Schema for parallel insertion and deletion *

Lila Kari and Shinnosuke Seki

Department of Computer Science, University of Western Ontario,
London, Ontario, N6A 5B7, Canada

{1lila, sseki}@csd.uwo.ca

Abstract. We propose a general framework for parallel insertion /deletion
operations based on p-schemata. A p-schema is a set of tuples of words.
When being used for parallel insertion of a language into a word, an
element of a p-schema specifies how to split the given word into fac-
tors between which the insertion of the language will take place. Parallel
deletion based on a p-schema is defined as an “inverse” operation of
parallel insertion based on the p-schema. Several well-known language
operations are particular cases of p-schema-based insertions or deletions:
catenation, Kleene star, reverse catenation, sequential insertion, paral-
lel insertion, insertion next to a given letter, contextual insertion, right
and left quotient, sequential deletion, parallel deletion. Additional oper-
ations that can be defined using p-schemata include contextual parallel
insertion, as well as parallel insertion (deletion) of exactly n words, at
most n words, an arbitrary number of words. We also consider the decid-
ability and undecidability of existence of solutions of language equations
involving p-schema-based parallel insertion/deletion.

1 Introduction

Since Adleman’s success [1] in solving the Directed Hamiltonian Path Prob-
lem purely by biological means, which threw new light on fundamental research
on operations in formal language theory, various bio-operations have been in-
tensively investigated. Examples include hairpin inversion [2], circular inser-
tion/deletion [3], excisions of loop, hairpin, and double-loop [4], and contextual
insertion/deletion [5], to name a few.

The fact that one can experimentally implement in the laboratory some vari-
ants of insertions and deletions into/from DNA sequences [6], and use these as
the sole primitives for DNA computation, gives practical significance to the re-
search on insertion and deletion. Contextual insertion and deletion are also of
theoretical interest because they have been proved to be Turing-universal [5]. In
this paper, we will parallelize contextual insertion and deletion. For words  and

* We thank anonymous referees for their valuable comments on the earlier version
of this paper. In particular, we are indebted to one of them for the comparison
between our framework and I-shuffle. This research was supported by The Natural
Sciences and Engineering Research Council of Canada Discovery Grant R2824A01
and Canada Research Chair Award to L.K.



y, the (z,y)-contextual insertion of a language L into a word w [5] results in the
language

U wy x Lyw,.

w1 ,w2 Wlth W=wW1TYW

In other words, one considers all the possibilities of cutting w into two segments,
such that the first segment ends with z and the second segment begins with
y, and for each such possibility L is inserted between these segments. This op-
eration suggests that for any positive integer n, an n-tuple (w1, ws,...,w,) of
words may be used to control the parallel insertion of n — 1 instances of L into
w = wiws - - - Wy, to generate the language wy Lws L - - - Lw,,_1 Lw,. A set of such
tuples is called a parallel operation schema or p-schema for short, and we call
the parallel insertion thus determined parallel insertion based on the p-schema.
A p-schema can be used to control not only parallel insertion but parallel dele-
tion as well. Parallel deletion of L from a word w based on a given n-tuple
(u1,us, ..., un,) deletes n—1 non-overlapping elements of L from w so as to leave
this n-tuple, and concatenates them to generate the word u = uius - - un,. As
we shall see in Section 3, various well-known sequential as well as parallel oper-
ations (catenation, Kleene star, reverse catenation, sequential insertion, parallel
insertion, insertion next to a given letter, contextual insertion, right and left
quotient, sequential deletion, parallel deletion) are special instances of paral-
lel operations based on p-schemata. Additional operations that can be defined
using p-schemata are contextual parallel insertion, as well as parallel insertion
(deletion) of exactly n words, at most n words, an arbitrary number of words.

Besides being proper generalizations of existing language operations, parallel
operations based on p-schemata lead to some interesting results when studied
in the context of language equations. Equations of the form X; ¢ Xo = X3
have been intensely studied in the literature, where ¢ is a binary operation
on languages, and some of X, X5, X3 are fixed languages, while the others are
unknowns (see, e.g., [5, 7-14]). In this paper, we focus on such language equations
with ¢ being p-schema-based insertion or deletion. Since these two operations
are parameterized by p-schemata, we can also consider the problem of deciding
whether L; ox Lo = L3 has a solution, i.e., whether there exists a p-schema F'
such that parallelly inserting Lo into (deleting from) L; based on F results in
Ls.

In general, procedures do not exist for solving such equations when they in-
volve a context-free language. Therefore, we focus on solving equations of the
form (1) X —~r Ry = R3, (2) Ry —~x Ro = Rs, (3) Ry —~pr X = R3, and their
p-schema-based deletion variants, where all of Ry, Ra, R3, F are regular!. Among
these equations, the equations of the first or second form can be solved using
the technique of [14]. The application of this technique presumes the property
that the union of all the solutions to the given equation is the unique maximal
solution. As we shall see, the third-type equations do not have this property,

! by catenating words in a tuple of words via a special symbol #, we can naturally
associate a set of tuples of words with a language, and as such we can establish a
Chomsky-hierarchy for the sets of tuples of words.



that is, they may have multiple maximal solutions. Algorithms to solve these
equations are one of the main contributions of this paper. Our algorithms work
not only as a procedure to decide the existence of solutions, but as a procedure
to enumerate all maximal solutions (Theorems 6 and 7). Moreover, combining
these algorithms with the algorithms to solve the equations of the first or sec-
ond form (outlined in Section 5) enables us to solve two-variables equations of
the form X «—~p Y = Rz (Theorem 9), R; «—~x Y = R3 (Theorem 10), and
Ry —x Y = R3 (Theorem 11). The proposed algorithms can be modified to
also solve inequality (set inclusion) variants of the above-mentioned equations
with maximality condition on variables.

2 Preliminaries

By X we denote a finite alphabet, and the set of words over X' is denoted by
27 which includes the empty word X. For a given word w, its length is denoted
by |w|, and its reversal is denoted by w®. For an integer n > 0, X", ¥<" and
X2" denote the sets of all words of length ezactly n, at most n, and at least n,
respectively. A word u is called a factor (prefiz, suffiz) of a word w if w = zuy
(resp. w = uy, w = zu) for some words z,y. Let us denote the set of all prefixes
(suffixes) of w by Pref(w) (resp. Suf(w)). For a language L C X*, L¢ = X*\ L.

Regular languages are specified by (non-deterministic) finite automata (NFA)
A=(Q,%,6,s,F), where @ is a finite set of states, s € @ is the start state,
F C Q is a set of final states, and ¢ is a map from Q x X to 2€. For notational
convenience, we employ the notation NFA also to denote a language accepted by
an NFA (we use this slight abuse of notation for other kinds of acceptors). The
family of languages accepted by NFAs is denoted by REG. An NFA is said to be
deterministic if § is a function. The deterministic property of a machine is stated
explicitly by using the capital letter D. A language is said to be effectively regular
if there exists an algorithm to construct an NFA which accepts this language.

A characterization of languages can be given in terms of syntactic semigroups.
For a language L C X*, there exists a maximal congruence =j, which saturates L
(i-e., L is a union of equivalence classes). This is called the syntactic congruence
of L, which is formally defined as follows: for u,v € X*,

u=pv <= for any z,y € X*, zuy € L if and only if xvy € L.

For a word w € X*, a set [w]=, = {u € Z* | w =, u} is called an equivalence
class with w as its representative. The number of equivalence classes is called
the index of =y,

Theorem 1 ([15]). Let L C X* be a language. The index of =y, is finite if and
only if L is regqular.

For technical reasons, we define a function called saturator with respect to
a language L;. Let o1, be a function from a word w into the equivalence class
[w]=,, - The saturator w.r.t. Ly is its extension defined as o, (L) = U, ¢r[w]=,, -



We can choose an arbitrary word in [w]=, as a representative of this class. By
taking a representative from every class, we can construct a subset of X* called
a complete system of representatives of £*/ =p. In particular, for a regular lan-
guage R, there exists a complete system of representatives which is computable.
Let A =(Q,X,0,s,F) be the (unique) minimal-DFA for R. Then u =g v if and
only if §(q,u) = §(q,v) for any ¢ € Q. Hence, the index of =, is at most |Q[/<!.

Theorem 2. Let R be a regular language and A = (Q, X,0,s, F) be the min-
DFA for R. Each equivalence class in X*/ =g is regular, and contains a word
of length at most |Q|!%!.

Corollary 1. For a regular language R, there exists a computable complete sys-
tem of representatives of X* [ =f.

3 Parallel insertion and deletion schema

Imagine that we will insert a language L into a word v in parallel. Let ]}, X*
be the Cartesian product of X* with itself n times; that is to say, the set of
all n-tuples of words. Let § = [J,5; X" x X" x--- x X*. A subset F' of §

~~

n times
can be used to control the parallel insertion of a language L in a sense that
if (u1,u2,...,un) € F, then the word u = wjug---u, is split in the manner

dictated by the n-tuple in F', and L is inserted between u; and u;y; for all
1 < i < n to generate the language uj LusL - - - u,,_1 Lu,. The set can be also
used to control a parallel deletion. For this intended end-usage, we call a subset
of § a parallel schema, or shortly p-schema, over X.

As abstracted above, a p-schema F enables us to define the (parallel) inser-
tion «—~p as: for a word v € X* and a language L C X*,

u—p L= U wrLusL -+ - up_1Lu,.

n>1,u=ui-tn,(U1,...,un ) EF

Note that an n-tuple in F' parallel-inserts n—1 words from L into u. Similarly, we
define the (parallel) deletion — ¢ based on a p-schema G as: for a word w € X*
and a language L C X*,

w—gL={u1-u,|n>1,21,...,2n-1 €L,

(U1,...,upn) € G,W = U1 T1ULT2 Uy 1Tn_1Un }y

These operations are extended to languages in a conventional manner: for a
language Ly, Ly «—~p L= e v —r Land Ly —g L =,c; w—¢ L.

Many of the well-known operations are particular cases of p-schema-based
operations. We list instances of p-schema-based insertion:

catenation Fop = X" x A,

reverse catenation  Fic.p = A x X*,

(sequential) insertion Fyne = X* x X*,

parallel insertion  Fpins = U,,50(A X [Tie; 2 X A).



Deletions based on Fiat, Ficat, Fsins, and Fpins correspond to right and left
quotient, (sequential) deletion, and parallel deletion, respectively.

Parallel insertion (deletion) of exactly n words, at most n words, or arbitrary
number of words are important instances of insertion (deletion) based on:

n+1 n oo
Fpins(n) = H E*a Fpins(Sn) = U Fpins(i)7 F, = U Fpins(i)a
i=1 i=0 =0

respectively. Using for instance Fj, one can implement Kleene-star, the most
well-studied unary operation in formal language theory, as L* = A «~p, L.

The p-schemata introduced so far are “syntactic” in a sense, while many of
semantic (letter-sensitive) operations are known. For a letter b € X, parallel
insertion next to b [13] is the insertion based on Finsh = {(U1,u2,...,Un) | n >
1Lu1,...,un € (Z\{b})*b}. For a context C C X*x X*, C-contextual (sequential)
insertion [5] is the insertion based on Ficins(C) = U, yyec 2@ x y2*. This
operation is naturally parallelized as C'-conteztual parallel insertion with the p-
schema Ficins(C) = {(u1,...,un) | n > 1,V1 < i < n, (Suf(u;) x Pref(uiy1)) N
C # 0}.

It may be worth noting that the descriptional powers of our framework and of
I-shuffle proposed by Domaratzki, Rozenberg, and Salomaa [16] (a generalization
of semantic shuffle proposed by Domaratzki [11]) are incomparable. Indeed, only
I-shuffle can specify contexts not only on the left operand but also on the right
operand, while p-schema-based operations can insert/delete multiple copies of
right operand. Thus, insertion/deletion based on a p-schema which contains 2-
tuples and/or 1-tuples is a special instance of I-shuffle.

4 Hierarchy of p-schemata and closure properties

In this section, we investigate closure properties of abstract families of accep-
tors augmented with reversal-bounded counters under the p-schema-based op-
erations. Such an acceptor was proposed by Ibarra [17] as the counter machine.
For k > 0, let NCM(k) be the class of NFAs augmented with k reversal-bounded
counters, and NCM be the union of such classes over all k’s. By augmenting
an NCM with an unrestricted pushdown stack, we obtain a non-deterministic
pushdown counter machine (NPCM). For k > 0, let NPCM(k) be an NPCM
with & reversal-bounded counters. DCM(k), DPCM(k), DCM, and DPCM are
the deterministic analogs of NCM(k), NPCM(k), NCM, and NPCM. A desirable
property specific to these deterministic classes is proved by Ibarra [17] as follows:

Theorem 3. For L; € DCM and Ly, € DPCM, it is decidable whether Ly = L.

It is natural to encode a tuple (ui,us,...,u,) as a word uy#Hus# - - - #u,
using a special symbol #. Denoting this (one-to-one) encoding by 1, we can
encode a p-schema F as ¢(F) = {¢(f) | f € F}. Furthermore, we say that a
p-schema F is in a language class L if 9 (F) € L. For instance, F is regular if
P(F') is a regular language over X' U {#}.



First of all, we prove that REG is closed under insertion/deletion based on
a regular p-schema as Corollary 2. Actually, the following stronger result holds,
though the rest of this paper does not require more than Corollary 2.

Proposition 1. Let Ly € NCM(k1), Ly € REG, and F be a p-schema in
NCM(ky). Then both Ly «~p Lo and Ly > Ly are in NCM(k1 + ky).

Proof. We show only a construction of an NCM M for L; «~p Ly, and omit the
construction of an NCM for L, »—p Ls.

Let M, be a finite automaton for Ly, and My, My be respective NCMs with
k1, ky counters for Ly, (F). The NCM M expects its input to be of the form
UL L1 ULT2 * * - T 1Ly, fOr sOme integer n > 1, ugug - -~ up € Ly, T1,Z2,...,Tn_1 €
Ly, and wi#us# - #un € Y(F). M simulates My and M, simultaneously.
Guessing non-deterministically that the prefix uiz; - - - £;_1u; has been read, M
pauses the simulation of both M; and M, and instead activates the simulation
of My on z; after having M, make a #-transition. When M, is in one of its
accepting states, M non-deterministically resumes the simulation of M; and My
on the suffix u;{1Z;y1 - - - Tn—1uy of the input. The simulation of M, is initialized
every time it is invoked. O

Corollary 2. For regular languages Ry, R and o regular p-schema F', both
Ry —F Rs and Ry —F Ry are effectively regular.

We can prove an analogous result of Proposition 1 for NPCM. By enlarging
some of the respective language classes which L; and F' belong to up to NPCM
and a class which L, belongs to up to CFL, we can ask whether or not Ly «<p Ly
or L4 —p Ly are in NPCM. In the following we only address some non-closure
properties of DPCM with implications to language equation solvability in the
next section.

Let us define the balanced language Ly over X = {a,$} as follows:

Ly :{ai1$ai2$---$ai’“$ai’“+1$---$ai" |n>2,41,...,0, > 0 and
d1l < k < n such that i, +i2+"'+ik=ik+1+"'+in}.

In other words, a word in L; has a central marker $ so that the number of
a’s to the left of this marker is equal to the number of a’s to its right. For
Ly = {a"$a™ | n > 1}, we obtain Ly «~p, $ = L. Recall the definition of
F,; in this case it scatters an arbitrary number of $’s into any word in L;.
We can generate Ly also by deletion. Let L; = (J,,5(a"w$*)$#(a”1$*) and
F ={a,$}* x {a,$}*, where 1, denotes shuffle operation. Then L, = Ly — #.
These Lq’s are DCM(1). L; is clearly in NCM(1) because the non-determinism
makes it possible for the reversal-bounded counter to guess when it should transit
into its decrementing mode. In contrast, L; is proved not to be DPCM (see, e.g.,
[18]). Consequently we have the following non-closure property.

Proposition 2. There exist Ly € DCM(1), a regular p-schema F, and a sin-
gleton language Lo such that Ly =g Lo ¢ DPCM.



Proposition 3. There exist Ly € DCM(1), a regular p-schema F, and a sin-
gleton language Lo such that Ly —p Ly ¢ DPCM.

By swapping the roles of L; and F in the above example, we can also obtain
the following non-closure property.

Proposition 4. There exist a regular language Ry, a singleton language Lo,
and a DCM(1) p-schema F such that Ry —F Lo ¢ DPCM.

5 Language equations with p-schemata-based operations

In this section, we consider language equations involving p-schema-based opera-
tions. The simplest equations to be studied are one-variable equations of the form
X «—p Ly = L3, L) «—~x Ly = L3, L) —pr X = L3, and their deletion variants.
Such equations with special instances of p-schema-based operations (catenation,
insertion, etc.) as well as incomparable operations (shuffle, etc.) have been in-
tensively studied for the last decades [8,9,11-14,19]. These papers mainly dealt
with language equations with the property that the union of all their solutions
(if any) is also their solution (maximum solution). For instance, if XL = R and
YL = R, then (X UY)L = R. For such equations, we can employ a technique
established in [14]; assuming a given equation has a solution, firstly construct the
candidate of its maximum solution, and then substitute it into the equation to
check whether it is actually a solution. Since X «—p Ly = L3, L1 «<x Ly = L3,
and their deletion variants have this property, this technique can solve these
equations. We will now see how to construct the candidate for each.

In [9], Cui, Kari, and Seki defined the left-l-inverse relation between oper-
ations as: the operation e is left-l-inverse of the operation o if for any words
u,w € X* and any language L C Y* w € uoL <= u € we L. This is
a symmetric relation. By definition, insertion and deletion based on the same
p-schema are left-l-inverse to each other. There they proved that for operations
o,e which are left-l-inverse to each other, if X o L, = L3 has a solution, then
(L§ @ Ly)* is its maximum solution.

Theorem 4. For regular languages Ro, R3 and a regular p-schema F, the exis-
tence of a solution to both X «—~p Ry = Rz and X —F Rs = R3 is decidable.

Proof. Both (R§ —F R2)¢ «~p Ry and (R§ «—p Rs)® —p Ry are regular
according to Corollary 2 and the fact that REG is closed under complement.
Now it suffices to employ Theorem 3 for testing the equality. O

For Ly «—x Ly = L3, the candidate is Flnax = {f € § | L1 —jy L2 C L3}.
For Ly —x Ly = L3, Fiuax should be rather {f € § | L1 —f Ly C Lg}. When
Ly, Ly, L3 are all regular, we can construct an NFA for ¢(§ \ Fmax), which is
equal to (X U #)* \ ¥(Fmax). A similar problem was studied in [12], and our
construction originates from theirs. As such, the proof of next result is omitted.

Theorem 5. For regular languages Ry, Ra, R3, the existence of a solution to
both Ry «—~x Ry = R3 and R, — x Ry = Rz is decidable.



5.1 Solving L; «—~p X = L3

In contrast, the equations L; «—~p X = L3 and L; —r X = L3 may not
have a maximum solution. For example, let Ly = L3 = {a®™ | n > 1}, and
F = Fpins(2) U Fpins(O)- Both Leyen = {azm | m > 0} and Logq = {a2m+1 |
m > 0} are (maximal) solutions to L; «—~pr X = Ls. On the other hand,
Ly = (Leven U Loda) can generate a®, which is not in L3. For deletion, let
F = {(\aba), (A, A\ N), (aba, N}, and Ly = {ababa}. Then L; —p {ab} =
L, —p {ba} = {aba}, but L, 5 {ab,ba} = {aba,a}. These examplify that we
cannot apply the previously-mentioned approach to solving language equations
with the second operand being unknown.

We propose an alternative approach based on an idea from Conway (Chap-
ter 6 of [8]) to solve f(X U {X1,Xa2,...}) C R, where f is a regular function
over X and variables X, Xs,..., and R is a regular language. The idea shall
be briefly explained in terms of p-schema-based operations in order to step into
more general cases than the case when all the involved languages are regular.

Lemma 1. Let L, L; be languages. Then (L1 «—g (L2 Uw))NL # O if and only
if (L1 —F (L2 U w]=,)) N L #0D for any word w and language L.

By replacing L in this lemma with L§, we can see that if L; «~p (La Uw) C
Ls, then L; «—=p (La U [w]ELS) C Lj3. Thus, it makes sense to introduce the
notion of a syntactic solution. For a language L, we say that a solution to a
one-variable language equation is syntactic with respect to L if it is a union of
equivalence classes in £*/ =p..

Proposition 5. For languages L1, L3, the equation Ly «— X = L3 has a solu-
tion if and only if it has a syntactic solution with respect to Ls.

Thus, in order to determine whether Ly «~pr X = L3 has a solution, it suffices
to test whether it has a syntactic solution. On condition that this test can be
executed, this problem becomes decidable. If L3 is regular, then the number
of candidates of syntactic solution is finite (Theorem 1), and they are regular
(Theorem 2). Let 8 = {og, (L) | L C X*}, the set of all candidates of syntactic
solution. A pseudocode to solve Ly «~p X = Rj3 is given below:

Algorithm to solve L; —r X = R3

1. Order the elements of §§ in some way (let us denote the i-th element of
B by B[i]).
2. for each 1 < i < |B|, test whether L; «p 8[i] is equal to Rs.

With the further condition that L; and F are chosen so that any language
obtained by substituting a candidate into L; «~p X is comparable with Rz for
equality, this algorithm becomes executable. One such condition of significance
is that both L; and F' are regular. In this case, the algorithm, Theorem 3, and
Corollary 2 lead us to the next theorem, which is stronger than decidability. It
should be noted that maximal solutions are syntactic.



Theorem 6. For regular languages Ry, Rs and a regular p-schema F, the set
of all syntactic solutions to Ry «—~p X = Rg is computable.

The regularity of R3 is necessary for the algorithm to work, whereas such
condition is not imposed on L;. If a condition on L;, F' under which L; «—p
B[i] € DPCM for any 1 < ¢ < |B| were found, we could solve Ly «—p X = Rj
under it using Theorem 3. This is an unsettled question, but as suggested in
Proposition 2, weakening the condition on L slightly can make L; «~r X non-
DPCM. It is probably more promising to broaden the class of F'.

5.2 Solving L; —p X = Lg

Let us continue the investigation on the existence of right operand by changing
the operation to p-schema-based deletion.

Lemma 2. Let Ly be a language. Then Ly —p ({w}ULs) = L1 —p ([w] U

L,) for any word w, language Lo, and a p-schema F'.

=L,

Proof. Let u € Ly —F ([w]z,, U Lz); that is, there exist v € L;, n > 0,
(u1,u2,...,upy1) € Foand zq,...,2, € [w]EL1 U Ls such that u = ujus - - - upy1
and v = U1 Z1U2T2 * - UnZTnUnt1. Now on v if z; € [w]ELl, then we replace x;
with w, and this process converts v into a word v'. Note that this replacement
process guarantees that v’ € L; because the replaced factors are equal to w with
respect to the syntactic congruence of L;. Moreover, u € v' »—»p ({w} U Ls).
Thus, L1 —p ({w} U L2) DLy —Fp ([w]ELl U LQ) O

This lemma provides us with two approaches to determine whether a given
equation with p-schema-based deletion has a solution. The first approach is based
on syntactic solutions. Given a language Lo, Lemma 2 implies that Ly »—p Lo =
Ly —p o1, (Ls). Therefore, as in the case of insertion, the existence of a solution
to L1 —p X = L3 is reduced to that of its syntactic solutions, but with respect
to Ly (not L3). Moreover, maximal solutions are syntactic.

Proposition 6. For languages Ly, L3 and a p-schema F, the equation L, —p
X = L3 has a solution if and only if it has a syntactic solution with respect to
Ly. Furthermore, its maximal solution (if any) is syntactic.

With a straightforward modification, the algorithm presented in Sect. 5.1
can be used to output all syntactic solutions to R; ~—r X = L3 with F being a
regular p-schema. Thus, we have the following result, analogous to Theorem 6.

Theorem 7. For a regular language Ry, Ls € DPCM, and a regular p-schema
F, the set of all syntactic solutions to Ry —r X = L3 is computable.

Note that even if L3 is DPCM, the equation above is solvable due to Corol-
lary 2 and Theorem 3.

The existence of the second approach provided by Lemma 2 is due to the
essential difference between Lemma 2 and its analog for insertion (Lemma 1).



A word obtained by deleting some words in Lo from a word in L; can be also
obtained by deleting their representatives in a complete system of representatives
with respect to L; from the word in L; based on the same schema; this is not
true for insertion. Since its choice is arbitrary, we fix S8(L;) to be the set of
smallest words according to the lexicographical order in each equivalence class.
We say that a solution to Ly —p X = L3 is representative if it is a subset of
R(L1).

Proposition 7. For languages Ly, L3z and a p-schema F, the equation L1 —p
X = L3 has a solution if and only if it has a representative solution.

If L; is regular, then 9R(L;) is a finite computable set due to Theorem 1 and
Corollary 1, and hence, our argument based on representative solution amounts
to the second approach.

Theorem 8. For a regular language Ry, L3 € DPCM, and a regular p-schema
F, the set of all representative solutions of Ry —p X = L3 is computable.

With Theorem 1, Lemma 2 also leads us to a corollary about the number of
distinct languages obtained by p-schema-based deletion from a regular language.
Namely, given a regular language R; and a p-schema F', there exist at most a
finite number of languages which can be represented in the form Ry —p Ly for
some language Lo. This result is known for sequential deletion [13].

5.3 Solving two-variables language equations and inequalities

There is one thing which deserves explicit emphasis: the set of all candidates
of syntactic solutions is solely determined by only one of L3z, L;, and does not
depend on the other or F' at all. This property paves the way to solving two-
variables language equations of the form X «—~p Y = L3, [; —~x Y = Lg,
and Ly —x Y = L3. The first equation with F' = F_,; (catenation) has been
investigated under the name of decomposition of regular languages and proved
to be decidable [19, 20].

Let us assume that (L;, Ls) is a solution of X «~p Y = L3. Then or,(L2) is a
solution of L; <~ Y = L3, and hence, (L1,0r,(L2)) is also a solution of X «—p
Y = L3. This means that if the equation has a solution (pair of languages), then
it also has a solution whose second element is a sum of equivalence classes in
X* | =1, Therefore, solving X «—p 8[i] = L3 for all 1 <4 < |B| using Theorem 4
amounts to solving the two-variables equation. For a regular language R3 and a
regular p-schema F', the above method works effectively to solve X «~pr Y = R3.

Theorem 9. It is decidable whether the equation X —r Y = R3 has a solution
or not if both Rs and F are regular.

Undertaking the same “two-staged” strategy but using Theorem 5 instead,
we can solve the equations of second and third forms.



Theorem 10. For regular languages Ry, R3, it is decidable whether the equation
Ry —x Y = Rs3 has a solution or not.

Theorem 11. For regular languages R, R3, it is decidable whether the equation
Ry —x Y = R3 has a solution.

Unlike p-schema-based insertion, this strategy does not work to solve the
equation of the form X »p Y = L3. This is because in this case it is not Ls
but L; that determines the syntactic solutions of L; > Y = Ls.

The usage of the proposed algorithm is not exclusive to solving language
equations. By replacing the equality test in Step 2 with the following inclusion
test “for each 1 < ¢ < |B|, test whether L; «~p B[] is a subset of R3”, the
proposed algorithm can answer the problem of finding maximal solutions to the
language inequality Ly «—~pr X C Rgz, and with the two-staged strategy, this
further enables us to solve X «—~r Y C R3 and L «~x Y C R3. Now it should
be trivial how to approach Ry —p X C L and R; —x Y C L3.

5.4 TUndecidability

We conclude this section and this paper by complementing the decidability re-
sults obtained so far with some undecidability results for one-variable equations.
Usually, the existence of solutions to a language equation of this type is decid-
able if all known languages are regular, and undecidable if at least one of the
known languages is context-free. The results of this section bring down, for sev-
eral cases, the limit for undecidability of existence of solutions of such language
equations from the class of context-free languages to NCM(1). The equation
L, —~ X = L is solvable in the case of L;, F, L3 being regular, i.e., NCM(0).
Actually, we shall prove that once one of them becomes NCM(1), then this
problem immediately turns into undecidable.

Proposition 8. For languages Ly, L3 and a p-schema F', if one of L1, L3, F is
in NCM(1) and the others are regular, it is undecidable whether Ly «—~p X = L3
has a solution or not.

Proof. We employ the reduction of universe problem (whether a given NCM(1)
is X*) into these problems. The universe problem is known to be undecidable for
the class NCM(1) [17]. Because of space limitations, we can consider here only
the case when F is an NCM(1) p-schema.

Let f, $ be special symbols not included in X. Based on a given L € NCM(1),
we define a p-schema F = X x $L, which is in NCM(1), too. Then for regular
languages $X* and §$X*, we claim that $X* —p X = §$X* has a solution <=
L = X¥*. Indeed, the left-hand side of the above equation is X$L so that its
only one possible solution is X = f. Thus, the existence of the solution leads us
immediately to that L is universe. O

For the equation L; »»p X = L3, the similar undecidability result holds.

Proposition 9. For languages L1, L3 and a p-schema F', if one of Ly, L3, F is
in NCM(1) and the others are regular, it is undecidable whether Ly g X = L3
has a solution or not.



References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Adleman, L.M.: Molecular computation of solutions to combinatorial problems.

Science 266(5187) (November 1994) 1021-1024

Ehrenfeucht, A., Harju, T., Petre, I., Rozenberg, G.: Patterns of micronuclear
genes in ciliates. In Jonoska, N.; Seeman, N.C.; eds.: DNA 7. Volume 2340 of
Lecture Notes in Computer Science., Springer (2002) 279-289

Landweber, L.F., Kari, L.: The evolution of cellular computing: Nature’s solution
to a computational problem. In Kari, L., Rubin, H., Wood, D., eds.: Proc. DNA-
Based Computers IV. (1999) 3-13

Freund, R., Martin-Vide, C., Mitrana, V.: On some operations on strings suggested
by gene assembly in ciliates. New Generation Computing 20 (2002) 279-293
Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Infor-
mation and Computation 131 (1996) 47-61

Dieffenbach, C.W., Dveksler, G.S., eds.: PCR Primer: A Laboratory Manual. Cold
Spring Harbor Laboratory Press (2003)

Anselmo, M., Restivo, A.: On languages factorizing the free monoid. International
Journal of Algebra and Computations 6 (1996) 413-427

Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, London
(1971)

Cui, B., Kari, L., Seki, S.: Block insertion and deletion on trajectories. In prepa-
ration (2009)

Daley, M., Ibarra, O., Kari, L.: Closure and decidability properties of some lan-
guage classes with respect to ciliate bio-operations. Theoretical Computer Science
306 (2003) 19-38

Domaratzki, M.: Semantic shuffle on and deletion along trajectories. In Calude,
C.S., Claude, E., Dinneen, M.J., eds.: DLT 2004. Volume 3340 of Lecture Notes in
Computer Science., Springer (2004) 163-174

Domaratzki, M., Salomaa, K.: Decidability of trajectory-based equations. Theo-
retical Computer Science 345 (2005) 304-330

Kari, L.: On Insertion and Deletion in Formal Languages. PhD thesis, University
of Turku, Department of Mathematics, SF-20500 Turku, Finland (1991)

Kari, L.: On language equations with invertible operations. Theoretical Computer
Science 132 (1994) 129-150

Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal
of Research and Development 3 (1959) 114-125

Domaratzki, M., Rozenberg, G., Salomaa, K.: Interpreted trajectories. Funda-
menta Informaticae 73 (2006) 81-97

Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-
lems. Journal of the ACM 25 (1978) 116-133

Chiniforooshan, E., Daley, M., Ibarra, O.H., Kari, L., Seki, S.: Reversal-bounded
counter machines and multihead automata: Revisited. in preparation (2010)
Kari, L., Thierrin, G.: Maximal and minimal solutions to language equations.
Journal of Computer and System Sciences 53 (1996) 487-496

Salomaa, A., Yu, S.: On the decomposition of finite languages. In Rozenberg, G.,
Thomas, W., eds.: Developments in Language Theory. (1999) 22-31



