
Reinforcement Learning In Real-Time Strategy Games

António Gusmão and Tapani Raiko
Aalto School of Science

Abstract

We consider the problem of effective and automated decision-
making in modern real-time strategy (RTS) games through the use
of reinforcement learning techniques. RTS games constitute en-
vironments with large, high-dimensional and continuous state and
action spaces with temporally-extended actions. To operate under
such environments we propose Exlos, a stable, model-based Monte-
Carlo method. Contrary to existing model-based algorithms, Ex-
los assumes models are imperfect, reducing their influence in the
decision-making process. Its effectiveness is further improved by
including a novel online search procedure in the control policy. Ex-
perimental results in a testing environment show the superiority of
Exlos in discrete state spaces when compared to traditional rein-
forcement learning methods such as Q-learning and Sarsa. Further-
more, Exlos is shown to be effective and efficient on an environ-
ment with a large continuous state and action space. This work is a
summary of [Gusmao 2011].

Keywords: reinforcement learning, real-time strategy, games, arti-
ficial intelligence, UCT, planning, continuous reinforcement learn-
ing

1 Introduction

In the last decades, the video and computer game industry has been
growing at an amazing rate, already being a multi-billion dollar
industry, one of the biggest in the entertainment sector. In 2008,
the computer and video game sales grew to 11.7 billion dollars in
the United States alone, a growing trend consolidated over a 12
year-period [Entertainment Software Association 2009]. This work
will focus on one game genre, real-time strategy (RTS) games, but
the algorithms discussed herein have a much broader applicability,
including other game genres and various real-world problems. RTS
games are most usually related to warlike simulations, involving
both economic development and military tactics. Opposing teams
must collect resources in order to build armies and defeat their
opponents. Players are faced with many tactical decisions which
must be taken quickly and, in most cases, under uncertainty since
enemy location and units are unknown to the player. Recent
RTS games have rich worlds that can involve thousands of units
deployed in massive game scenarios. Game designers stand much
to gain from incorporating state-of-the-art AI techniques into their
games. Perhaps more importantly, academic AI researchers have
in video-games an important step between purely theoretical work
and solving complex real-world problems. This is not a novel
concept (see e.g. [Buro 2004]) but has yet to catch the necessary
attention from the AI academic community.

RTS games are essentially complex simulators with the power to
model a large diversity of real-world problems. They force re-
searchers to come up with new, robust and efficient algorithms that
can be tested in a virtual environment without requiring expensive
hardware (e.g. robots) or cryptic, unintuitive simulators. With
the increase in computation power in the last decades, machine-
learning methodologies become valid candidates to tackle the com-
plexity of RTS games. Several authors have proposed learning sys-
tems for RTS games [Hsieh and Sun 2008; Weber et al. 2010; Mo-
lineaux et al. 2009] but most are either not effective or operate un-

der very limited conditions. From available techniques, reinforce-
ment learning (RL) stands out as a method that seamlessly com-
bines planning and learning in a framework with a wide scope of
applicability. In addition, reinforcement learning is an established
field with significant theoretical grounding and is currently a pop-
ular and active research topic, stimulated by recent discoveries of
convergent algorithms for RL with function approximation [Maei
et al. 2009; Maei et al. 2010].

Currently, there are few success cases of RL in high-dimensional
and continuous state or action spaces, such as the ones encoun-
tered in RTS games. This article introduces a novel method which
combines ideas from several existing algorithms, resulting in a ro-
bust learning system for stochastic environments with temporally-
extended actions and continuous state and action spaces.

2 Background

2.1 Reinforcement Learning

In reinforcement learning (RL), a positive reward is awarded to a
decision maker if something good happens and negative reinforce-
ment is given if something bad happens. The decision maker at-
tempts to adjust his decisions in order to receive increased positive
rewards. A RL agent must know how to act at each state it might
visit by discovering which of its current available actions lead to
the largest long-term rewards, essentially learning a mapping be-
tween states and actions. The optimal actions are discovered from
interaction with the environment, may that interactions be real or
simulated. For an extensive introduction to reinforcement learning
the reader is referred to [Sutton and Barto 1998].

2.2 UCT Algorithm

UCT [Kocsis and Szepesvári ] stands for upper confidence trees and
is a Monte-Carlo tree search (MCTS) method that sets up a multi-
armed bandit problem for each state.

Consider a reinforcement learning agent. Denote Q(s, a) as the
value of action a in state s and As as the set of available action at
state s. Let β(s, a) be a real-valued bias factor. At each state s
UCT takes the action with largest:

QUCT (s, a) = Q(s, a) + β(s, a) (1)

The bias factor is:

β(s, a) =

√
2b2 ln(

∑
a′ N(s, a′))

N(s, a)

where N(s, a) is the number of times action a was taken in state s.

Essentially, UCT adds a bonus to each action value, the bonus being
determined by the bias factor β(s, a). Taking action a at state s
results in a decrease of the bonus given to a and an increase to the
one given to all other actions that could have been taken, i.e. β(s, a)
is decreased and β(s, a′) is increased for all a′ 6= a, a′ ∈ As. UCT
will never stop exploring. It follows directly from Equation (1) that,
in an infinite number of action selections at state s, any action will
have its value increased to infinity if it is not picked infinitely often.



3 Exlos

3.1 Speeding Up Learning: Simulated Experience

In our problem setting we assume action models, P (s′|s, a), are
available but inaccurate. Simulating experience is a way of com-
pensating for lack of real experience, but it can become a nuisance
if real experience is not lacking. A simple way to solve this issue
is to combine simulated experience and real experience in a way
that the former becomes less important as the latter is accumulated.
The resulting algorithm possesses the advantages of model-based
learning and no significant drawback. A general purpose manner
of doing this is to define the value of a state as a weighted average
of a simulation-based value and a value based on real experience,
enforcing the weight of the simulation-value to drop to zero as the
number of episodes experienced goes to infinity. Let Vsim(s) repre-
sent the value of state s obtained from simulated experience, hence-
forth known as simulated value. Let Vreal(s) denote the value ob-
tained from real experience, henceforth known as real value. Then
value V (s) for state s is:

V (s) =
wrealVreal(s) + wsimVsim(s)

wreal + wsim
(2)

where wreal, wsim are the weights of real value and simulated
value, respectively. If action models or the learning process of Vsim

are not reliable, weights should be updated so that V (s) approxi-
mates Vreal as the number of experienced episodes goes to infinity.

For a state st, we compute the value Vsim(st) as the average re-
turn obtained by starting at state st, and simulating partial episodes,
{st, st+1, ..., st+d}, until either a terminal state is found or a
threshold episode length is reached. At the final simulated state,
st+d, the value of Vreal(st+d) is taken as the reward for that
episode and is propagated through the simulated episode back to
st, the state where the simulation started. The simulation value
function is dependent on the real value function. Hence, it makes
sense to update the former only when the latter changes. Exlos up-
dates simulated values after experiencing an episode and updating
the real value function.

In essence, the simulation value function is a way to propagate real
experience to larger regions of state-space, effectively extracting
more information from each experienced episode. Smooth function
approximators perform a similar generalization but loosely based
on the assumption that state proximity corresponds to a proximity
in values. However, this is not necessarily a good assumption.
The simulation value function, however, generalizes based on the
structure of the reinforcement learning problem, considering how
actions affect the environment.

3.2 Incorporating Heuristic Estimates

In large state-spaces that result in lengthy episodes, a prior state-
value function is essential. When no experience has been collected,
algorithms can do no better than to select actions at random. Agents
acting randomly can take a prohibitively long time to reach termi-
nal states. In addition, it might take many episodes for a reasonable
region of state space to be evaluated. Another problem comes from
function approximation, which when lacking experience, generates
erroneous, non-zero values for unvisited regions of state-space. A
prior state-value function guides the agent in the initial stages of
learning and effectively reduces the influence of poor generaliza-
tion due to lack of experience. Consequently, Exlos supports the
inclusion of a prior state-value function which is combined with
both real and simulated value of a state according to:

V (s) =
wrealVreal(s) + wsimVsim(s) + wpriorVprior(s)

wreal + wsim + wprior
(3)

The weight wprior may be a function of state but for simplicity, we
consider it a constant. The contribution of Vprior to V (s) should
approach zero as experience is collected. This can be achieved by
having wreal represent the number of visits to state s. In that situ-
ation a constant wprior represents the experience contained in the
the prior value function.

3.3 Online Search

In computer chess, the minimax planning algorithm assumes that
the value function is not optimal, and therefore creates a search pro-
cess at each decision state, attempting to improve its action-value
estimates. In reinforcement learning the focus is on learning the
value function and, in most cases, no online search is performed.
This is acceptable if one assumes the value function converges to
the target value function, which is the optimal value function for
off-policy learning, and may or may not be for on-policy learning.
However, value functions represented by function approximators
converge to an approximation of the target value function. Of-
ten, the estimated value function exhibits artifacts related to the
functional family of the approximator. For example, multi-layer
perceptrons with logistic neurons typically exhibit long and nar-
row ridges, whereas radial-basis function (RBF) networks generate
bumpy surfaces. An online search process can look past those ar-
tifacts and correct local inaccuracies, greatly alleviating the need
for a locally accurate function approximator. In turn this allows the
use of smoother function approximators that are likely to generalize
better. Hence, online search should be an essential part of any RL
algorithm that relies on function approximation.
Searching is a non-trivial process in MDPs and increasingly so in
continuous environments. The approach we propose considers each
search as a reinforcement learning problem in a local environment
extracted from the original environment. At decision state s, Ex-
los starts a reinforcement learning problem with starting state s
and with modified terminal conditions. For the map environment
defined in the beginning of this chapter Exlos creates a smaller
squared map, centered in respect to the current position of the RL
agent. The set of terminal positions for this new environment in-
cludes all terminal positions of the original environment that lie
inside the squared region, plus all positions that lie outside the
squared region. In other words, a simulated episode is terminated
if the agent either reaches a terminal position or reaches a posi-
tion outside the squared region. For positions outside the squared
region, the experience value Vreal is taken as the reward for that
position.

Computational efficiency is improved by limiting the situations
where the online search procedure is executed. Instead of deter-
mining an ephemeral local value function at each decision step, the
value function is stored and queried in future decisions. For sim-
plicity, the validity of the local value function is considered to be
the state-space where it was computed. When the agent leaves the
local environment, the local value function is discarded and will
not be available even if the agent returns to states belonging to the
local environment. Whereas traditional planning methods output
sequences of actions, Exlos’s online search outputs a policy in the
form of a local value function. Therefore, Exlos is able to adapt
to stochastic events whereas traditional planning is bound to fol-
low the sequence of actions in the plan, irrespective of the actual
state transitions that occur. In addition to reusing the value func-
tion, Exlos only performs online search where it is most beneficial
- when the algorithm reaches a local maxima of the value function.



Since hill-climbing based on one-step lookups of the global value
function is ineffective at escaping local maxima, Exlos invokes the
search procedure, broadening the region of state-space effectively
considered when deciding the next action to take.

3.4 Exploration

It is common for reinforcement learning agents to use ε-greedy or
a softmax distribution to enforce exploration of the state-action
space. We argue that such policies lack an adequate system that
promotes exploration of rarely-visited states. Policies which rely
on random behavior to explore the state-space are not appropriate
for problems where the environment has a tendency to transition to
low-reward states. This is the case in the map environment and in
competitive games in general, where opponents constantly exploit
sub-optimal decisions made by the reinforcement learning agent.
We have analysed an algorithm which encourages exploration
through a different mechanism - UCT. UCT explores state-action
space by acting greedily in respect to an action-value function
that increases the value of actions which are not taken regularly.
This is a more effective method of exploration because it forces
the algorithm to direct itself to states and actions which are
rarely taken. We propose a mechanism inspired by UCT which
encourages exploration by increasing or decreasing the value of
states, resulting in a corresponding increase or decrease in action
values.

Exlos reduces the values of visited states and increases the value of
non-visited states. The bias, βoffline(s), is determined by:

βoffline(s) = c

√
ln(N)

T (s)
(4)

where N is the number of episodes experienced and T (s) is the
number of episodes in which state s was visited. The value of a
state becomes:

Vexplor(s) = V (s) + βoffline(s) (5)

The final ingredient that completes Exlos is an additional bias value
that increases exploration within an episode (which is already guar-
anteed by the stochastic policy). Denote the bias as βonline. The
value for a state s becomes:

Vexplor(s) = V (s) + βoffline(s) + βonline(s) (6)

βonline is an ephemeral function which is reset at the end of each
episode. It is the sum of two components, one that incites explo-
ration by devaluing visited states during the episode and one that
devalues local maxima found.

3.5 Overview of Exlos

Figure 1 summarizes the structure of Exlos.

Let us go through the decision and learning process of Exlos.
A weighted average (3) combines a prior value function, Vprior ,
an experience-based value function, Vreal and a simulation-based
value function, Vsim:

V1(s) =
wrealVreal(s) + wsimVsim(s) + wpriorVprior(s)

wreal + wsim + wprior

Figure 1: Exlos structure. Dashed lines represent offline connec-
tions that are not active during execution of an episode.

The simulation value training algorithm updates Vsim from values
of Vreal and both Vreal and Vsim are estimated using function ap-
proximators. Visit counters are used to determined wreal. The ex-
ploration module encourages exploration across episodes through
an added bias signal, βoffline and exploration within an episode
through βonline:

V (s) = V1(s) + βoffline(s) + βonline(s)

Given a state-value function and knowledge of action models,
action-values are computed:

Q(s, a) = E[V (s′) | s, a] =
∑
s′

P (s′|s, a)V (s′)

With action-values calculated, the decision module picks actions
following a softmax policy. In addition, an online search procedure
is invoked whenever a (local) maximum of the state-value function
is found. The search solves a reinforcement learning problem in a
simulated local environment with Vreal(s) as the source of rewards
as well as a prior for the local value function. The value function
outputted by the search is used as replacement for Vreal(s).

4 Testing Environment

We implemented a set of two-dimensional rectangular maps, each
map being an independent environment. The environments are
episodic with fixed terminal states and each state is a position
{x, y} of the map. There are two versions of the map environments.
A discrete version (a tile-based map) where x and y must be inte-
gers, and a continuous version where x and y are real-valued. Cer-
tain states cannot be visited and no action will generate them. They
are represented as black squares in the map. For all purposes, they
are not part of the state-space. Denote these states walls. Rewards
are zero in all states except terminal states.There are two types of
terminal states. Winning states and losing states. In a winning state
the reward given is +1. Conversely, in a losing state the reward
is −1. At each state there are four actions: move up, move down,
move left and move right. The moves are not deterministic. With
a certain probability a move in any direction will result in moving
one tile in the direction of the closest losing state. This mimics
an adversarial environment where the opponent leads the reinforce-
ment learning agent to a losing state. In the case of continuous state
maps, the set of actions is augmented with temporally-extended ac-
tions that perform movements across greater distances than the base
four actions. These actions are sampled during the execution of
each episode and consist of movements to locations sampled ran-
domly from a circular area centered at the state at which the actions
are available. The reinforcement learning agent solves a discounted
reward problem.



5 Results

Figure 2: Rewards obtained by popular reinforcement learning al-
gorithms on two different, discrete map environments of small di-
mensions.

Figure 3: A map with 1200x800 tiles. Black positions are walls,
states that the agent cannot visit. The start location is in the top
left. Small circles are winning locations, larger circles are losing
locations. On the left the state-value function is shown, and on
the right an heat map of the states visited by the agent during the
learning process. Learning was performed for 200 episodes.

6 Conclusions

We have motivated the research of real-time strategy game AI
as a simulation environment for the development of novel and
efficient learning algorithms that operate in complex, large-scale,
stochastic environments with continuous state-action spaces and
temporally-extended actions. In addition, we introduced Exlos, an
effective on-policy Monte-Carlo algorithm. Exlos is a model-based
algorithm that learns a state-value function. It encourages explo-
ration of state-space by having two exploration signals, one driving
exploration across episodes and the other enforcing exploration
within an episode. The former is a a state-space version of the
exploration bias found in UCT whereas the latter aids the algorithm
to escape (local) maxima of the value function. To extract the most
knowledge possible from each experienced episode, an additional
state-value function is learned, the simulation value-function.
It is determined by simulating short-duration partial episodes
that bootstrap from the actual value-function learned from real
experience. Exlos decision making is extended by an online search
process. Online search is adapted to continuous state-action spaces
by considering it as a reinforcement learning problem defined
for a local environment analogous to the original environment.
Thus, any algorithm that operates in the original environment
can potentially be used for online search. Online search is
computationally expensive and must be seldom relied upon. In
Exlos, computational efficiency is improved by invoking online
search only when it is most crucial - when a (local) maxima at a
non-terminal state.

Exlos operating over a tabular representation of the state-value
function was compared to Q-learning, Q(λ), on-policy Monte-Carlo
and Sarsa(λ). In small-scale maps, Exlos learned approximately
optimal value functions faster than the remaining algorithms. Ex-

los was shown to learn effectively on a large map with continuous
state and action spaces and temporally-extended actions. In that
map, near-optimal policies may produce plans with a thousand or
more actions. No other algorithms were tested in that environment
but, to our knowledge, very few algorithms in existence can cope
with such complexity.

Exlos was not implemented in an actual RTS-game environment;
this does not detract from the developed methods and tests per-
formed since the testing environment mimics most of what is ex-
pected from a RTS game.

References

BURO, M. 2004. Call for AI research in RTS games. In Pro-
ceedings of the AAAI Workshop on AI in Games, AAAI Press,
139–141.

ENTERTAINMENT SOFTWARE ASSOCIATION, 2009. 2009 sales,
demographics and usage data. Essential facts about the computer
and video game industry.

GUSMAO, A. 2011. Reinforcement Learning in Real-Time Strategy
Games. Master’s thesis, Aalto School of Science, Department of
Information and Computer Science.

HSIEH, J.-L., AND SUN, C.-T. 2008. Building a player strat-
egy model by analyzing replays of real-time strategy games. In
Proceedings of IEEE International Joint Conference on Neural
Networks, 3106–3111.

KOCSIS, L., AND SZEPESVÁRI, C. Bandit based Monte-Carlo
planning. In Proceedings of ECML 2006, vol. 4212 of LNCS.

MAEI, H., SZEPESVÁRI, C., BHATNAGAR, S., SILVER, D., PRE-
CUP, D., AND SUTTON, R. 2009. Convergent temporal-
difference learning with arbitrary smooth function approxima-
tion. In NIPS, 1204–1212.

MAEI, H., SZEPESVÁRI, C., BHATNAGAR, S., AND SUTTON, R.
2010. Toward off-policy learning control with function approx-
imation. In ICML, Omnipress, J. Fürnkranz and T. Joachims,
Eds., 719–726.

MOLINEAUX, M., AHA, D. W., AND MOORE, P. 2009. Learning
continuous action models in a real-time strategy environment. In
Proceedings of the Twenty-First International Florida Artificial
Intelligence Research Society Conference (FLAIRS 2009).

SUTTON, R. S., AND BARTO, A. G. 1998. Reinforcement Learn-
ing: An Introduction. MIT Press.

WEBER, B., MAWHORTER, P., MATEAS, M., AND JHALA, A.
2010. Reactive planning idioms for multi-scale game AI. In
IEEE Symposium on Computational Intelligence and Games
(CIG), 115–122.


