
On computational complexity of graph inference

from counting

Szilárd Zsolt Fazekas, Hiro Ito, Yasushi Okuno, Shinnosuke Seki,
and Kei Taneishi

September 25, 2012

Abstract

In de novo drug design, chemical compounds are quantitized as real-
valued vectors called chemical descriptors, and an optimization algorithm
runs on known drug-like chemical compounds in a database and outputs
an optimal chemical descriptor. Since structural information is needed for
chemical synthesis, we must infer chemical graphs from the obtained de-
scriptor. This is formalized as a graph inference problem from a real-value
vector. By generalizing subword history, which was originally introduced
in formal language theory to extract numerical information of words and
languages based on counting, we propose a comprehensive framework to
investigate the computational complexity of chemical graph inference. We
also propose a (pseudo-)polynomial-time algorithm for inferring graphs in
a class of practical importance from spectrums.

1 Introduction

Structure elucidation determines the structure of chemical compounds from the
information provided by various analyses such as spectroscopy, mass spectrom-
etry, and elemental analysis. Synthetic chemistry attaches great importance
to this process since it is not until its structure is determined that a chemical

Figure 1: A chemical graph of benzene.

1

compound is considered synthesizable. In a slightly-different context, structure
elucidation appears as an essential step in de novo drug design based on ker-
nel methods [2, 3]. In a novel kernel-method-based drug design, each chemical
compound in the object space is mapped to a vector of reals in the feature (vec-
tor) space (also called chemical descriptor space) according to some function
f , and an optimization algorithm runs in the feature space to find an optimal
vector. At this point, one has to retrieve a chemical compound that is mapped
to the optimal vector by f , or favorably, enumerate the candidates of such com-
pounds. For this purpose, stochastic and heuristic methods [2, 3] as well as
polynomial-time algorithms [1, 7, 15] have been proposed.

These methods model chemical compounds as a (directed or undirected)
graph each of whose vertices is labeled with a letter in an alphabet Σ, which
specifies the kind of atom represented by the vertex. Such a graph is called
a chemical graph (a.k.a., molecular graph). As an example, a chemical graph
of benzene is illustrated in Figure 1. It is the chemical graphs of compounds
that are quantified in these methods into a vector in the feature space. One
significant quantification is counting. In fact, the above-mentioned algorithms
[1, 7, 15] as well as the spectrum kernel method [11] studied the graph inference
problem based on counting; after the spectrum kernel method we call the vector
obtained by counting a spectrum in this paper. On the benzene graph, let us
count the number of vertices of label C (carbon), that of CH-walks (edges between
a carbon and a hydrogen) as well as that of CCH-walks, and we obtain 6, 6, 18,
respectively. These counts amount to a spectrum. The problem of our interest
is that given a vector like (6, 6, 18), one is required to decide whether there
is a chemical graph that contains exactly 6 carbons, 6 CH-walks, and 18 CCH-
walks. Enumerating all such candidates is more desirable. (With the input
(6, 6, 18), the answer to the decision problem is yes due to benzene, whereas for
the enumeration, benzene is only one of possible answers.)

This paper has a two-fold purpose. The first is to propose a comprehensive
framework for the above-mentioned graph inference decision problem from a
given vector obtained by counting. Let us give the name SOLVABILITY to this
framework (its formal definition will be given in Section 3). SOLVABILITY is a
class of decision problems, each of whose elements is identified by:

1. the class of counting-based functions used to compute a feature vector;
and

2. the class of inferred graphs.

By saying “counting-based” in the first criterion, we mean that our interests
lie not only in the functions that simply count vertices or walks but also in
functions that apply arithmetic operations on these counts. Consider functions
g1 and g2 that count the numbers of C and CH, respectively, and let h = g1− g2.
We regard h as a counting-based function. In the framework SOLVABILITY,
inferring a graph whose h-value is 0 means inferring a graph that contains the
same number of carbons as CH-walks, such as benzene.

2

Figure 2: (Left) The continuous subword graph of a word COHCH. (Right) The
scattered subword graph of the same word.

As for the second criterion, we are required to find classes of graphs that
are descriptive enough for applications such as drug design and simple enough
to make the class in SOLVABILITY thus identified efficiently solvable. The most
concise graph for which inference from counts is meaningful is a “word.” A word
α, i.e., a sequence of letters, can be naturally modeled as a directed graph each
of whose nodes corresponds to its letters and is connected towards its successor
by a directed edge (see Figure 2). Not only counting letters (Parikh mapping
[16]) but also counting continuous subwords have been widely applied, e.g., n-
gram in indexing for full text search [20]. A word u is a continuous subword of
α if α = xuy for some words x, y. Counting occurrences of u as a continuous
subword of α is equivalent to counting (directed) u-walks on the correspond-
ing graph, and due to this property, we call the graph the continuous subword
graph of α. Surprisingly, SOLVABILITY was recently proved undecidable even
on such simplest objects, as long as we are allowed to employ as a mapping
function those obtained by recursively composing simple counting functions by
pointwise addition, pointwise multiplication, and multiplication by -1 [19]. Intu-
itively, this is because the function class is complex enough to let SOLVABILITY

“solve” Diophantine equations, and it remains so even when |Σ| ≤ 9. Need-
less to say, words, or their sequential graph models, are too simple to describe
chemical compounds, for which cyclic structures such as a benzene ring are in-
dispensable. This means that in order for a class in SOLVABILITY to be solvable
in a practical amount of time with sufficiently descriptive graph class, the class
of (counting-based) functions it considers should be more restricted than the
one just mentioned.

The second purpose of this paper should be clear now; characterizing pairs
of a class of counting-based functions and a class of graphs to be inferred for
which SOLVABILITY can be solved in a polynomial time and is useful in drug
design. As such a pair, we consider the simple counting and the class of graphs
of tree-width 2. Tree-width of a graph measures how similar the graph is to
the tree, and will be explained in detail in Section 4.2; note that a graph of
tree-width 1 is a tree and vice versa. The class of graphs of tree-width 2 has
practical significance as illustrated in database search (see Table 1).

A brief outline of this paper follows. After giving preliminaries in Section 2,
in Section 3, we give a definition of walk history with some existing as well as
new results on the computational complexity of SOLVABILITY. In Section 4, we
propose a (pseudo) polynomial-time algorithm for SOLVABILITY with the object

3

Tree-width # compounds

1 1881 19.4%
2 7336 75.7%
3 477 4.9%
4 1 0.01%
≥ 5 0

total 9695

Table 1: Chemical compounds in LIGAND database [9] are analyzed on their
tree-width [21].

space being the set of graphs of tree-width at most 2 and the function being
spectrum extraction.

2 Preliminaries

In this section, we introduce necessary notions and notation from graph theory
and formal language theory. For more details, see [5, 18].

Let Σ be an alphabet. A word α is a sequence of letters a1, a2, . . . , an ∈ Σ
for some n ≥ 0, that is, α = a1a2 · · · an. This n is called the length of α, and
it is denoted by |α|. If n = 0, then this word is specially called the empty
word, which is denoted by λ. Let Σ∗ be the set of all words over Σ and Σ+ =
Σ∗ \ {λ}. By Σ≤k, we denote the set of all words over Σ of length at most
k. We employ an alphabet Σa = {C, O, H} for examples in this paper, where C,
O, and H stand for carbon, oxygen, and hydrogen, respectively. For instance,
Σa

≤2 = {λ, C, O, H, CC, CO, CH, OC, OO, OH, HC, HO, HH}.

2.1 Multigraphs

A (Σ-labeled, loopless, undirected) multigraph is a triple G = (V,E, `) of disjoint
sets V,E and a labeling function ` : V → Σ (V is also denoted by V (G)). Each
vertex is labeled with a letter in Σ, and a vertex v with the label a ∈ Σ, that is,
`(v) = a, is called an a-vertex (according to `). An element e ∈ E is mapped to
a set of two distinct vertices v1, v2 ∈ V , and called an edge between v1 and v2
(the distinctness of v1 and v2 is required for G to be loopless). Such an edge e
is written as e = v1v2. We write v ∈ G and v1v2 ∈ G for v ∈ V and v1v2 ∈ E,
respectively. The degree (a.k.a., valency) of a vertex v ∈ V is the number of
edges that contain v, and it is denoted by d(v). The degree of G is defined to be
max{d(v) | v ∈ V }. For a subset V ′ of V , the subgraph of G that is composed
of all the vertices in V ′ and all the edges v1v2 ∈ E with v1, v2 ∈ V ′ is said to
be induced by V ′, and denoted by G[V ′]. There may be more than one edge
between two vertices in a multigraph; if a multigraph has the property that

4

there exists no more than one edge between any of its two vertices, then the
multigraph is rather called a simple graph.

A walk of length l in G is an alternating sequence π = v0e0v1e1 · · · el−1vl of
vertices and edges in G such that ei = vivi+1 for 0 ≤ i < l. Note that on a walk
a vertex may appear more than once. When the vi’s are all distinct, we call this
walk a path. In order to label walks, ` is extended as `(π) = `(v0)`(v1) · · · `(vl).
A walk with the label u ∈ Σ∗ is called a u-walk. A multigraph is said to be
connected if between any two of its vertices there is a path.

By G, we denote the class of Σ-labeled, loopless, connected, undirected multi-
graphs. For any graph class G′ and an integer ∆ ≥ 1, we write G′(∆) for the
class of graphs in G′ whose maximum degree is at most ∆; this ∆ is called a
degree bound.

Given an undirected graph G = (V,E), orienting each edge in E trans-

forms G into a directed graph
−→
G . An edge v1v2 in G is considered to be either

directed from v1 to v2 or directed oppositely in
−→
G . In order to specify the

direction clearly, we write −−→v1v2 and mean that this edge is oriented from v1 to
v2. On a directed graph, a walk π = v0e0v1e1 · · · e`−1v` is required to satisfy
the extra condition that ei = −−−→vivi+1 for any 0 ≤ i < `. A directed graph is
weakly-connected if replacing all of its edges with undirected edges produces a
connected graph. When we say a directed graph is connected below, we mean
that the graph is weakly-connected (there is another criterion of connectivity
called strong connectivity, which requires the existence of a walk between any
two vertices, but this is not the connectivity criterion we consider in this paper).

Let us denote by
−→G the directed analog of G. We denote any class of directed

graphs with the over-right-arrow. Any undirected graph can be considered
directed by replacing each edge vivj by two directed edges −−→vivj and ←−−vivj . Thus,

we can say that G is a subclass of
−→G .

2.2 Trees and series-parallel graphs

Two important subclasses of G are the classes of trees and of series-parallel
graphs. A path of length at least 2 between two vertices and an edge between
them form a cycle. A (rooted) tree is a cycle-free simple graph, in which one
vertex is regarded as its root for convenience. The root endows a tree with
parent-child relation among its vertices, and this relation, in turn, enables us
to define the notions of subtree and height. Let T be a tree. The subtree of
T at t ∈ V (T), which is denoted by sub(T, t), is the subgraph induced by the
node t and all its descendants (not only the direct ones) with respect to the
parent-child relation. Note that, between any vertices t1, t2 ∈ T , there is a
(unique) path, which is written as t1Tt2. The vertices at distance h from the
root have height h, and form the h-th level of T . The largest height in T is
called the height of T , and it is denoted by h(T). We denote the class of trees
by Υ, and the class of (rooted) trees of height at most h by Υh. It is important
that, for any fixed degree bound ∆ ≥ 1 and a height K ≥ 0, the size of ΥK(∆)
is constant, whereas that of ΥK can be arbitrary large.

5

Figure 3: Series and parallel operations. Series operation merges the vertex
vb (only the subscript is written in this figure for clarity) with the vertex vc
and produces the left graph with terminals va and vd. The merged vertex is
indicated by the white circle. Parallel operation merges va with vc and vb with
vd, respectively, and results in the right graph with va, vb being terminals.

A series-parallel graph is a graph with two special vertices called terminals,
and defined recursively by applying series operation and parallel operation (see
Figure 3). The graph that consists of two vertices va and vb connected by an
edge is a series-parallel graph whose terminals are va and vb. Let us say that this
is atomic or call this an atom. When two series-parallel graphs with respective
terminals va, vb and vc, vd are given, merging vb with vc and designating va, vd
terminals is called the series operation, and the graph thus obtained is also
defined to be series-parallel. Merging va with vc and vb with vd is called the
parallel operation, and the resulting graph is also defined to be series-parallel.
Any vertices but terminals are internal. We denote the class of series-parallel
graphs by SPG. Series-parallel graphs are, by definition, planar, and hence,
SPG is a subset of the class PLG of planar graphs.

3 Walk history in graphs

Given a directed graph
−→
G , we can count the number of u-walks in it, which we

denote by |
−→
G |u. Throughout this paper, we make great use of the notations

of the form |A|B , an object A sandwiched by vertical bars accompanied by a
set B of objects as a subscript, in order to represent the non-negative integer
vector of the number of occurrences of each object included in B on A ordered in

some standardized manner. According to this criterion, |
−→
G |u should have been

written rather as |
−→
G |{u}, but we use the former whenever the set B is singleton.

In the introduction, we mentioned informally that counting labeled walks on a
graph is a generalization of counting subwords on a word. Let us explain this
more formally first, and then propose a framework SOLVABILITY for the graph
inference problem from a vector obtained by counting-based functions.

Let α = a1a2 . . . an ∈ Σ∗ be a word on which we will count subwords. A
word u is a scattered subword of α if there are an integer k ≥ 1 and words

6

x1, . . . , xk, y0, y1, . . . , yk ∈ Σ∗ such that u = x1 · · ·xk and α = y0x1y1 · · ·xkyk
(if k = 1, then u is especially called a continuous subword of α). The scattered
subword graph of α, which we denote by SSG(α), is a directed simple graph
({v1, v2, . . . , vn}, E, `) with E = {−−→vivj | i < j} and `(vi) = ai for 1 ≤ i ≤ n.
Its continuous subword graph, denoted by CSG(α), is a directed simple graph
({v1, v2, . . . , vn}, E, `), where E = {−−−→vivi+1 | 1 ≤ i < n} and `(vi) = ai for 1 ≤
i ≤ n. See Figure 2 for an example of these graphs. It is obvious that |SSG(α)|u
and |CSG(α)|u are equal to the number of occurrences of u as a scattered
subword of α and to the number of occurrences as its continuous subword,

respectively. By
−−→
SSG (

−−→
CSG), we denote the class of scattered (resp. continuous)

subword graphs.
Now we generalize the notion of subword history proposed by Mateescu,

Salomaa, and Yu [12] onto the class of directed multigraphs
−→
G in the name of

walk history.

Definition 1. A walk history in Σ and its value in a graph G ∈
−→
G are defined

recursively as follows:

• Every u in Σ∗ is a walk history, referred to as monomial, and its value in
G equals |G|u. Hence, λ is also a monomial, and we assume that its value
is always 1.

• Assume that WH1 and WH2 are walk histories with values n1 and n2 in
G, respectively. Then −(WH1), (WH1)+(WH2), and (WH1)× (WH2) are
walk histories with respective values −n1, n1 + n2, and n1 × n2 in G.

A monomial u can be considered as a function from
−→G to the set of nonneg-

ative integers N0 that outputs |G|u, the number of u-walks on a given G ∈
−→
G .

From this viewpoint, u is merely a simple counting function. A walk history is
a composition of such simple counting functions by pairwise addition, pairwise
multiplication, and multiplication by -1. A walk history is linear if it can be
obtained from monomials without using the operation ×. By this definition,
a monomial is a linear walk history. For a walk history WH, we denote the
value of WH in a graph G by |G|WH . By restricting the graph class to that

of scattered subword graphs
−−→
SSG, the above definition coincides with that of

subword history proposed in [12].
A system S of walk histories is an ordered set of walk historiesWH1, . . . ,WHm

for some m ≥ 1. For a graph G, we denote the vector (|G|WH1 , . . . , |G|WHm)
by |G|S . We call a system of monomial walk histories a counting system. The
classes of systems of walk histories, of systems of linear walk histories, and of
counting systems are denoted by SWH, SLWH, and COUNT , respectively,
where the first letter S stands for system. By WH (LWH), we denote the class
of systems of single (linear) walk history. These notations are parameterized by
a nonnegative integer like WH(1) to devise a notation for their subclass where
the length of monomials in walk histories involved is bounded by the parameter.
For example, a+ b ∈ WH(1) but a+ bc 6∈ WH(1).

7

A subclass of COUNT (K + 1) has commanded special attention. That is
the class consisting of only one element, which is a system of all monomials of
length at most K+1 ordered in some standardized manner. The notation SK is
used for this element and for this class interchangeably. For a graph G, |G|SK

is often called the feature vector of G of level K [1, 15]. This vector is obtained
by counting the number of u-walks for every u ∈ Σ≤K+1 and ordering them in
the standardized manner. Given a feature vector v of level K and u ∈ Σ≤K+1,
we refer to the component of v that corresponds to u by v(u).

Given a system S of walk histories and an integer vector v, we can consider
the problem of deciding whether there exists a graph G such that |G|S = v. A
class C1 of systems of walk histories and a class C2 of graphs define the following
decision problem:

SOLVABILITY(C1, C2) =
{
〈S,v〉

∣∣∣∣ S ∈ C1, v ∈ N|S|
0 , and there exists

a graph G ∈ C2 such that |G|S = v.

}
For example, SOLVABILITY(S0,

−−→
CSG) is the problem of finding a continuous sub-

word graph that contains exactly the same number of a-vertices as specified
by a given input for every letter a ∈ Σ. Thus, this can be interpreted as the
problem of finding a word whose Parikh mapping is equal to a vector given as
input (this problem is though trivial since such a word is always found). Based
on Matiyasevich’s results on Hilbert’s 10th problem [13, 14], Seki proved the
following result:

Theorem 1 ([19]). SOLVABILITY(WH(1),
−−→
SSG) is undecidable even over 9-

letters alphabet.

Remark 1. In fact, in Theorem 1,
−−→
SSG can be replaced with

−−→
CSG without

destroying the undecidability. This is because as long as only the monomials of

length at most 1 are concerned, there is no difference between
−−→SSG and

−−→CSG.
However, this is not so essential.

Corollary 2 in [12] states that for a walk history WH, there exists a linear

walk history LWH such that for any G ∈
−−→
SSG, |G|WH = |G|LWH . Thus,

SOLVABILITY(LWH,
−−→
SSG) is undecidable for a 9-letter alphabet. This lineariza-

tion may involve increasing the length of monomials. Actually, once the length
of monomials is restricted to be 1, this undecidability does not hold any more. In

fact, SOLVABILITY(LWH(1),
−−→
SSG) is equivalent to SOLVABILITY(LWH(1),

−−→
CSG)

due to the reason mentioned in Remark 1, and it is proved decidable as a corol-
lary of the following theorem for the class of systems of linear walk histories
SLWH.
Theorem 2. SOLVABILITY(SLWH,

−−→
CSG) is decidable.

Proof. Let us begin this proof by recalling that there is a 1-to-1 correspondence

between the continuous subword graphs in
−−→
CSG and the words in Σ∗ and that

counting u-walks on a graph in
−−→
CSG is equivalent to counting occurrences of u

as a continuous subword on the corresponding word.

8

In SOLVABILITY(SLWH,−−→CSG), the following pair is given as input: a sys-
tem of linear walk histories S = {WH1, . . . ,WHk} and a k-dimensional vec-
tor v = (n1, . . . , nk) for some k ≥ 0. Being linear, WHi can be written as
c1u1+ · · ·+ cmum for some m ≥ 0 and integer constants c1, . . . , cm. Let us con-
struct a finite automaton augmented with two 1-reversal counters that computes
|CSG(α)|WHi for a given word α (counters are a unary stack, and 1-reversal
counters are a counter that cannot increment once being decremented; see [10]
for details). Its input head always performs look-ahead by max{|u1|, . . . , |um|},
and once it finds uj , it increments the first (second) counter by |cj | if cj is posi-
tive (resp. negative). After the head scans the input, this machine subtracts the
value of the second counter from that of first, which is |CSG(α)|WHi . In this
way, we can design a finite automaton M with 2k 1-reversal counter machines
that computes |CSG(α)|S , and accepts α if and only if this value is equal to v.

Thus, M accepts some word if and only if there exists a graph G in
−−→
CSG such

that |G|S = v. Now it suffices to mention the known result that emptiness test
of 1-reversal counter machines is decidable [10].

3.1 SOLVABILITY on trees and tree-like structures

For arbitrary but fixed K and ∆, Akutsu and Fukagawa [1] have proposed an
algorithm for SOLVABILITY(SK ,Υ(∆)), that is, the problem of deciding whether
there is a tree of degree at most ∆ which contains the number of u-walks as
specified by an input vector for every u ∈ Σ≤K+1. We will call this algorithm
A-F algorithm in this paper and give a brief explanation of how it works in Sec-
tion 4.1. Its running time is polynomial in the size of output trees, and actually it
works in pseudo-polynomial time. On the other hand, SOLVABILITY(S4, T W(2))
is strongly NP-hard [1], where T W(2) is the class of graphs of tree-width at most
2 (the definition of treewidth can be found in Section 4.2). A related but incom-
parable NP-hardness result holds as follows, whose proof is found in Section 6.1
(note that T W(2) is a proper subclass of the class PLG of planar graphs).

Theorem 3. SOLVABILITY(S2,PLG) is strongly NP-hard.

This 2 is the lower bound in this context due to a pseudo-polynomial-time
algorithm proposed by Nagamochi [15] for SOLVABILITY(S1,G). For the strong
NP-hardness and pseudo-polynomial-time algorithm, see [8].

4 Graph inference based on tree-decomposition

In this section, we propose an algorithm to infer from SK graphs of tree-width at
most w with bounded degree ∆, where w,∆ ≥ 1 and K ≥ 0 are constants given
a priori. Then, we analyze a case, which is significant in practice, when our
algorithm works in pseudo-polynomial time. That is when w = 2 (see Table 1).

One thing to note is that though we have been working on the class
−→
G of di-

rected graphs, in this section we focus our attention on the class G of undirected
graphs. This is not because our algorithm does not work on directed graphs;

9

actually it does. This is to prevent taking edge directions into account from
making our explanation less understandable. Another reason is that chemical
compounds are usually modeled as undirected graphs.

4.1 Akutsu and Fukagawa’s algorithm (A-F algorithm)

The algorithm we propose is a modification of A-F algorithm, which infers from
SK trees with bounded degree ∆. For this reason, its review should be helpful.
A-F algorithm takes a |Σ≤K+1|-dimension non-negative integer vector v as an
input, and decides whether there is a (Σ-labeled) tree T ∈ Υ(∆) whose feature
vector of level K is equal to v. Note that the number of vertices of such T , if
any, should be

∑
a∈Σ v(a). Let us denote the sum by n below.

There is a notion concerning to the tree that is essential for A-F algorithm.
That is the frontier vector. Recall that, given a (rooted) tree T ∈ Υ(∆), whose
degree is bounded by ∆, its vertices at distance h from its root form the h-th
level of T . We collectively call the h(T), h(T)−1, . . . , h(T)−K levels of T its
frontier of level K, and denote it by ∂TK . For instance, ∂T 0 contains only
the root of T . The T ’s frontier of level K is actually a forest, and all of trees
contained are in ΥK(∆) because the degree of T is bounded by ∆. As the
size of ΥK(∆) is constant, searching the frontier for each tree in ΥK(∆) and
counting its occurrences produces a constant-dimension vector called the T ’s
frontier vector of level K. We denote this vector by |∂TK |.

A-F algorithm uses dynamic programming to fill a Boolean-valued table D
whose cells are referred to by a feature vector and a frontier vector (of a tree).
All the D’s cells are initialized false, and this algorithm updates cells in the
way described shortly such that D(v′,f ′) = true if and only if there exists a
tree T1 of degree at most ∆ whose feature vector of level K is v′ and whose
frontier vector of level K is f ′. Once being built, this table is referred to by
A-F algorithm in order to decide the problem; the answer is yes if and only if
D(v,f) = true for some f . It may be noteworthy that the sum of the values
of all components of such f is at most (K+1)n.

Let us explain how A-F algorithm updates D. This proceeds in a dynamic
programming manner based on the fact that, starting from a tree of one vertex,
any tree can be constructed by iteratively appending a new vertex to a tree at
its deepest or second deepest level. (Given a tree, one can index its vertices in
the breadth-first-search, and these numbers specify the order of adding vertices
to build the tree in the above-mentioned manner.) First of all, for each letter
a ∈ Σ, the tree Ta of only one a-vertex has this algorithm update the cell
D(|Ta|SK

, |∂TaK |) to be true. After this initialization is done, A-F algorithm
recursively updates other cells according to the cells that have been already
updated to be true like D(|Ta|SK

, |∂TaK |) just mentioned above. Let D(v′,f ′)

be such a cell referred to by a feature vector v′ and a frontier vector f ′ of level
K. By definition, there must exist a tree T1 whose feature vector and frontier
vector of level K are v′ and f ′, respectively. Consider a process to add a new
vertex to this tree T1 in the way mentioned above so as to generate a tree T2,
and see how feature and frontier vectors of T2 are computed from those of T1.

10

Figure 4: A growth of benzene graph, and the corresponding growth of a de-
composition tree.

For each u ∈ Σ≤K+1, |T2|u is equal to |T1|u plus the number of u-walks just
created by this addition. On these new u-walks lies no vertex that was outside
of the T1’s frontier of level K as they are too far from the added vertex. Thus,
this update needs only the T1’s frontier of level K. The number of these new
walks is completely determined by the label of added vertex and to which tree
(in ΥK(∆)) in the T1’s frontier of level K the vertex was added. Let v′′ and
f ′′ be the T2’s feature and frontier vectors of level K, respectively. Then the
cell D(v′′,f ′′) is updated to be true. In this way, the D’s cells are updated
recursively one after another.

Since the size of Σ and that of ΥK(∆) are bounded, one true cell of D thus
updates a constant number of other cells to be true (we have not explained how
the frontier vector of T2 is computed, but it should be now almost straightfor-
ward, and hence, is omitted). How many cells does D need in total? With its
usage by A-F algorithm and this updating method in mind, D needs only the
cells that are referred to by a feature vector smaller than the input v according
to pairwise component comparison and by a frontier vector the sum of whose
components does not exceed (K+1)n. Thus, the number of cells in D is O(n).
Therefore, the construction of D can be done in polynomial time in n, and this
process dominates the time complexity of A-F algorithm.

4.2 An outline of proposed algorithm and tree decompo-
sition

The above-mentioned idea of A-F algorithm should be general enough to be
applied to tree-like structures. We focus attention on the tree-decomposition of a
graph, proposed by Robertson and Seymour [17]. A graph can be characterized
by a positive integer called tree-width (the notions of tree-decomposition and
tree-width will be formally introduced shortly, and here we only note that the

11

Figure 5: A chemical graph Gb of benzene and the decomposition tree Tb of Gb.

tree-width of trees is 1). A graph G of tree-width w ≥ 1 decomposes into a tree
of subsets of V (G) of size at most w+1 (decomposition tree of width at most
w). We will redesign A-F algorithm so as to run dynamic programming based
on the growth of decomposition trees of width at most w (see Figure 4 for an
example of this growth) instead of the growth of trees.

In order to introduce the notion of tree-decomposition formally, for a graph
G and a tree T , let us consider a way to assign each tree vertex t ∈ T with
a nonempty subset of V (G), which is denoted by Vt. Let V = {Vt | t ∈ T},
and we call its elements bags (in the original definition of tree-decomposition
[5], the non-emptiness of a bag is not assumed, but the conditions (T2) and
(T3), introduced below, justify this assumption). The pair (T,V) is called a
tree-decomposition of G if the next three conditions hold:

(T1) for every vertex v ∈ G, there is a tree vertex t ∈ T such that v ∈ Vt;

(T2) for every edge e = v1v2 ∈ E, there exists t ∈ T such that {v1, v2} ⊆ Vt;

(T3) for any t1, t2, t3 ∈ T , if t2 ∈ t1Tt3, that is, t2 is on the path of T between
t1 and t3, then Vt1 ∩ Vt3 ⊆ Vt2 .

G is called the underlying graph of (T,V).
As being announced, the tree-decomposition will be used in our algorithm

in a similar way as the tree was used in A-F algorithm. As such, we rather
call (T,V) a decomposition tree. In addition, with the usage in mind, we should
regard a bag Vt not merely as a set of vertices but as the subgraph of G induced
by Vt, that is, G[Vt]. For convenience in explanations, let us extend the notation
Vt to VT ′ for a subtree T ′ of T as: VT ′ =

∪
t∈T ′ Vt.

The (tree)-width of (T,V) is defined as maxt∈T {|Vt|} − 1, that is, the size of
largest bag(s) in V minus one. The (tree)-width of G is defined as the minimum
among the widths of all its decomposition trees. By tw(G), we denote the (tree)-
width of G. As an example, Figure 5 illustrates a chemical graph Gb of benzene
and its decomposition tree Tb. The size of the largest bags in this tree is 3, and

12

hence, tw(Gb) ≤ 2. Since the class of graphs of tree-width 1 is equal to the class
of trees [5], a graph with a cycle is of tree-width at least 2. Thus, tw(Gb) = 2.

As Diestel mentions in [5], “the most important feature of a tree-decomposition
is that it transfers the separation properties of its tree to the graph decomposed”.
This separation property is explained as follows. For an edge t1t2 ∈ T , let T1, T2

be the two components of T − t1t2 such that t1 ∈ T1 and t2 ∈ T2. Then Vt1 ∩Vt2

separates VT1 from VT2 in G, that is, for any v1 ∈ VT1 and v2 ∈ VT2 , every path
between them contains a vertex in the intersection.

By T W(w), we denote the class of graphs of tree-width at most w. As
mentioned above, T W(1) = Υ. T W(2) is the class of graphs all of whose
biconnected components are series-parallel graphs [4]. Since any (connected)
graph decomposes into a tree of biconnected components (called the block tree
of the graph), a graph in T W(2) can be described as a tree of series-parallel
graphs. For a degree bound ∆ ≥ 1, T W(w,∆) denotes the class of graphs whose
tree-width is at most w and whose degree is at most ∆.

Having formally introduced the decomposition tree, the notion of tree-width,
and the related notions and notation, let us return to the explanation of the
algorithm we propose. It is a generalization of A-F algorithm, but based on the
growth of decomposition tree in place for tree. In order for this algorithm to
run in polynomial time in n, it suffices to prove that there exist constants c1, c2
such that any graph with bounded degree whose tree-width is at most w admits
a decomposition tree with the following three properties:

(P1) its degree is bounded by c1;

(P2) its size is O(n);

(P3) the level of frontier necessary for the table update is bounded by c2.

In Section 4.3, we show that any graph of tree-width w admits a decompo-
sition tree satisfying (P1) and (P2). As for (P3), we can prove its validity only
for the case of tree-width being 1 and 2; more precisely, we can prove that any
graph of tree-width at most 2 admits a decomposition tree with (P1)-(P3) (Sec-
tion 4.5). This enables us to conclude that our algorithm works in a polynomial
time in n when the graphs of tree-width at most 2 are sought for.

As a preliminary for examining (P1)-(P3), we first introduce the following
two “overlapping” properties. The first one holds between adjacent bags of a
decomposition tree as stated in the next lemma, which makes possible to visually
understand the addition of a bag to a decomposition tree as superposing the
bag onto a parent bag (see Figure 5).

Lemma 4. Let G be a graph and (T,V) be its decomposition tree. If there is
an edge between t and t′ in T , then Vt ∩ Vt′ 6= ∅.

Proof. Suppose that Vt ∩Vt′ = ∅. Since G is connected, there must exist a path
in G from a vertex v1 ∈ Vt to a vertex vn ∈ Vt′ . Without loss of generality,
we can assume that v2, . . . , vn−1 6∈ Vt ∪ Vt′ by choosing the path as short as
possible. Due to (T2), for 1 ≤ i < n, {vi, vi+1} ⊆ Vti for some ti 6∈ {t, t′}.

13

If t′ ∈ t1Tt, then (T3) implies u1 ∈ Vt1 ∩ Vt ⊆ Vt′ , but this contradicts the
emptiness of Vt ∩Vt′ . Thus, t ∈ t1Tt

′. If t, t′ ∈ tiTti+1 for some 1 ≤ i < n, then
vi+1 ∈ Vti ∩ Vti+1

⊆ Vt, Vt′ , and hence, Vt ∩ Vt′ would not be empty. Combining
these together results in t ∈ tn−1Tt

′, but then un ∈ Vtn−1 ∩ Vt′ ⊆ Vt, and we
reach the same contradiction.

The second one holds between, so to speak, two subtrees induced by respec-
tive two vertices of underlying graphG. For a vertex v ∈ G, let Tv = {t | v ∈ Vt}.
Due to (T3), Tv becomes a connected component (a subtree) of T .

Lemma 5 (see [5]). Tv1 ∩ Tv2 6= ∅ whenever v1v2 is an edge of G.

4.3 Normal forms of decomposition tree

Our algorithm is a dynamic-programming algorithm based on the growth of
decomposition trees. Its primary purpose is to search for a graph with the
feature vector given as input among all the graphs in T W(w,∆), and after all,
decomposition trees are nothing more than an algorithmic subsidiary. Though
a graph admits multiple decomposition trees, it suffices for our algorithm to
grow one decomposition tree for each graph in T W(w,∆), and the choice of
such a “representative” decomposition tree is up to us. The aim of this section
is to enumerate properties that we can expect the representative to possess.
It facilitates our algorithm design to choose a decomposition tree with these
properties as representative. It goes without saying that tree-width being w is
such a property.

The first property, the sub-connectedness, has been proposed by Fraigniaud
and Nisse [6]. A decomposition tree (T,V) of a graph G is sub-connected at t ∈ T
if, for all t′ ∈ sub(T, t), G[Vsub(T,t′)] is connected. Thus, given a decomposition
tree, if it is sub-connected at its root, then its underlying graph is connected.
A procedure SPLIT was developed in [6] to transform a given decomposition
tree of G into another decomposition tree that is sub-connected at its root
without any increase of width providedG is connected. This means that the sub-
connectedness is compatible with the tree-width being w. More importantly, by
taking only the sub-connected decomposition trees into account, our algorithm
avoids the risk of inferring a non-connected graph.

SPLIT does not increase the size of Tv for any v ∈ G, whereas it may cause
increase in the number of bags. The next lemma provides a method to decrease
the number of bags to |V (G)| − 1 without loss of sub-connectedness.

Lemma 6. Every graph G admits a sub-connected tree-decomposition of width
tw(G) such that

(N1) none of its bags contains another.

Proof. Let (T,V) be a sub-connected decomposition tree of G of width tw(G).
Among t, t′ ∈ V (T) satisfying Vt ⊆ Vt′ , it suffices to consider only the adjacent
ones. This is because by (T3), if Vt3 ⊆ Vt1 for some t1, t3 ∈ T and t2 ∈ t1Tt3,
then Vt1 ∩ Vt3 = Vt3 ⊆ Vt2 . We delete t from T and connect t′ with all vertices

14

that were adjacent to t on T . Furthermore, we set t′ to be the root of resulting
tree T ′ if the deleted t was the root of T . A pair (T ′,V \{Vt}) that results from
(T,V) by deleting t from T , connecting t′ with all vertices that were adjacent
to t on T , and setting t′ be the root of T ′ if the deleted t was the root of T
remains to be a tree-decomposition of G. Indeed, this pair satisfies (T1) and
(T2) as Vt ⊆ Vt′ holds. As for (T3), let t1, t2 ∈ T ′ such that t′ ∈ t1T

′t2. Due
to the above construction, t ∈ t1Tt2 and hence Vt1 ∩ Vt2 ⊆ Vt ⊆ Vt′ . This
means that (T3) holds. We can easily check that for any t1 on the path from
the root to t′ on T ′, G[Vsub(T,t1)] = G[Vsub(T ′,t1)]. Therefore, the pair is actually
a sub-connected decomposition tree of G of width tw(G).

Having proposed a procedure to generate a decomposition tree of width
tw(G) by deleting a node of T whose bag is contained in the bag of another,
now we can apply this procedure necessary many times to remove all such
nodes, and obtain an expected sub-connected decomposition tree of G of width
tw(G).

Let us investigate some properties of the tree decomposition (T,V) obtained
in Lemma 6. Let t1, t2 be adjacent bags in T , and T1, T2 be two subtrees of T
that are obtained by deleting the edge t1t2 from T , and without loss of generality,
we assume that T1 is the one including t1 and T2 is the other. Lemma 4 says
that Vt1 contains a vertex in Vt2 ⊆ VT2 . At the same time, Vt1 also contains a
vertex that is not in VT2 (since t2 ∈ t1Tt3 for any t3 ∈ T2, v ∈ Vt1 ∩ Vt3 means
v ∈ Vt1 ∩Vt2 due to (T3)). Thus, Vt1 and VT2 are not disjoint but incomparable.
Thus, we have

(N2) |Vt| ≥ 2 for any t ∈ T .

(N3) |V (T)| ≤ |V (G)| − 1.

For (N3), note that even decomposition tree can be built, starting from one bag,
by appending a bag one by one (details will be given in Section 4.4). Imagine
that we are building a decomposition tree given by Lemma 6 in this manner.
When a bag is added to a decomposition tree (T,V) thus built so far, it must
contain a vertex that is not contained in VT . This means that the bag addition
increases the size of underlying graph at least by 1. Thus, the size of T cannot
exceed that of G (-1 in the inequality of (N3) is because of the lower bound 2
on the bag size (N2)).

The upperbound given in (N3) cannot be improved anymore. Indeed, if G
is a tree, then its tree-width is 1 so that any of its tree decomposition (T,V) of
width 1 must satisfy |V (T)| ≥ |V (G)| − 1 due to (T2).

Theorem 7. Any (connected) graph G ∈ G admits a decomposition tree of width
tw(G) that is sub-connected and satisfies (N1)-(N3).

Theorem 8. For a degree bound ∆, any (connected) graph G ∈ G(∆) admits a
decomposition tree of width tw(G) that is sub-connected, satisfies (N1)-(N3),
and is of degree at most (w + 1)∆.

15

Proof. It suffices to prove that when the maximum degree of a given G is ∆,
then the decomposition tree given in Theorem 7 is of degree at most (w+ 1)∆.
Let us denote this decomposition tree by T .

Let us consider adjacent vertices t1, t2 ∈ T . Due to Lemma 4, Vt1 ∩Vt2 is not
empty. (N1) implies that there is a vertex v ∈ Vt2 \ Vt1 , and (T3) strengthens
this as v ∈ Vt2 \ VT1 . Combining these with the above-mentioned separation
property deduces the existence of vertices v1, v2 such that v1 ∈ Vt2 ∩ Vt1 , v2 ∈
Vt2 \ VT1 , and v1v2 is an edge of the underlying graph G. Consider another
bag t3 that is adjacent to t1. A similar argumentation as above gives a vertex
v3 that is an analog of t2 for this bag. We claim that v3 must be different
from v2; otherwise v2(= v3) ∈ Vt2 ∩ Vt3 , and hence, would be in Vt1 due to
(T3), a contradiction. This claim means that each bag adjacent to t1 consumes
exclusively at least one edge of a vertex in Vt1 . Consequently, the number of
bags adjacent to t1 is at most

∑
t∈Vt1

d(t), which is at most (w + 1)∆.

4.4 Bag addition to decomposition tree

Our algorithm regards the decomposition tree given in Theorem 8 as a repre-
sentative. Thus, starting from a decomposition tree of one bag, it keeps adding
a new bag of size at most w+1 (and at least 2 due to (N2)) to a decomposition
tree so as to generate a representative decomposition tree, whose existence was
guaranteed by Theorem 8. As suggested in Section 4.3, a bag Vt1 thus added
to a bag Vt2 of an intermediate decomposition tree (T,V) should satisfy the
following two conditions:

1. Vt1 ∩ Vt2 6= ∅, that is, Vt1 ∩ V (G(T,V)) 6= ∅;

2. Vt1 \ V (G(T,V)) 6= ∅.

The number of possible bags is at most
∑w+1

i=2

(
|Σ|i × (∆ + 1)i(i−1)

)
; inside

the parentheses are the product of the number of ways to label i vertices in a
bag and the number of ways to connect two distinct of them by edges, where
2 ≤ i ≤ w + 1. Anyway, this is constant. There are multiple ways to “overlap”
the chosen bag with its parent bag so as to satisfy the above two conditions,
but the number is also bounded by a constant. Furthermore, recall that none of
the bags of the representative decomposition tree given in Theorem 8 has more
than (w + 1)∆ children bags. One problem to be solved yet is of how high the
frontier of decomposition trees has to be. This problem will be addressed in the
next section.

There is one thing to note. That is about the sub-connectedness. The sub-
connectedness of decomposition trees generated in the above method has to be
verified; otherwise, the underlying graph of some resulting decomposition tree
is not connected, and hence, not even in G. This verification is done recursively.
Any two vertices in a leaf-bag of a decomposition tree must be connected. Any
two vertices of its non-leaf bag Vt must be connected on the assumption that,
for each of its child bags Vt1 , any vertices in Vt∩Vt1 are connected. See Figure 4
as an example. The leftmost decomposition tree, which consists of one bag

16

{1, 3, 5}, is not sub-connected, and our algorithm has to append a child to it.
Even after adding a new bag {1, 2, 3}, still the resulting decomposition tree is
not sub-connected at its root. By sharing the vertices 1, 3, the root bag (parent)
can delegate the responsibility to connect these to the child bag (and to other
children to be added from now). Here an essential issue occurs; our algorithm
does not append any vertex to the bag {1, 2, 3} because otherwise it would not
be able to append a child to the root that takes a responsibility to connect
the currently-isolated vertex 5 with 1 or 3. Adding {3, 4, 5} to the root finally
results in a sub-connected decomposition tree. What we wanted to insist on is
that sub-connectedness of a decomposition tree can be guaranteed during its
growth process locally by each of its vertices checking which of its vertices are
shared with each of its child bag.

4.5 An algorithm for SOLVABILITY(SK , T W(2,∆)) that runs in
pseudo-polynomial time

We are now ready to present our algorithm. It is a generalization of A-F algo-
rithm modified so as to run the dynamic programming on decomposition trees
given in Theorem 8 instead of on trees. Our algorithm is, however, not guaran-
teed to work in polynomial time in n.

In this section, we prove that any graph G of width at most 2 admits a
decomposition tree of width tw(G) such that, for any v ∈ G, |Tv| ≤ 3

2∆(G)
(Lemma 10). Since our algorithm assumes the degree bound ∆, this means that
it suffices to consider decomposition trees on which the size of Tv is bounded
by 3

2∆. Recall that v1v2 ∈ E(G) implies Tv1 ∩ Tv2 6= ∅. Thus, our algorithm
can set the height of frontier to 3

2∆(K + 1). Let us prove Lemma 10, which is
almost a corollary of the next lemma.

Lemma 9. Any series-parallel graph G admits a tree-decomposition (T,V) of
width at most 2 such that |Tv| ≤ d(v) + 1 for any v ∈ G.

Proof. Our proof is constructive. Given an atomic series-parallel graph whose
terminals correspond to the vertices v, v′ of G, a tree of one bag {v, v′} (root) is
clearly its tree-decomposition of width at most 2. For each edge of G, we have a
corresponding atomic series-parallel graph. Thus, we can say that the number
of bags containing v ∈ G, which we denote by β(v) in this proof, is equal to
d(v) at the beginning.

Now we propose a method to build up a tree-decomposition (T,V) of G from
these atoms without increasing β(v) by no more than 1 for every v ∈ G. For
induction, we assume that the root of any intermediate tree-decomposition is
the bag that consists of the terminals of underlying graph. This assumption
holds for the atoms.

Parallel operation is handled first. Let G1, G2 be series-parallel graphs whose
terminals correspond to the same two nodes va, vb ∈ G. Let (T1,V1), (T2,V2)
be their respective tree-decompositions. Due to the inductive hypothesis, the
roots of both decompositions are {va, vb}. Hence, when parallel operation is

17

Figure 6: A snapshot of a construction of a tree-decomposition of a graph that
is obtained by the series operation of graphs G1, . . . , Gn−1 with respective tree-
decompositions T1, . . . , Tn−1. For clarity, the floor function is omitted here; n/2
in this figure should be bn/2c.

applied to G1 and G2, we simply merge the root of T1 with that of T2. The
pair of the tree thus obtained and V1 ∪ V2 becomes a tree-decomposition of the
resulting graph. This operation decreases β(va) and β(vb) by 1. In contrast, for
any internal vertex v of G1 or G2, β(v) does not change, and this is true also
for series operation discussed below.

Series operation needs a more involved analysis. What we will actually
consider is a succession of series operations of maximal length. That is, given
n− 1 series-parallel graphs Gi whose terminals correspond to vi, vi+1 ∈ G and
their tree-decompositions (Ti,Vi) for 1 ≤ i ≤ n − 1, the operation merges the
vj+1 of Gj with the vj+1 of Gj+1 for 1 ≤ j ≤ n− 2 to construct a series-parallel
graph G′. The terminals of G′ will be v1, vn. By maximal length, we mean that
either G′ = G or it is the parallel operation that G′ will get involved in next.

The construction of a tree-decomposition of G′ is as follows. First the
root {vbn/2c, vbn/2c+1} of Tbn/2c is merged with the root {vbn/2c+1, vbn/2c+2} of
Tbn/2c+1 into a bag {vbn/2c, vbn/2c+1, vbn/2c+2}, and to this bag, {vbn/2c, vbn/2c+2}
is appended as the root of the resulting decomposition tree. To this resulting
tree, Tbn/2c−1 is appended in the same manner, and then, Tbn/2c+2 is appended
and so on until T1, Tn−1 are thus appended (see Figure 6).

This operation may increase β(v1), β(v2), . . . , β(vn), but at most by 1. Since
v2, . . . , vn−1 become internal in this operation, this is the last increase possible.
As for v1, vn, the increase might seem to be 2, but this is due to the addition
of root bag {v1, vn} for the next parallel operation, which will decrease the
number for v1, vn by 1 as mentioned above. If no parallel operation follows, we
can simply remove this root bag. Thus, in any case, the increase amounts to at

18

Figure 7: Two decomposition trees of a graph with 6 vertices v1, v2, . . . , v6 such
that vi is connected with vi+1 for 1 ≤ i < 6 (shown at the top). In the left one,
the terminal 1 is contained only in 2 bags, while in the right one, the terminal
6 is contained only in 2 bags. Tree rotation converts one into the other.

most 1 so that we can say that β(v1), β(vn) can increase by at most 1. In fact,
only one of β(v1) and β(vn) can increase and the other remains. Note that v1
or vn will become internal in the coming series operation (not current one, but
next one). Thus, it is desirable for the current series operation to increase the
number of bags containing the terminal that becomes internal in this way. It
was β(vn) that increased in the above-mentioned construction of decomposition
tree. If β(v1) should be increased, then we should first merge rather Tbn/2c−1

and Tbn/2c, followed by the merging of Tbn/2c+1, then merge Tbn/2c−2, and so
on (this can be easily understood in the context of tree rotation, see Figure 7).

According to the above construction, the number of bags containing a vertex
increases only when it shifts from a terminal to an internal, and the increase is at
most 1. Recall that originally β(v) = d(v) for each v ∈ G. Let us conclude this
proof by checking that the above construction does not destroy the requirements
(T1)-(T3) for tree-decomposition. Since our construction is based on merging
of bags and at the beginning of the construction we have a bag {v, v′} for every
edge vv′ ∈ G, it is obvious that the resulting decomposition tree has a bag
that contains both v and v′. Thus, (T2) holds. This, in turn, implies (T1)
because G is a connected graph. The verification for (T3) is done by induction
on the series and parallel operations. For decomposition trees of size 1, (T3)
is obviously true, and hence, (T3) is true at the beginning of our construction.
Afterwards, it suffices to check that merging of the roots of two intermediate
trees results in another intermediate tree T that satisfies (T3) assuming that
the given two intermediate trees satisfy (T3). Proving that T satisfies (T3) is
equivalent to proving that for any vertex v, Tv is a connected component of
T . Recall that the root of intermediate trees is of size 2. Let us denote these

19

trees by T1 and T2 with the respective roots {u1, u2} and {v1, v2}. By definition
of series and parallel operations, if a vertex appears in both T1 and T2, then
it is one of u1, u2, v1, v2. Thus the assumption that T1 and T2 satisfy (T3)
makes it sufficient to prove that Tu1 , Tu2 , Tv1 , Tv2 are connected components
of T . Due to the assumption, T1u1

and T2u2
are connected, and furthermore,

contain the respective roots of T1 and T2 unless they are empty. Thus, Tu1 is
a connected component of T . This is true for u2, v1, v2. Consequently, T also
satisfies (T3).

We have mentioned in Section 4.2 that any graph of tree-width at most
2 can be written as a tree of biconnected components that are series-parallel.
Given a graph G of tree-width at most 2, we construct its decomposition tree
of width tw(G) in the following manner. To each of its biconnected component,
we first apply Lemma 9 and obtain its decomposition tree of width at most
tw(G). Consider two biconnected components that share a vertex v ∈ G and
their decomposition trees (T1,V1), (T2,V2) thus obtained. By definition, there
must exist t1 ∈ T1 and t2 ∈ T2 such that v ∈ Vt1 and v ∈ Vt2 . A new edge t1t2
connects T1 and T2 into a tree T3. Then (T3,V1 ∪ V2) is a decomposition tree
of the subgraph of G that consists of these two biconnected components. This
decomposition tree is of width at most tw(G). In this way, we connect all de-
composition trees for the biconnected components of G into one decomposition
tree (T,V).

We claim that this decomposition tree satisfies that for any v ∈ G, |Tv| ≤
3
2d(v). Assume that v is contained in k biconnected components of G for some
k ≥ 1, and that each of the first j components consists of at least 3 vertices of G;
the others consist of 2 vertices. For 1 ≤ i ≤ k, let (Ti,Vi) be the decomposition
tree of the i-th biconnected component obtained by Lemma 9. Let d1, d2, . . . , dk
be the number of edges adjacent to v that these components contain. Since
distinct biconnected components cannot share any edge of G,

∑k
i=1 di = d(v).

Note that if the i-th biconnected component consists of at least 3 vertices, then
di ≥ 2. With

∑j
i=1 di ≤ d(v), this implies that j ≤ 1

2d(v). Otherwise the
component admits a trivial decomposition tree (only one node). According to
the above-mentioned construction of (T,V),

|Tv| =
k∑

i=1

|Tiv| ≤
j∑

i=1

(di + 1) + k − j

≤
j∑

i=1

di + k − j + j

≤ d(v) + j ≤ 3

2
d(v),

where we employ k − j ≤
∑k

i=j+1 di = d(v) −
∑j

i=1 di. Now we have verified
the next lemma.

20

Lemma 10. Any graph G of tree-width at most 2 admits a decomposition tree
(T,V) of width tw(G) such that |Tv| ≤ 3

2d(v) for any v ∈ G.

Theorem 11. Let ∆ be a degree bound. For the class T W(2,∆), our algorithm
runs in polynomial time in n.

The height of Tv is closely related to the efficiency of our algorithm. Any
graph of tree-width 1 admits a decomposition tree T such that the height of
Tv is at most 2. Is it also the case that any graph of tree-width 2 admits a
decomposition tree such that the height is bounded by a constant that does
not depend on ∆? A negative answer is to be found in Figure 8. Let G =
({v0, v1, . . . , vn, v′1, . . . , v′n}, E) be the graph in this figure, where the vertex vi
is specified by its subscript for the clarity. This graph, G, is a series-parallel
graph, and hence, admits a tree-decomposition (T,V) of width 2. It is known
that the three vertices of any 3-clique (triangle) in G must be in one bag [5].
For example, the vertices v0, v1, v2 form a triangle so that (T,V) must have
a bag {v0, v1, v2}. In this way, we can figure out that {v0, v1, v2}, {v0, v2, v3},
{v0, v3, v4}, . . . , {v0, vn−1, vn}, and their counterparts for v′1, v

′
2, . . . , v

′
n as well

as {v0, vn, v′n} are the bags that any tree-decomposition of G of width 2 must
contain. Note that the vertices of T to which these bags are assigned must
induce the connected subgraph of T . The only way to connect them without
destroying (T3) is by connecting them in a line as illustrated at the bottom of
this figure. Then, Tv0 is the decomposition tree itself because all of the bags of
the tree contains the vertex v0. Hence, even if we choose the bag {v0, vn, v′n} as
a root, Tv0 is still of height n − 1, and this is the best choice of root to make
Tv0 the shallowest. Note that the degree of the vertex v0 is 2n.

5 Conclusion

In this paper, we have proposed a comprehensive framework of inferring graphs
in a given object space from a given walk history or system of walk histo-
ries. This integrated results known in formal language theory and in chemo-
informatics with new results, and as a consequence, we obtained a profound
understanding of structure elucidation problem. For the class of graphs of tree-
width at most 2, we proposed a pseudo-polynomial time algorithm. Based on
this, we should design an efficient enumeration algorithm as done in [7]. Such
algorithms for larger tree-width are also open.

6 Appendices

6.1 A proof of Theorem 3

Let us propose two results first, which are useful in constructing a pseudo
polynomial time transformation from 3-PARTITION to SOLVABILITY(S2,PLG).
The graphs considered from now on are assumed to be undirected. A vertex v1

21

Figure 8: A graph of tree-width 2 such that for any of its tree-decomposition,
the height of subgraph induced by Tv0 for the vertex v0 is at least n − 1. The
bottom illustrates the subtree that any tree-decomposition of width 2 needs to
contain.

of a graph is singly connected with another vertex v2 if there exists exactly one
edge between them.

Lemma 12. For an undirected graph G, if G contains exactly one a-vertex and
|G|ab = |G|aba = n for some n, then there exist n b’s that are singly connected
with the a-vertex.

Proof. Let v be the a-vertex of G. An ab-walk contributes to |G|aba by 1 (start-
ing from the a-vertex, we arrive at the b-vertex via the edge on this walk and
return back via the same edge). Hence, |G|ab ≤ |G|aba holds.

Suppose that a b-vertex v1 is connected with v by two edges e1, e2. Then
apart from the aba-walks explained above, now we have extra two aba-walks,
that is, ve1v1e2v and ve2v1e2v. Then, G would contain at least n+2 aba-walks,
a contradiction.

Since G contains n ab-walks, exactly n b-vertices are singly connected with
the a-vertex.

Lemma 13. For an undirected graph G, if G contains n a-vertices and n b-
vertices and |G|ab = |G|aba = |G|bab = n for some n, then there exist n pairwise
distinct pairs of an a-vertex and b-vertex that are singly connected.

Our proof of the following theorem will borrow several basic terminologies
from topology. Let G be a planar multigraph, that is, G can be embedded onto
the plane R2. The regions of R2 \G are called the faces of G. Since we can lay
G inside some sufficiently large disc D, there exists exactly one among its faces
that cannot be thus bounded, that is, the face that contains R2 \D. This face
is called the outer face of G, and the others are called its inner faces.

22

Now, we are ready for proving Theorem 3.

Proof. The basic idea is from [1]: a pseudo polynomial time transformation from
3-PARTITION, which is defined as: given a set X that consists of 3m elements
x1, . . . , x3m along with their integer weights w(xi) and a positive integer B
such that B/4 < w(xi) < B/2 for 1 ≤ i ≤ 3m, find a partition of X into m
(disjoint) sets A1, . . . , Am of cardinality 3 such that Aj = {xj,1, xj,2, xj,3} and
w(xj,1) + w(xj,2) + w(xj,3) = B for 1 ≤ j ≤ m, where xj,1, xj,2, xj,3 ∈ X.

Let Σ = X ∪ {a1, . . . , am} ∪ {a, b, c, d, f1, f2}. From a given instance of 3-
PARTITION, we construct a feature vector v of level 2 specified as follows; we
write xi = 1 to indicate that the xi coordinate of v has value 1. For any u, if
the value of u coordinate of v is not mentioned below, then it is 0, that is, in
the target graph, no u-walk is found. For 1 ≤ i ≤ 3m and 1 ≤ h ≤ m,

VERTICES xi = 1, a = Bm, b = 3m, c = 3m+ 1, d = 1, f1 = f2 = 3m, and
ah = 1;

WALKS-C(enter) dah = 1, ahb = ahbah = 3, and a1a2 = a2a3 = · · · =
am−1am = 1;

WALKS-B(lock) for s ∈ {1, 2}, bfs = bfsb = fsbfs = 3m, xifs = 1, ba =
bab = Bm, xia = xiaxi = w(xi);

WALKS-BC xid = 1, f1cf2 = 3m−1, ahc = ahcah = 3, f1ca1 = 3, f2ca1 = 2,
f1ca` = 3, f2ca` = 3 for 1 < ` < m, f1cam = 3, f2cam = 4, and ahba = B;

WALKS-I(nhibited) for any 1 ≤ j, k ≤ m with j 6= k, xjf1xk = xjf2xk =
ajbak = ajcak = 0.

For example, xi = 1 in VERTICES means that a target graph must contain
exactly 1 xi-vertex.

Let us give a topological characterization of graphs G ∈ PLG that satisfy
|G|S2

= v. Indeed, we shall see that v uniquely determines a structure that
consists of the center graph (an m-star with the center d-vertex) and the ah-
vertex (1 ≤ h ≤ m), to each of which 3 b-vertices are singly connected) and 3m
rhombuses bounded by the cycle bf1xif2b (xi-rhombus), within which exactly
w(xi) a-vertices are forced to be fenced and single connected with the b-vertex on
the rhombus (see Figure 9). Once confirmed, this structure and its uniqueness
enable us to conclude that the given instance of 3-PARTITION has a solution if
and only if there exists a planar graph whose feature vector of level 2 is v; this is
because ahba = B must be satisfied for 1 ≤ h ≤ m. Note that our construction
of the system of inequalities is a pseudo polynomial time transformation.

First of all, VERTICES, WALKS-C, and WALKS-I determine the center
graph. Due to Lemma 12, ahb = ahbah = 3 force exactly 3 b-vertices be singly
connected with each ah-vertex and ajbak = 0 in WALKS-I inhibits a b-vertex
from being connected with more than one of a1, . . . , am-vertices. For 1 ≤ ` <
m, the a`-vertex has to be connected with the a`+1-vertex in order to satisfy
a`a`+1 = 1.

23

We shift our focus onto the xi-rhombus and w(xi) a-vertices. As being done
above but using Lemma 13, one can easily see that exactly one of 3m f1 (f2)-
vertices must be singly connected to each of the 3m b-vertices of the center
graph in a one-to-one manner. To these f1-vertices, distinct xi-vertex is to be
singly connected as we need exactly one xif1-walk and xjf1xk-walk is inhibited
whenever j 6= k. This fact allows us to index the f1-vertex and b-vertex on the
walk from the xi-vertex to the d-vertex by the subscript i as f1,i and bi, and
the f2-vertex that is connected to the bi-vertex is thus indexed as f2,i, but this
indexing is only for the ease of explanation. In the following, we denote the three
of x1, . . . , x3m-vertices that have been thus connected with the a1-vertex by x1,1,
x1,2, and x1,3 for convenience sake (see Figure 9), but note that we do not know
which of x1, . . . , x3m is x1,1 or we should not. The extended center graph built
so far is still a tree, and hence, has only one face. Now we draw edges from each
of these xi-vertices to the d-vertex, but due to the a1a2 · · · am-walk, these edges
cannot help but go through between the a1-vertex and am-vertex as shown in
Figure 9. These edges separate the face into 3m + 1 faces, that is, the face
bounded by the da1bf1x1,1-walk, one bounded by the dx1,1f1ba1bf1x1,2d-walk,
and so on. Since the xjf2xk-walk is inhibited whenever j 6= k, each xi-vertex
must be singly connected with distinct f2-vertex. The lines from xi to d now
force the xi-vertex to be thus connected with the f2,i-vertex. As a result, the
xi-rhombus has been formed.

Now we will fence in w(xi) a-vertices in the xi-rhombus. To this end, we
connect the 3m f1-vertices and f2-vertices via 3m− 1 f1cf2-walks. The readers
should be now familiar enough with the technique based on Lemma 12 and
WALKS-I to check that exactly 3 c-vertices are singly connected with the ah-
vertex, and these be distinct. This means that the c-vertex on any of these
f1cf2-walks must be connected with the ah-vertex for some h, and hence, none
of these walks can share their f1-vertex and f2-vertex. It is left to the reader
to check that the way illustrated in Figure 9 is the only way to draw 3m − 1
f1cf2-walks so as to satisfy all of these requirements and f1ca1 = 3, f2ca1 = 2,
f1ca` = 3, f2ca` = 3 for 1 < ` < m, f1cam = 3, f2cam = 4. These newly-added
structures prevent an a-vertex from being connected both with a b-vertex and
with xi-vertex unless it is placed in the xi-rhombus. Check that each a-vertex
must be singly connected with exactly one b-vertex, and w(xi) a-vertices must be
singly connected with the xi-vertex. Thus, the xi-rhombus must contain exactly
w(xi) a-vertices and they have to be singly connected with the bi-vertex.

7 Acknowledgements

We wish to express our gratitude for the anonymous referees for their carefully
and thoroughly reviewing the earlier version of this manuscript and giving valu-
able comments and suggestions on it. Shinnosuke Seki expresses his sincere
gratitude to Professor Mark Daley, Professor Oscar. H. Ibarra, Professor Hel-
mut Jürgensen, Professor Lila Kari, and Professor Arto Salomaa for the creative
discussions with them on the research topic in this paper.

24

This research was carried out with the financial support of the JSPS Post-
doctoral Fellowship P10827 to Szilárd Zsolt Fazekas, of the Funding Program
for Next Generation World-Leading Researchers (NEXT program) to Yasushi
Okuno, and of the Kyoto University Start-up Grant-in-Aid for Young Scientists,
No. 021530, to Shinnosuke Seki. Works by Shinnosuke Seki were also financially
supported by Department of Information and Computer Science, Aalto Univer-
sity.

References

[1] Akutsu T, Fukagawa D (2005) Inferring a graph from path frequency. In:
Aposolico A., Crochemore M., Park K. (eds.), CPM 2005, Lecture Notes in
Computer Science, vol 3537, Springer, pp. 371–382.

[2] Bakir G H, Weston J, Schölkopf B (2004) Learning to find pre-images. In:
Advances in Neural Information Processing Systems, pp. 449–456.

[3] Bakir G H, Zien A, Tsuda K (2004) Learning to find graph pre-images. In:
Proceedings of the 26th DAGM Symposium, Lecture Notes in Computer
Science, vol 3175, Springer, pp. 253–261.

[4] Bodlaender H (1998) A partial k-arboretum of graphs with bounded
treewidth. Theoret. Comput. Sci. 209 (1-2): 1–45.

[5] Diestel R (2010) Graph Theory, 4th Edition. Springer.

[6] Fraigniaud P, Nisse N (2006) Connected treewidth and connected graph
searching. In: LATIN 2006. Lecture Notes in Computer Science, vol 3887,
Springer, pp. 479–490.

[7] Fujiwara H et al (2008) Enumerating treelike chemical graphs with given
path frequency. Journal of Chemical Information and Modeling 48:1345–
1357.

[8] Garey M R, Johnson D S (1979) Computers and Intractability. A Guide to
the Theory of NP-Completeness. W. H. Freeman and Co.

[9] Goto S et al (2002) LIGAND: Database of chemical compounds and reactions
in biological pathways. Nucleic Acids Research 30:402–404.

[10] Ibarra OH (1978) Reversal-bounded multicounter machines and their deci-
sion problems. Journal of the ACM 25:116–133.

[11] Leslie C, Eskin E, Noble WS (2002) The spectrum kernel: A string kernel
for SVM protein classification. In: Proceedings of the 7th Pacific Symposium
on Biocomputing. pp. 564–575.

[12] Mateescu A, Salomaa A, Yu S (2004) Subword histories and Parikh matri-
ces. J. Comput. Syst. Sci. 68:1–21.

25

[13] Matiyasevich Y (1970) Solution of the tenth problem of Hilbert. Matem-
atikai Lapok 21:83–87.

[14] Matiyasevich Y (1993) Hilbert’s Tenth Problem. MIT Press.

[15] Nagamochi H (2009) A detachment algorithm for inferring a graph from
path frequency. Algorithmica 53:207–224.

[16] Parikh RJ (1966) On context-free languages. Journal of the Association for
Computing Machinery 13:570–581.

[17] Robertson N, Seymour PD (1986) Graph minors. ii. algorithmic aspects of
tree-width. Journal of Algorithms 7:309–322.

[18] Rozenberg G, Salomaa A (eds) (1997) Handbook of Formal Languages,
vol 1. Springer.

[19] Seki S (2011) Absoluteness of subword inequality is undecidable. Theor
Comput Sci 418:116-120.

[20] Shannon CS, Weaver W (1949) The Mathematical Theory of Communica-
tion. The University of Illinois Press.

[21] Yamaguchi A, Aoki KF, Mamitsuka H (2003) Graph complexity of chemical
compounds in biological pathways. Genome Informatics 14:376–377.

26

a1

a2

d

am

f1

f1

f1f2

f2

f2

a

a

a

x1,1

x1,2

x1,3

a a

b

b

b

a

a

c

c

c

f1c

Figure 9: Reduction from 3-PARTITION to SOLVABILITY(S2,PLG).

27

