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a b s t r a c t

In this paper, we study fundamental properties of the Self-Organizing Map (SOM) and the Generative
Topographic Mapping (GTM), ramifications of the initialization of the algorithms and properties of the
algorithms in the presence of missing data. We show that the commonly used principal component
analysis (PCA) initialization of the GTM does not guarantee good learning results with high-dimensional
data. Initializing the GTM with the SOM is shown to yield improvements in self-organization with three
high-dimensional data sets: commonly used MNIST and ISOLET data sets and epigenomic ENCODE data
set. We also propose a revision of handling missing data to the batch SOM algorithm called the
Imputation SOM and show that the new algorithm is more robust in the presence of missing data.
We benchmark the performance of the topographic mappings in the missing value imputation task and
conclude that there are better methods for this particular task. Finally, we announce a revised version of
the SOM Toolbox for Matlab with added GTM functionality.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Topographic mappings, such as the Self-Organizing Map (SOM)
[1,2] and the Generative Topographic Mapping (GTM) [3], are
useful tools in inspecting and visualizing high-dimensional data.
The SOM was originally inspired by neuroscientific research on
cortical organization, and the algorithm models the basic princi-
ples of the organization process at a general level. The SOM has
been shown to serve its purpose well, especially when the
faithfulness (precision) of the mapping from a high-dimensional
space is considered [4]. In practice, the SOM has proved to be a
robust approach tested in thousands of different applications
[5–7]. The GTM was inspired by the SOM algorithm, while
operating in the probabilistic framework which provides well-
founded regularization and model comparison [3]. In this paper,
we show that both methods have their own strengths over the
other and the methods may even benefit each other. We

investigate applicability of the methods in high-dimensional,
real-life data sets and provide methodological improvements in
the presence of missing data.

Visualization of biological and life science data is an important
task in the rapidly evolving field of bioinformatics. New kinds of
measurement techniques and visualization methods appear at a
constant pace (see, e.g., www.vizbi.org), but many practitioners
still turn to rudimentary methods, such as hierarchical cluster-
ing and heatmaps. Recently, [8,9] have used the SOM in order to
cluster genome segmentation regions based on different assay
signal characteristics gathered in the Encyclopedia of DNA
Elements (ENCODE) project. The SOM is particularly well suited
for many visualization tasks on biological data because of its
computational simplicity and relatively loose prior assumptions
on the data. As we will show, the Gaussian noise model assumed
in the GTM is a critical constraint for many high dimensional data
sets. Furthermore, a SOM-type mapping has also been adapted to
arbitrary data for which the mutual pairwise distances are defined
[10] allowing one to compute SOMs only based on pairwise
distance matrices. A comprehensive review of visualization methods
for large data sets can be found, e.g., in [11].

Missing data are a common problem in many data-dependent
fields ranging from social sciences to economics and from political
research to entertainment industry. In fields where conducting
surveys or polls is commonplace, missing data occurs, for instance,
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when people refuse to answer to specific questions or some people
cannot be contacted. In the movie business, predicting customer
preferences is literally a million dollar quest. The Netflix Prize
(see, e.g., [12]) was an open competition to devise the best
recommendation system to predict user ratings for films based
on previous ratings. In the second part of this paper, we present a
revision to the batch SOM algorithm, called the Imputation SOM,
which is shown to improve the behavior of the SOM algorithm in
the presence of missing data.

This paper is organized as follows. Sections 2 and 3 introduce
the SOM and the GTM models, respectively. In Section 4, the
properties of the models are compared in terms of self-
organization and convergence. We show that using the SOM for
initializing the GTM may improve the learning results in some
cases. Section 5 explains the treatment of missing values in
the GTM and adapts the same principled way into the SOM.
Performance of the algorithms is compared in a missing value
imputation task. Finally, the results and possible future work are
discussed in Section 6.

In all the experiments, the SOM Toolbox [13] and Netlab [14]
software packages are used. The GTM scripts in Netlab are revised
to handle data with missing values and a sequential training
algorithm is contributed. Also, an issue of small probabilities being
rounded to zero due to insufficient floating point precision was
solved. Finally, we announce a revised version of the SOM Toolbox
which incorporates GTM functionality. An up-to-date version of
the SOM Toolbox is available at

http://research.ics.aalto.fi/software/somtoolbox

2. Self-organizing map

The self-organizing map (SOM) [2] discovers some underlying
structure in data using K map units, prototypes or reference
vectors fmig. For the prototypes, explicit neighborhood relations
have been defined. The classical sequential SOM algorithm pro-
ceeds by processing one data point xðtÞ at a time. Euclidean, or any
other suitable distance measure is used to find the best-matching
unit given by mcðxðtÞÞ ¼ arg mini‖xðtÞ�mi‖. The reference vectors
are then updated using the update rule miðtþ1Þ ¼miðtÞþ
hciðtÞðxðtÞ�miðtÞÞ, where an explicit neighborhood function
hci ¼ αðtÞ � expf�‖rc�ri‖2=2σ2ðtÞg is used in order to obtain topo-
logical mapping. In the neighborhood function, ‖rc�ri‖ is the
distance between the best-matching unit rc and unit i in the array,
0oαðtÞo1 is scalar-valued learning-rate factor and σðtÞ is the
width of the neighborhood kernel.

2.1. Batch SOM

In the Batch SOM, the reference vectors are updated using all
data (or a mini-batch, a part of the data) at once and weighted
accordingly. The batch update rule is

mi ¼
∑
n
hnixn

∑
j
hni

; ð1Þ

where the index n runs over the data vectors whose best-matching
units satisfy hni40, that is, all data points up to the range of the
neighborhood function are taken into account.

2.2. Quality and size of the SOM

Selecting the size of the array of map units in the SOM is a
subtle task. Previously many solutions, such as hierarchical [15]
and growing maps [16,17], have been proposed to tackle this issue.
The question of the size can be approached from the point of view

of different quality measures. Two most commonly used error
measures are the quantization error and the topological error [2].
The former measures the mean of the reconstruction errors
‖x�mc‖ when each data point used in learning is replaced by its
best-matching unit. The latter measures the proportion of data
points for which the two nearest map units are not neighbors
in the array topology. As the number of map units increases,
quantization error decreases and topological error tends to
increase. Hence, there is no straightforward way of choosing the
number of map units based on the measures above. Topographic
preservation has been studied in detail, e.g., in [18,4,19]. In this
work, we use an error measure proposed in [20]. This combined
error is a sum of the quantization error and the distance from the
best-matching unit to the second-best-matching unit of each data
vector along the shortest path following the neighborhood rela-
tions. More formally, using the notation in [20], the distance
metric used is given by

dðxÞ ¼ ‖x�mc‖þ ∑
Kc0 ;i �1

k ¼ 0
‖mIiðkÞ �mIiðkþ1Þ‖; ð2Þ

where the first term is the quantization error and the second term
computes the distance between the BMU and the second-best-
matching unit along the map grid. Given a training data fxngNn ¼ 1,
combined error is given by

EC ¼ ∑
N

n ¼ 1
dðxnÞ; ð3Þ

where n runs over all the data vectors. We have added this feature
in the SOM Toolbox som_quality function and demonstrate its
use in the experiments.

3. Generative topographic mapping

The Generative Topographic Mapping (GTM) [3,21] is a non-
linear latent variable model which was proposed as a probabilistic
alternative to the SOM. Loosely speaking, it extends the SOM in a
similar manner as Gaussian mixture model extends k-means
clustering. This is achieved by working in a probabilistic frame-
work where data vectors have posterior probabilities given a map
unit. Hence, instead of possessing only one best-matching unit,
each data vector contributes to many reference vectors directly.

The GTM can be seen consisting of three parts: (1) discrete set
of points in usually one or two-dimensional latent space, (2) non-
linear mapping, usually radial basis function (RBF) network,
between the latent space and the data space, and (3) a Gaussian
noise model in the data space such that the resulting model is a
constrained mixture of Gaussians. In this paper, latent points fuig,
which are arranged in a regular grid, are mapped to the data space
using M fixed radial basis functions ϕðuiÞ ¼ fϕjðuiÞg, where
ϕjðuiÞ ¼ expf�‖cj�ui‖=σ2g, σ is the width parameter of the RBFs,
fcjg are the RBF centers and j¼1,…,M. The number of RBFs, M, is a
free parameter which has to be chosen by the experimenter. The
radius of the RBFs is chosen according to σ ¼ dmax=

ffiffiffiffiffi
M

p
, where dmax

is the maximum distance between two RBF centers (this is a
textbook choice for RBF networks; see, e.g. [22]). The node
locations in latent space, ui, define a corresponding set of refer-
ence vectors mi ¼WϕðuiÞ in the data space, where W is a weight
matrix defining the mapping from the latent space to the data
space. In this work, each reference vector mi serves as a center of
an isotropic Gaussian distribution in the data space

pðxjmiÞ ¼
β
2π

� �D=2

exp �β
2
‖mi�x‖2

� �
; ð4Þ

where β is the precision or inverse variance. The Gaussian
distribution above also represents a noise model accounting for
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the fact that the data will not be confined precisely to the lower-
dimensional manifold in the data space. More general noise
models have been proposed [21].

The probability density function of the GTM is obtained by
summing over the Gaussian components yielding

pðxjW ;βÞ ¼ ∑
K

i ¼ 1
PðmiÞpðxjmiÞ ¼ ∑

K

i ¼ 1

1
K

β
2π

� �D=2

exp �β
2
‖mi�x‖2

� �
;

ð5Þ
where K is the total number grid points in the latent space, or map
units in the SOM terminology, and the prior probabilities PðmiÞ are
given equal probabilities 1/K.

The GTM represents a parametric probability density model,
with parameters W and β, and it can be fitted to a data set fxng by
maximum likelihood. The log-likelihood function of the GTM is
given by

log ðLðW ;βÞÞ ¼ ∑
N

n ¼ 1
log pðxnjW ;βÞ; ð6Þ

where pðxnjW ;βÞ is given by (5) and independent, identically
distributed (iid) data is assumed. We solved numerical issues in
Netlab GTM implementation [14] by computing log-likelihood as
follows:

log ðLðW ;βÞÞ ¼ logpðxÞmaxþ log ∑
N

n ¼ 1
expðlogpðxnÞ� logpðxÞmaxÞ

� �
;

ð7Þ
where pðxÞmax ¼maxn pðxnjW ;βÞ. In the experiments, negative
log-likelihood-per-sample, given by

EGTM ¼ � log ðLðW ;βÞÞ=N; ð8Þ
is used as a training error. The error can be minimized using the
EM algorithm or alternatively any standard non-linear optimiza-
tion technique.

4. Self-organization and convergence

Both the GTM and the batch SOM require careful initialization
in order to self-organize [23,24]. For both algorithms, the common
choice is to initialize according to the plane spanned by the two
main principal components of the data. In the batch SOM, the
neighborhood is annealed during the learning which decreases the
rigidness of the map. The most important advantages of the batch
SOM when compared to the classical sequential SOM are quick
convergence and computational simplicity [24].

As we will show, initializing the GTM using PCA does not
always lead to appropriate results. Instead, we propose using the
batch SOM for initializing the GTM. In the SOM initialization, using
few epochs of ’rough training’ with wide neighborhood will
suffice. Next, W can be determined by minimizing the error
function:

Einit ¼
1
2
∑
i
‖WϕðuiÞ�mSOM

i ‖; ð9Þ

where mSOM
i are the reference vectors of the initializing SOM. The

initializing SOM can, in turn, be initialized using PCA, which makes
the whole process deterministic.

Differences between the SOM and the GTM, and efficacy of the
SOM initialization are demonstrated using several high-
dimensional data sets. These data sets were chosen to demon-
strate cases where the different initialization methods make a
difference to the resulting mapping.

In the first example, we use the ISOLET data set from the UCI
machine learning repository [25]. The data contains 7797 spoken
samples of the letters of the alphabet. The 617 features are

described in [26] and include, e.g., spectral coefficients, contour
features and sonorant features. The data was normalized to have
zero mean and unit variance. The class labels, i.e., the letter
identifiers, were not used in training of the maps.

The appropriate model complexity for the GTM, i.e, the number
of RBFs and latent points, can be chosen, e.g., by cross-validating
the negative log-likelihood. Using cross-validation for the ISOLET
data, a suitable number of RBFs was found to be 400 (20�20) and
a suitable number of map units 4004 (77�52). We used the same
data to demonstrate effects of the SOM initialization already in
[27]. However, after improving the Netlab GTM functions to tackle
numerical issues (see Eq. (7)), the results obtained are significantly
different.

Fig. 1 shows two GTM visualization of the ISOLET data. In Fig. 1
(a), PCA initialization was used, whereas in Fig. 1(b) the GTM was
initialized using the SOM. The map initialized using the SOM has
better cluster structure where most of the letters form distinct
clusters. Furthermore, similar sounding letters are mapped close
to each other. On the left side of the map, the data is more
ambiguous and different letters, such as B, D, E, P, and V, are mixed
together.

The GTM in Fig. 1(a), initialized with PCA, also has some cluster
structure, but most of the letters are spread over wider area
compared to the Fig. 1(b). However, when comparing to the results
in [27], where the GTM with PCA initialization was not able to
learn any interesting structure in the ISOLET data, there is a
significant improvement caused by our implementations of

Fig. 1. A GTM of the ISOLET data with 4004 (77�52) map units and 400 (20�20)
RBFs initialized using (a) PCA and (b) the SOM. Bootstrapped mean training error,
EGTM (8), is (a) 563.1 and (b) 545.8. (a) PCA initialization. (b) SOM initialization.
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standard numerical precision tricks in the GTM algorithms. Evolu-
tion of bootstrapped training errors for the both GTMs is shown in
Fig. 2(a). The GTM with the SOM initialization converges to lower
training error, EGTM (8). Mean bootstrap estimates (standard
deviations in parentheses) for final training errors are 563.1 (1.4)
for PCA initialization and 545.8 (1.3) for SOM initialization.

The MNIST data set (see http://yann.lecun.com/exdb/mnist/)
contains 60 000 training samples and 10 000 test instances of
handwritten digits. We use this separation in order to assess
generalization of the GTM. Each feature in the data set is a gray
scale value of a pixel, between zero and one. Fig. 3 shows the
MNIST test instances mapped on GTMs trained using the MNIST
training data with (a) PCA and (b) the SOM initialization. The maps
were trained using the sequential training algorithm, which
speeds up the convergence [21]. When mini-batch size of 10 000
was used, only five epochs of training was needed for sufficient
convergence. The evolution of bootstrapped training errors is
shown in Fig. 2(b). When comparing the resulting GTMs, the same
observations can be made as for the ISOLET data. Both GTMs
show some cluster structure, but this structure is clearer in the
GTM initialized using the SOM. Bootstrapped mean estimates and
standard deviations in parenthesis for test error (8) evaluated
using test data are �255.0 (1.4) and �249.7 (1.3) for SOM and PCA
initialization, respectively (standard deviations in parentheses).

For third high-dimensional data demonstration we use epige-
nomic measurements obtained by the ENCODE consortium [8].
The ENCODE data was recently used in [9] in order to train a large
SOM to identify complex relationships in epigenomic measure-
ments and other genomic data. The authors computed the RPKM
(Reads Per Kilobase per Million reads) values from the signal of 72
measurements over six cell lines on 1.5 million genome segments.
The resulting data matrix was used to train a SOM of size 30 times
45 units. The clusters, revealed by SOM, are associated with
general and cell type-specific gene activity, and regulatory regions
such as promoters and enhancers. The authors show that the
distinct combination of epigenetic signals associated to a particu-
lar cluster can be used to find new genomic loci of that particular
type. Here we use ChIP-seq read density profiles of only five
different histone modifications (H3K4me1, H3K4me3, H3K79me2
and H3K9ac and H3K27me3) in human chronic myelogenous
leukemia (K562) cell line. The goal is to investigate whether
enhancers, promoters and random background regions form dis-
tinct clusters in GTM. The 1000 most significant p300 binding sites
distal to any transcription start site (TSS), and the 1000 most
significant DNase I hypersensitivity sites (DHSs) overlapping any
TSS were used as a set of true enhancers and active promoters,
respectively. In addition, histone modification signals at 1000

random locations were used as background samples. The random
locations were sampled from genomic regions having the total
read density signal greater or equal to 10, hence avoiding sampling
regions with zero signal. The read density profiles at these sites
were extracted using a 5000 base pair window centered on the
region of interest, and further averaged over every fifth nucleotide.
Finally the five histone modification signal profiles were
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Fig. 2. Bootstrapped means and ranges of training error (8) evolution of GTMs trained using (a) the ISOLET data and (b) the MNIST data. For the MNIST data, sequential
training with mini-batch size of 10 000 is used and only five training epochs is needed. In both cases, the GTMs with the SOM initialization converge to smaller training error.
(a) ISOLET data. (b) MNIST data.

Fig. 3. The mapping of MNIST validation data on GTMs trained using MNIST
training data and initialized using (a) PCA and (b) the SOM. Bootstrapped mean test
error, EGTM (8), is (a) �249.7 and (b) �255.0. (a) PCA initialization. (b) SOM
initialization.
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concatenated to form 5000 dimensional vectors. The data was
normalized by subtracting the mean and dividing by the standard
deviation.

Fig. 4 shows GTMs trained using the ENCODE data. The
difference between PCA and the SOM initializations is obvious,
even though the difference of the bootstrapped final training
errors, EGTM (8) (standard deviation in parentheses), is only
less than 2%, 4662.3 (53.0) vs. 4463.5 (51.1) for PCA and SOM
initialization, respectively. In Fig. 4(b), different genomic regions,
promoters (green), enhancers (red) and background sequences
(blue) are clustered in distinct regions of the map. The mixing of
enhancers, promoters and random background clusters may
reflect the fact that not all TSS overlapping DHS or TSS-distal
p300-binding sites necessarily are active promoters and enhancers,
respectively, and hence do not show promoter or enhancer-specific
epigenetic marks. The random background samples may also contain
active promoters and enhancers.

5. Missing values

In this section, we discuss the behavior of topographic map-
pings in the presence of missing values. We start by showing how
missing values are treated in the GTM and develop the same idea
for the SOM. The section is concluded by an experimental study

where even low-dimensional data sets reveal differences between
the studied algorithms.

In all what follows, missing-at-random (MAR) data is assumed.
This means that the probability of missingness is independent of
missing values given the observed data. Even though this assump-
tion can be questioned in many real-life scenarios, this is usually a
reasonable assumption given that only a small proportion of the
data is missing.

5.1. GTM and missing values

The GTM offers a robust framework for dealing with missing
values, noted already in [3]. As with any method operating in the
probabilistic framework, missing values can be handled by inte-
grating them out. If the missing values are MAR, this does not
introduce any bias. Hence, the maximum-likelihood estimation of
the model parameters θ reduces to maximizing LðθjXobsÞ ¼
pðXobsjθÞ, where Xobs denotes the observed data. For the GTM,
the likelihood function is given by

LðW ;βjXobsÞ ¼ pðXobsjW ;βÞ ¼
Z

pðXobsjXmis;W ;βÞ dXmis; ð10Þ

where Xmis denotes the missing or unobserved data. This integra-
tion can be performed analytically for the standard GTM with an
isotropic noise model.

The handling of missing data can be incorporated in the EM
algorithm in a straightforward manner. In the E-step, where
posterior probabilities of data vectors given the map units are
calculated, missing values are simply omitted. That is, the distance
between the map units and a data vector with missing value(s) is
evaluated only in the dimensions observed for the corresponding
data vector. In the M-step, the expected values of the missing data
and other sufficient statistics are used. The details of learning
the GTM with missing values using the EM algorithm can be found
in [28].

After the training, there are at least two possibilities to perform
imputation in the GTM. One may use the expected values
EðXmisjXobs;W ;βÞ or impute using the maximum-a-posteriori
(MAP) estimates pMAPðXmisjXobs;W ;βÞ which takes the missing
values from the most similar map unit. Additionally, multiple
imputations can be conducted by sampling the posterior distribu-
tion pðXmisjXobs;W ;βÞ.

5.2. SOM and missing values

The SOM has been used for missing value imputation with
many kinds of data, such as survey data [29,30], socioeconomic
data [31], industrial data [32,33] and climate data [34]. In most of
the SOM literature, the missing values are treated as was proposed
in [31]. The best-matching units for the data vectors with missing
values are computed by omitting the missing values. This is
consistent with the procedure in the probabilistic setting. The
missing values are ignored also while updating the reference
vectors. This approach is implemented in the widely used SOM
Toolbox [13]. After the training, missing values can be filled
according to the best-matching units of the corresponding data
vectors.

5.2.1. Imputation SOM
A novel approach, named the Imputation SOM (impSOM), stems

from the way missing values are treated while using the GTM with
an isotropic noise model (see above). The distances between data
points and reference vectors are evaluated as described above,
since this already corresponds to the statistical approach. While
updating the reference vectors, instead of ignoring the missing

Fig. 4. GTMs trained using epigenomic data measured by the ENCODE consortium
and initialized using (a) PCA and (b) the SOM. The promoter (green), enhancer (red)
and background (blue) samples form semi-consistent clusters. Jitter is added
to make data points distinguishable. (a) PCA initialization. (b) SOM initialization.
(For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)
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data their expected values

x̂ni;mis ¼ E½xn;misjmi� ¼mi ð11Þ
are used. Above, expectation is used in an informal sense, since the
SOM is not a statistical model. This results in an update rule,
where the reference vectors are updated according to (1) such that
for each unobserved component of xn the current value mi is used.
Thus, the data with missing values contribute by restraining the
reference vectors in the dimensions corresponding to the missing
values.

5.3. Model selection

This section demonstrates several aspects of model selection.
The wine data set from UCI machine learning repository is used. It
contains 13 chemical properties of 178 wines that come from three
different wine regions. The data was normalized to have zero
mean and unit variance and 5, 10, 30 and 50% of the values were
randomly removed for validation, resulting in missing-completely-
at-random (MCAR) data set.

Selecting the number of map units for the SOM is a subtle task.
If the purpose of using the SOM is missing value imputation, one
does not have the RMS plot of Fig. 5(b) available without first
performing some kind of validation. Moreover, traditional SOM
error measures, such as quantization and topological error, or
combined error (3) do not give any straightforward way of
determining a suitable map size. These difficulties in mind, the
number of map units was deliberately increased above the number
of data points in both this and the next section. This allowed
experimenting the hypothesis that the excess map units

interpolate the data space allowing more precise imputation
(see, e.g., [34,28]).

Fig. 5 shows the combined error (3) and RMS imputation error
with different map sizes K. The results are shown with 50%
missing data, since the differences between the methods are
emphasized when the missingness ratio is increased. The Imputa-
tion SOM obtains lower combined error with any map size
ðpo10�6), two-sample t-test was used for all statistical tests.
Fig. 5(b) shows that the Imputation SOM is more robust in terms of
the RMS imputation error when the map size is increased, but the
batch SOM performs better with small K (significant when Kr10
and KZ40, po10�6). The larger the map, the bigger the differ-
ence in the RMS imputations error in advantage of the Imputation
SOM. Both methods perform best imputation when the grid size is
close to 20 map units, hence K¼20 was used in the subsequent
comparison with 50% missing data.

Fig. 6 shows the behavior of the RMS imputation error with the
different GTM imputation techniques. Error bars are omitted in
order to avoid clutter. The GTM with M¼9 (3�3) RBFs was
selected using cross-validation. In Fig. 6(a) with 10% missing data,
all the GTM imputation techniques improve as the map size is
increased. However, maps with PCA initialization obtain relatively
good results (no statistical difference to largest maps) already at
K¼9, hence this map size was chosen for subsequent comparison.
In Fig. 6(b) with 50% missing data, the behavior is very different. It
is notable, that the best imputation results are obtained using the
smallest reasonable map size, three map units. When the GTM
with 3 map units is used, the SOM initialization was not feasible,
since only rectangular grid sizes are implemented in the SOM
toolbox. In both figures, difference between MAP and expected
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Fig. 5. (a) The mean combined error and (b) the mean RMS imputation error with respect to number of map units with wine data and 50% of missing data (note the
nonlinear x-axis). The error bars show the standard deviation of the data. In (a), the methods are significantly different for all map sizes, K, ðpo10�6Þ and in (b), the
difference in means is significant when Kr10 and KZ40 ðpo10�6Þ. In both figures, the Imputation SOM is more robust when the grid size is increased. (a) Combined error.
(b) RMS imputation error.
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value imputation is significant for all K ðpo10�15Þ. In Fig. 6(b),
there is still some evidence supporting the initialization with the
SOM reference vector; when K¼15, the RMS imputation error is
slightly better using the SOM initialization ðpo0:005Þ.

Table 1 summarizes the results of the experiments with the
wine data set. One hundred randomly generated data sets with
each missingness ratio were imputed using all the methods.
For each missingness ratio, the smallest map size whose result

was not statistically significantly worse than the best RMS impu-
tation error, was chosen. The resulting map sizes were 63 (5%), 63
(10%), 40 (20%), 40 (30%), 20 (50%) map units for the SOM and 99
(5%), 99 (10%, SOM init), 9 (10%, PCA init), 4 (30%), 3 (50%, PCA init),
4 (50%, SOM init) map units for the GTM. Topographic mappings
are compared with naive mean imputation and Variational Baye-
sian PCA (VBPCA) [35], which can be used as a generic black box
imputation even with extremely sparse data. Comparison with the
VBPCA is used to evaluate the general usability of topographic
mappings in missing value imputation tasks. VBPCA can perform
automatic relevance detection (ARD), hence no model selection is
needed. We emphasize that more than two principal components
are used in VBPCA. The mean result and its standard deviation in
parentheses for each method and missingness ratio are listed. The
best result(s) for each missingness ratio are in bold face.

The SOM methods and GTM with expectation imputation
perform similarly except for 30% missingness ratio, when the
difference between the SOM methods and all GTM methods is
statistically significant ðpo0:01Þ. The GTM using the expected
values for imputation performs better compared to the MAP
estimation of the missing values ðpo10�4Þ. The difference
between VBPCA and the topographic methods is statistically
significant except for the 50% missingness ratio.

We also present the visualizations provided by these methods
when operating with 50% missing data in the Figs. 7 and 8. The
gray-scale coloring behind the SOM Figs. 7(a) and (b) show
U-Matrices of the maps. The three colors—blue, green and red—
represent wines from three different wine regions, and the size of
the colored markers in the SOMs is proportional to the number of
data vectors mapped to the corresponding map unit.

For both SOMs in Fig. 7, the RMS imputation errors are
relatively close: 0.812 for the batch SOM and 0.803 for the

Table 1
The means and the standard deviations (in parentheses) of the RMS imputation
errors for different imputation methods obtained by imputing a hundred data sets
with randomly generated missing data and four missingness proportions using the
wine data set. The best results for each missingness proportion is in bold face
(including the results which do not differ from the best statistically significantly).
SOM methods perform better compared to all GTM methods ðpo0:01Þ, when
missingness proportion is 30%. (n) GTM expectation imputation performs better
compared to MAP imputation for all missingness proportions (two last rows).

Method 5% 10% 30% 50%
Missing Missing Missing Missing

Mean imputation 1.01 (0.06) 1.01 (0.05) 1.01 (0.03) 1.01 (0.02)

VBPCA 0.71 (0.06) 0.72 (0.04) 0.77 (0.03) 0.82 (0.02)

SOM 0.74 (0.07) 0.75 (0.05) 0.78n (0.03) 0.83 (0.02)
ImpSOM 0.75 (0.07) 0.75 (0.05) 0.78n (0.03) 0.82 (0.02)

GTM exp, SOM init 0.75 (0.07) 0.75 (0.06) 0.79 (0.03) 0.82 (0.02)
GTM exp, PCA init 0.75 (0.08) 0.76 (0.06) 0.79 (0.03) 0.82 (0.02)
GTM MAP, SOM init 0.78 (0.07) 0.78 (0.06) 0.82 (0.03) 0.86 (0.03)
GTM MAP, PCA init 0.79 (0.08) 0.80 (0.06) 0.82 (0.03) 0.84 (0.02)

Fig. 7. Clustering of the wine data set with 50% missing data using (a) the batch SOM and (b) the Imputation SOM. A SOM with 21(7�3) map was used. The size of the
colored markers is proportional to the number of data vectors mapped to the corresponding map unit. (a) SOM. (b) impSOM. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)
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Imputation SOM. There are only minor differences between the
maps produced by the batch SOM and the Imputation SOM.

According to the validation, an optimal number of map units
for the GTM with 50% missingness ratio equals 3, hence the
resulting visualization, shown in Fig. 8(a), differs from the ones
obtained using the SOM. Gaussian jitter is added to distinguish
points in the figure. The latent points ui are assigned such that
they form an equilateral triangle in the latent space; a configura-
tion resembling the array of the hexagonal SOM. In the visualiza-
tions, the distances between the units are proportional to their
distances in the original data space, that is, dðui;ujÞpdðmi;mjÞ.
The resulting RMS imputation error is 0.808. It is notable, that the
GTM is able to provide results comparable with the SOM, with
only 3 map units. However, this is understandable since the data
actually consists of three different clusters, wines from three
distinct regions. Fig. 8(b) shows a GTM visualization using 20
(5�4) map units. In this example, the RMS imputation error
equals 0.798, which is slightly lower compared to the GTM with
three map units. The same realization of missing values was used

in both figures. Furthermore, for this data the GTM with both PCA
and the SOM initialization resulted in similar clustering. One
possible explanation to this is, that the data lies close to the linear
manifold spanned by the two principal components which makes
learning the GTM model from the PCA initialization a feasible task.

To conclude this section, there seems to be small pieces of
evidence—more robust imputation with increased grid size and
lower combined error—supporting the Imputation SOM over the
batch SOM. Regarding the GTM imputation, using the expectation
of missing values proved to be the superior over the MAP
estimates. This is natural, since using the MAP estimates discard
information and is rarely a wise choice when dealing with multi-
modal distributions.

5.4. ISOLET data

Finally, the methods are compared using the ISOLET data
introduced in Section 4. Fig. 9 illustrates differences between
the Imputation SOM and the batch SOM. The values are based

Fig. 8. Clustering of the wine data set with 50% missing data using the GTMwith (a) 3, and (b) 20 (5�4) map units. Gaussian jitter is added in (a). (a) 3 map units. (b) 20 map
units. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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on 10-fold cross-validation, where both error measures are eval-
uated using left-out validation data, and the means and standard
deviations (error bars) over validation folds are shown. Differences
in combined error (3) increase when the map size is grown. The
higher the proportion of missing data, the larger the difference in
terms of the combined error. Differences are highly significant
(po10�5 for all K) when missingness proportion is 30% or 50% but
is not significant ðp40:05Þ when 10% or 5% missing data is used.

There are significant differences error between the SOM
methods, with respect to RMS imputation error, only when
missingness proportion is 50%. In that case, the batch SOM
performs significantly ðpo10�3Þ better imputation with small
map sizes, when Kr1000, but the difference turns in favor of the
Imputation SOM when KZ7000.

Table 2 summarizes the results of the experiments with the
ISOLET data set. Ten randomly generated data sets with each
missingness ratio were imputed using the SOM methods, VBPCA
and mean imputation. For each missingness ratio, the smallest
SOM map size, whose result was not statistically significantly
worse than the best RMS imputation error, was chosen. The
resulting map sizes were K¼8000 for all SOMs except the batch
SOM with 50% missing data, in which case K¼4000. For all GTMs,
the best map size was K¼3500. The results are reported on data
normalized to zero mean and unit variance.

The results with ISOLET data reveal more substantial differ-
ences between the methods compared to the results in Table 1
with the low-dimensional wine data. The GTM is excluded from
the table, since we did not manage to thoroughly validate GTM
parameters (K and M) for all missingness ratios, due to increasing
computational burden when increasing the number of RBFs, M.
However, the best results we obtained using the GTM with
M¼400 (20�20) RBF centers were significantly worse than the
SOM results in Table 2. For the GTM with SOM initialization the
lowest obtained RMS imputation errors were greater than 0.7 and
with PCA initialization over 0.8. Differences between the SOM
methods are statistically significant with 30 and 50% missing data,
but in practice the differences are negligible compared to the
differences to VBPCA and the GTM. The best results were obtained
using VBPCA, which determines the number of components by
ARD and more than two components (latent dimensions) were
used. This suggests that topographic mappings are not particularly
suitable for missing value imputation and it might be beneficial to
impute the data with any robust imputation method before the
SOM or the GTM visualization.

6. Conclusions and discussion

In this paper, we have studied convergence properties of the
SOM and the GTM and their behavior in the presence of missing
data. We also showed that initializing the GTM with the SOM may
be beneficial in some cases where the GTM with the conventional

PCA initialization fails to fit the data. This was demonstrated using
the ISOLET, MNIST and ENCODE data sets. The initialization seems
to have very little effect with the wine data set, the data with
lowest dimensionality used in our experiments.

We have also proposed a novel way of treating missing
values in the SOM training called the Imputation SOM and
showed that this revision makes the SOM more robust in terms
of the combined error (3) when missing values are present.
The difference between the batch SOM and the Imputation SOM
is emphasized when the map size is increased. However, when the
main goal is to impute missing data, more well-founded ways,
such as multiple imputation by chained equations (MICE) [36,37] or
VBPCA, ought to be considered. In MICE, which is widely used in
missing value imputation tasks, each variable with missing data is
characterized by a separate conditional linear model. In the case,
where one aims at visualizing the data, one option (not investi-
gated here) would be to first impute the data using another
method, and use the SOM or the GTM for the visualization task
afterwards. It was also shown that if the GTM is used for missing
value imputation, expected values rather than MAP estimates
of missing values ought to be used. In the light of the imputation
results, it seems that the SOM initialization of the GTM improves
the learning, but the GTM performs worse in terms of RMS impu-
tation error compared to the SOM when using high-dimensional
ISOLET data set.

Our experiments were not suitable for comparing the CPU time
consumed by SOM and GTM since the GTM algorithm used in our
experiments was not implemented having computational effi-
ciency in mind. However, it is claimed in [3] that for both
algorithms, the dominant computational cost arises from the
evaluation of the Euclidean distances between data points and
reference vectors. This was verified to be true for GTMs with
relative small number of RBFs ðMo100Þ using the Matlab Profiler,
which measures where a program spends computational time.
However, when the number of RBFs is increased, which was the
case in ISOLET imputation experiments in Section 5.4, the compu-
tational cost becomes greater compared to the SOM.

In the future, it might be interesting to study whether the self-
organization of the GTM benefits from sequential training. In our
initial experiments, we have found that mini-batch training speeds
up the convergence, as proposed by [21]. Additionally, the
improvements developed to enhance the self-organization of the
batch SOM may be applied for the GTM, as well. The number of
RBFs, M, roughly corresponds to the width of the neighborhood
function in the SOM. The smaller M, i.e. less RBFs, the more rigid
the mapping. Thus, the effect of annealed neighborhood may be
achieved by increasing the number of RBFs during the learning. It
is also possible to use regularization, as was shown in [28], in
order to control the rigidness of the GTM.
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