv-

alent to u2 6= u2
1), then H∗

α(w0u2) cannot contain any word in the above inter-
section. Thus, L = (H∗

α(w0u1) ∩R) ∪ (H∗
α(v1w0)∩R). Using Lemmas 6 and 7,

we can easily prove the emptiness of the second intersection of the above sum.
This check is left to the reader, and the authors recommend them to check at
least H∗

α(v1w0u2 v1)∩R = ∅ because this check involves the important fact that
αu1 ≤p αu2 implies u2 = u2

1 (Lemma 6) and causes a contradiction. As a
result, we have L = H∗

α(w0u1) ∩R. Informally speaking, in order to produce a
word in R from w0, we first have to extend w0 to the right by u1.

Now we can extend w0u1 to the right by u1 i-times to obtain w0u1
i. If this

obtained word is extended to the left, then the word will be in u1{u1, u2, v1}∗w0{u1, u2, v1}∗u1.
Note that any word obtained from this word by iterated hairpin completion is
also in u1{u1, u2, v1}∗w0{u1, u2, v1}∗u1. Let us claim that u1{u1, u2, v1}∗w0{u1, u2, v1}∗u1∩
u2Σ

∗w0Σ
∗u2 = ∅. Indeed, if the intersection were not empty, then u2α ≤p u1xα

for some x ∈ {u1, u2, v1}+. Due to Lemma 5, u2 ∈ u1{u1, v1}+, but actually we
can say u2 ∈ u1{u1, v1} for u2 is the second shortest nonempty α-prefix of w0.
However, this means that either the condition 1 or 2 holds, and contradicts our
assumption. Thus, we have only one choice; extending w0u1

i to the right by u2.
As mentioned above, αu1 ≤p αu2 cannot hold so that we cannot extend

w0u1
iu2 further to the right to obtain a word in R. Thus, we should extend

this word to the left either by u2u
j
1 for some j ≤ i or by u2u

i
1v1. Lemmas 6

and 7 prove that the former choice will not lead us to any word in R. Now
it suffices to mention that extending u2u

i
1v1w0u1

iu2 further to the left will
not produce any word in R because such an extension force the contradictory
relation αu1 ≤p αu2 to hold.

5 Conclusion

In this paper, we focused on finding conditions that a word w0 ∈ αΣ∗ ∩ Σ∗α
must satisfy so that its iterated hairpin completionH∗

α(w0) is a regular language.
We classified the set of all non-crossing words according to the number m of
occurrences of α and the number n of occurrences of α on a given word. For
the cases when n = 1 and when m = n = 2, we proved that the iterated
hairpin completion of a non-crossing (m,n)-word is regular. We also found a
necessary and sufficient condition under which the iterated hairpin completion
of a non-crossing (3, 2)-word is regular. This approach can be generalized to
arbitrary non-crossing (m,n)-words, with the cases (m, 1) and (2, 2) being the
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induction base of an inductive proof. Future works include considering the
same problem for crossing-words. In this case, Lemma 12 or Theorem 15 does
not hold any more, and hence, it may get harder to analyze the derivation
processes of how a word is obtained from a given word w0 by iterated hairpin
completion. In addition, we investigated only the case when the suffix of length
k of an initial word w0 is the complement of its prefix of the same length, but we
eventually have to consider w0 in αΣ∗ ∩Σ∗β, where β might not be equal to α
(double-primer hairpin completion). We can easily observe that one-step hairpin
completion with respect to α (β) derives a word in βΣ∗∩Σ∗β (resp. αΣ∗∩Σ∗α)
from w0. Thus, results obtained in this study of single-primer hairpin completion
are an important step towards this most general setting of the regularity test
problem of iterated hairpin completion of a single word. Another direction of
research is to consider stopper sequences as in Whiplash PCR [7, 18].
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