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second player may choose to switch colors. When the

swap rule is used, it is not in the first player’s interest

to select an overly strong starting move, and the game

becomes more balanced.

The games are differentiated by their goal (winning

criterion), and by the shape of the game board. The

goals of each game are described in Subsections 2.1,

2.2, 2.3, and 2.4. Each game is played on a board of

a certain shape, but the size of the board can be var-

ied (this would further hinder several typical AI ap-

proaches). There are two equivalent representations

for boards: (1) the board is built from (mostly) trian-

gles, stones are played at the end points, and points

that share an edge are connected; or (2) the board is

built from (mostly) hexagons, stones are played in the

hexagons, and neighbouring polygons are connected.

We stress that even though the rules are simple

at first sight (just place stones in empty places), ac-

tual gameplay in connection games can become very

complex; typical concepts include bamboo joints,

ladders, and maximizing the reach of game pieces.

2.1 Hex

The game of Hex (Figure 1) is one of the oldest con-

nection games; it was invented by Piet Hein in 1942

and independently by John Nash. Hex is one of the

games played in the Computer Games Olympiad.

The Hex board is diamond-shaped. The black

player tries to connect the top and the bottom edges

with an unbroken chain, while the white player tries

to connect the left and the right edges. When the

board is full of stones, either the black groups that

reach the bottom edge reach also the top edge, or they

are completely surrounded by white stones that con-

nect the left and right edges. Therefore one player

must win. Further information about the history,

complexity, strategy, and AI in Hex can be found in

Maarup (2005).

2.2 Y

The game of Y (Figure 2) was invented by Claude

Shannon in the early 1950s and independently by

Craige Schensted (now Ea Ea) and Charles Titus. It

can be played on a regular triangle or a bent one (in-

troduced by Schensted and Titus). The reason for the

two boards is that on the regular board, the center is

very important and the outcome of the game is often

determined on this small part. The bent board from is

more balanced in that sense; we use the bent board.

Both players try to connect all three edges of the

board with a single unbroken chain of the player’s

Figure 1: Game of Hex. The black player tries to

connect the top and the bottom edges with an unbro-

ken chain, while the white player tries to connect the

left and the right edges. Note that any corner point

between two edges belongs to both edges; the same

applies also to Y and *Star. (Numbers on the board

enumerate the allowed play positions, and circles out-

side the board clarify the target edges of each player.)

own color; this chain often has a ‘Y’ shape. The fact

that one player must win follows from the so called

Sperner’s lemma or from micro reductions (van Ri-

jswijck, 2002).

2.3 *Star

The game of *Star (Figure 3) was invented by Ea Ea.

The intention behind the ‘bent pentagon’ shape of the

board is again to balance the influence of the center

and edges. *Star is closely related to the well-known

game Go: in Go the goal is to gather more territory

than the opponent, and survival of a group is often

achieved by connecting it to another one.

In *Star the winner is evaluated by counting scores

for the players. Each node on the perimeter of the

board counts as one so-called peri. In the evalution

process, connected groups of one color that contain

fewer than two peries are not counted as groups of

their own; instead, the possible peri goes to the sur-

rounding group. Each remaining group is worth the

number of peries it contains minus four. The player

with more points wins. Draws are decided in favour

of the player owning more corners. By construction,

Figure 2: Game of Y. Both players try to connect all

three edges of the board with a single unbroken chain

of the player’s own color.

one of the players must win.

2.4 Renkula!

The game of Renkula! (Figure 4) was invented by

Tapani Raiko in 2007 and is first published in this pa-

per. It is played on a surface of a geodesic sphere

formed from 12 pentagons and a varying number

of hexagons. The dual representation with triangles

can be made by taking an icosahedron and divid-

ing each edge into n parts and each triangle to n2

parts; the current software implementation provides

four boards using n = 2, 3, 4, 6.
Red and blue players get turns alternately, starting

with the red player. The player whose turn it is, se-

lects an empty polygon to place a stone of his/her

color. Another stone of the same color will be au-

tomatically placed in the polygon on the exact op-

posite side of the sphere. The player who manages

to connect any such pair of opposite stones with an

unbroken chain of stones of his/her color, wins (see

Figure 5 for an example). Note that in contrast to the

other games, Renkula! does not have any edges or

pre-picked directions; connecting any pair of oppo-

site stones suffices to win.

A winning chain always forms a loop around the

sphere (typically the loop is very ‘wavy’ rather than

straight). If you connect two poles of the sphere with

a chain, the opposite stones of the chain complete the

Figure 3: Game of *Star. Each node on the perimeter

of the board counts as one ‘peri’. Connected groups

of one color that contain fewer than two peries are not

counted as groups of their own; instead, the possible

peri goes to the surrounding group. Each remaining

group is worth the number of peries it contains minus

four. The player with more points wins. Draws are

decided in favour of the player owning more corners.

loop on the other side. The name Renkula!, coined

by Jaakko Peltonen, refers to this property: ‘renkula’

is a Finnish word meaning a circular thing.

Like the previous three games, Renkula! also has

the property that a filled-up board is a win for one and

only one of the players. We briefly sketch the proof.

If one player has formed a winning chain, the other

player could no longer form a winning chain even if

the gamewas continued: the winning loop divides the

rest of the sphere’s surface into two separate areas.

Each of the opponent’s chains is restricted to one of

those areas and can never reach the opposite area.

When the sphere is filled with stones, one of the

players must have made a winning chain. Consider

any red pair of opposite stones A and B on a sphere

filled with stones. If they are connected to each other,

red has won. Otherwise there are two separate red

chains: CA which includes at least A, and CB which

includes at least B. Because the chains are separate,

there must be a loop of blue stones around the area

that CA reaches, and similarly for CB . These blue

loops are each other’s opposites, so if they are con-

nected, blue has won. If the blue loops are not con-

nected, there must be red loops between the blue

Figure 2: Game of Y. Both players try to connect all

three edges of the board with a single unbroken chain

of the player’s own color.

one of the players must win.
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per. It is played on a surface of a geodesic sphere

formed from 12 pentagons and a varying number

of hexagons. The dual representation with triangles

can be made by taking an icosahedron and divid-

ing each edge into n parts and each triangle to n2

parts; the current software implementation provides

four boards using n = 2, 3, 4, 6.
Red and blue players get turns alternately, starting

with the red player. The player whose turn it is, se-

lects an empty polygon to place a stone of his/her

color. Another stone of the same color will be au-

tomatically placed in the polygon on the exact op-

posite side of the sphere. The player who manages

to connect any such pair of opposite stones with an

unbroken chain of stones of his/her color, wins (see

Figure 5 for an example). Note that in contrast to the

other games, Renkula! does not have any edges or

pre-picked directions; connecting any pair of oppo-

site stones suffices to win.

A winning chain always forms a loop around the

sphere (typically the loop is very ‘wavy’ rather than

straight). If you connect two poles of the sphere with

a chain, the opposite stones of the chain complete the
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peri goes to the surrounding group. Each remaining

group is worth the number of peries it contains minus
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decided in favour of the player owning more corners.
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is a Finnish word meaning a circular thing.

Like the previous three games, Renkula! also has

the property that a filled-up board is a win for one and

only one of the players. We briefly sketch the proof.

If one player has formed a winning chain, the other

player could no longer form a winning chain even if

the gamewas continued: the winning loop divides the

rest of the sphere’s surface into two separate areas.

Each of the opponent’s chains is restricted to one of

those areas and can never reach the opposite area.

When the sphere is filled with stones, one of the

players must have made a winning chain. Consider

any red pair of opposite stones A and B on a sphere

filled with stones. If they are connected to each other,

red has won. Otherwise there are two separate red

chains: CA which includes at least A, and CB which

includes at least B. Because the chains are separate,
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loops are each other’s opposites, so if they are con-

nected, blue has won. If the blue loops are not con-
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Traditional min-max 
search

Requires a fast evaluation function

Typically equally deep for each branch

Alpha-beta pruning etc. allow for deeper 
search



Connection Games
Connection games are abstract board games 
where connectivity of game pieces is crucial

In all of the games considered here:

Board is initially empty

Two players alternately place a piece of their 
own color to an empty point

When the board is full, the exactly one of the 
players has met a winning criterion



Game of Hex

The goal for black 
is to connect the 
top and the bottom 
edges

White tries to 
connect the left and 
right edges

second player may choose to switch colors. When the

swap rule is used, it is not in the first player’s interest

to select an overly strong starting move, and the game

becomes more balanced.

The games are differentiated by their goal (winning

criterion), and by the shape of the game board. The

goals of each game are described in Subsections 2.1,

2.2, 2.3, and 2.4. Each game is played on a board of

a certain shape, but the size of the board can be var-

ied (this would further hinder several typical AI ap-

proaches). There are two equivalent representations

for boards: (1) the board is built from (mostly) trian-

gles, stones are played at the end points, and points

that share an edge are connected; or (2) the board is

built from (mostly) hexagons, stones are played in the

hexagons, and neighbouring polygons are connected.

We stress that even though the rules are simple

at first sight (just place stones in empty places), ac-

tual gameplay in connection games can become very

complex; typical concepts include bamboo joints,

ladders, and maximizing the reach of game pieces.

2.1 Hex

The game of Hex (Figure 1) is one of the oldest con-

nection games; it was invented by Piet Hein in 1942

and independently by John Nash. Hex is one of the

games played in the Computer Games Olympiad.

The Hex board is diamond-shaped. The black

player tries to connect the top and the bottom edges

with an unbroken chain, while the white player tries

to connect the left and the right edges. When the

board is full of stones, either the black groups that

reach the bottom edge reach also the top edge, or they

are completely surrounded by white stones that con-

nect the left and right edges. Therefore one player

must win. Further information about the history,

complexity, strategy, and AI in Hex can be found in

Maarup (2005).

2.2 Y

The game of Y (Figure 2) was invented by Claude

Shannon in the early 1950s and independently by

Craige Schensted (now Ea Ea) and Charles Titus. It

can be played on a regular triangle or a bent one (in-

troduced by Schensted and Titus). The reason for the

two boards is that on the regular board, the center is

very important and the outcome of the game is often

determined on this small part. The bent board from is

more balanced in that sense; we use the bent board.

Both players try to connect all three edges of the

board with a single unbroken chain of the player’s

Figure 1: Game of Hex. The black player tries to

connect the top and the bottom edges with an unbro-

ken chain, while the white player tries to connect the

left and the right edges. Note that any corner point

between two edges belongs to both edges; the same

applies also to Y and *Star. (Numbers on the board

enumerate the allowed play positions, and circles out-

side the board clarify the target edges of each player.)

own color; this chain often has a ‘Y’ shape. The fact

that one player must win follows from the so called

Sperner’s lemma or from micro reductions (van Ri-

jswijck, 2002).

2.3 *Star

The game of *Star (Figure 3) was invented by Ea Ea.

The intention behind the ‘bent pentagon’ shape of the

board is again to balance the influence of the center

and edges. *Star is closely related to the well-known

game Go: in Go the goal is to gather more territory

than the opponent, and survival of a group is often

achieved by connecting it to another one.

In *Star the winner is evaluated by counting scores

for the players. Each node on the perimeter of the

board counts as one so-called peri. In the evalution

process, connected groups of one color that contain

fewer than two peries are not counted as groups of

their own; instead, the possible peri goes to the sur-

rounding group. Each remaining group is worth the

number of peries it contains minus four. The player

with more points wins. Draws are decided in favour

of the player owning more corners. By construction,



Game of Y

Both players try to 
connect all three 
edges with a single 
unbroken chain

Figure 2: Game of Y. Both players try to connect all

three edges of the board with a single unbroken chain

of the player’s own color.

one of the players must win.

2.4 Renkula!

The game of Renkula! (Figure 4) was invented by

Tapani Raiko in 2007 and is first published in this pa-

per. It is played on a surface of a geodesic sphere

formed from 12 pentagons and a varying number

of hexagons. The dual representation with triangles

can be made by taking an icosahedron and divid-

ing each edge into n parts and each triangle to n2

parts; the current software implementation provides

four boards using n = 2, 3, 4, 6.
Red and blue players get turns alternately, starting

with the red player. The player whose turn it is, se-

lects an empty polygon to place a stone of his/her

color. Another stone of the same color will be au-

tomatically placed in the polygon on the exact op-

posite side of the sphere. The player who manages

to connect any such pair of opposite stones with an

unbroken chain of stones of his/her color, wins (see

Figure 5 for an example). Note that in contrast to the

other games, Renkula! does not have any edges or

pre-picked directions; connecting any pair of oppo-

site stones suffices to win.

A winning chain always forms a loop around the

sphere (typically the loop is very ‘wavy’ rather than

straight). If you connect two poles of the sphere with

a chain, the opposite stones of the chain complete the

Figure 3: Game of *Star. Each node on the perimeter

of the board counts as one ‘peri’. Connected groups

of one color that contain fewer than two peries are not

counted as groups of their own; instead, the possible

peri goes to the surrounding group. Each remaining

group is worth the number of peries it contains minus

four. The player with more points wins. Draws are

decided in favour of the player owning more corners.

loop on the other side. The name Renkula!, coined

by Jaakko Peltonen, refers to this property: ‘renkula’

is a Finnish word meaning a circular thing.

Like the previous three games, Renkula! also has

the property that a filled-up board is a win for one and

only one of the players. We briefly sketch the proof.

If one player has formed a winning chain, the other

player could no longer form a winning chain even if

the gamewas continued: the winning loop divides the

rest of the sphere’s surface into two separate areas.

Each of the opponent’s chains is restricted to one of

those areas and can never reach the opposite area.

When the sphere is filled with stones, one of the

players must have made a winning chain. Consider

any red pair of opposite stones A and B on a sphere

filled with stones. If they are connected to each other,

red has won. Otherwise there are two separate red

chains: CA which includes at least A, and CB which

includes at least B. Because the chains are separate,

there must be a loop of blue stones around the area

that CA reaches, and similarly for CB . These blue

loops are each other’s opposites, so if they are con-

nected, blue has won. If the blue loops are not con-

nected, there must be red loops between the blue



Game of Renkula!

First published here

Pieces are place two at 
a time to exact 
opposites of the sphere

Connecting any such 
pair with an unbroken 
chain gives a win
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loops at the edge of what blue reaches. Because there

is only a finite amount of polygons on the sphere, this

recursion cannot continue indefinitely. Therefore one

of the players must have won.

Figure 4: Game of Renkula!. Stones are placed as

pairs at exact opposite sides of the sphere. The player

whose stones connect any such pair with an unbro-

ken chain, wins. Unlike the other game boards, the

spherical Renkula! boards do not have edge points.

Figure 5: Blue has won a game of Renkula! with the

highlighted chain.

3 AI based on UCT search

The UCT search (Kocsis and Szepesvari, 2006) is a

tree search where only random samples are available

as an evaluation of the states. The tree is kept in mem-

ory and grown little by little. The sample evaluations

are done by playing the game to the end from the cur-

rent state. In this paper a ‘state’ is a configuration of

pieces on the board, and an ‘action’ is the placement

of a new piece somewhere on the board.

At the start of the game, the tree contains only the

root (initial game state), and leaves which are the new

possible actions. To improve the tree, at each turn

numerous play-outs are carried out from the current

state to the end of the game. In each play-out, there

are two ways to choose the move, as follows.

If the play-out is still in a known state (a state

that already exists as a non-leaf node within the UCT

tree), the actions are chosen using the highest upper

confidence bounds on the expected action value. To

compute the bounds, the following counts are col-

lected: how many times n(s) the state s has been vis-
ited in the search, how many times n(s, a) action a

was selected in state s, and what has been the average

final reward r(s, a) from each action. Assuming that
the final rewards are binary (win/loss; this is the case

in the four games of this paper), the upper confidence

bound (Auer et al., 2002) becomes

u(s, a) = r(s, a) + c

√

log n(s)

n(s, a)
, (1)

where c is a constant that determines the balance be-

tween exploration and exploitation (see Auer et al.,

2002, for discussion). We simply use c = 1. Note
that if an action has never been chosen, the bound u

becomes infinitely high and such actions are always

tried out first.

When the play-out reaches a leaf node of the UCT

tree, a new node is added to the tree. Thus the number

of nodes in the tree equals the number of play-outs.

The rest of the play-out is made using random moves

either from a uniform random distribution or by some

heuristics; we describe useful heuristics in the next

section. Note that in this way the play-outs balance

randomness and known information: the known con-

fidence bounds determine the first steps of each play-

out, and randomness is then used when known infor-

mation no longer available. Each play-out refines the

UCT tree by adding new nodes and by influencing the

counts n(s) and n(s, a) and the values r(s, a).

After the play-outs have been carried out, the move

a having the highest play-out count n(s, a) for the
current state s is chosen. As the game goes on, the

tree does not need to be reset; new play-outs could

simply be carried out from the whatever state the

game is currently at. (In the current implementation

the tree is forgotten after each move.)
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Different board sizes
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UCT Search

A tree search like before, but

Evaluations of the game state are not needed

Instead, the game is played randomly to the 
end, giving a random evaluation of a state

The tree is grown one node at a time (like in 
best first search)



Tree grows by one 
node per play-out



Which node?
In state s within the tree, the node a with the 
highest upper confidence bound u(s,a) on the 
expected reward is chosen

r(s,a) is the current estimate of the reward

n(s,a) is the count of how many times the action 
a has been chosen in state s out of n(s) times the 
state has been visited

c is a constant for which we used the value 1

loops at the edge of what blue reaches. Because there

is only a finite amount of polygons on the sphere, this

recursion cannot continue indefinitely. Therefore one

of the players must have won.

Figure 4: Game of Renkula!. Stones are placed as

pairs at exact opposite sides of the sphere. The player

whose stones connect any such pair with an unbro-

ken chain, wins. Unlike the other game boards, the

spherical Renkula! boards do not have edge points.

Figure 5: Blue has won a game of Renkula! with the

highlighted chain.

3 AI based on UCT search

The UCT search (Kocsis and Szepesvari, 2006) is a

tree search where only random samples are available

as an evaluation of the states. The tree is kept in mem-

ory and grown little by little. The sample evaluations

are done by playing the game to the end from the cur-

rent state. In this paper a ‘state’ is a configuration of

pieces on the board, and an ‘action’ is the placement

of a new piece somewhere on the board.

At the start of the game, the tree contains only the

root (initial game state), and leaves which are the new

possible actions. To improve the tree, at each turn

numerous play-outs are carried out from the current

state to the end of the game. In each play-out, there

are two ways to choose the move, as follows.

If the play-out is still in a known state (a state

that already exists as a non-leaf node within the UCT

tree), the actions are chosen using the highest upper

confidence bounds on the expected action value. To

compute the bounds, the following counts are col-

lected: how many times n(s) the state s has been vis-
ited in the search, how many times n(s, a) action a

was selected in state s, and what has been the average

final reward r(s, a) from each action. Assuming that
the final rewards are binary (win/loss; this is the case

in the four games of this paper), the upper confidence

bound (Auer et al., 2002) becomes

u(s, a) = r(s, a) + c

√

log n(s)

n(s, a)
, (1)

where c is a constant that determines the balance be-

tween exploration and exploitation (see Auer et al.,

2002, for discussion). We simply use c = 1. Note
that if an action has never been chosen, the bound u

becomes infinitely high and such actions are always

tried out first.

When the play-out reaches a leaf node of the UCT

tree, a new node is added to the tree. Thus the number

of nodes in the tree equals the number of play-outs.

The rest of the play-out is made using random moves

either from a uniform random distribution or by some

heuristics; we describe useful heuristics in the next

section. Note that in this way the play-outs balance

randomness and known information: the known con-

fidence bounds determine the first steps of each play-

out, and randomness is then used when known infor-

mation no longer available. Each play-out refines the

UCT tree by adding new nodes and by influencing the

counts n(s) and n(s, a) and the values r(s, a).

After the play-outs have been carried out, the move

a having the highest play-out count n(s, a) for the
current state s is chosen. As the game goes on, the

tree does not need to be reset; new play-outs could

simply be carried out from the whatever state the

game is currently at. (In the current implementation

the tree is forgotten after each move.)



Properties of UCT
Play-out analysis avoids the estimation of a 
game state

In connection games, the estimation is difficult 
(compare to piece count in chess)

Using upper confidence gives a balance 
between exploration and exploitation: actions 
with good reward are chosen more often, but 
actions that are not explored much become 
interesting as the confidence is low



Heuristics for 
Connection Games
Playing the game to the end in these games is 
equivalent to filling out the rest of the board 
with random colored pieces - this is faster

For the latest leaf node it does not make any 
difference which of the fill-out moves is 
counted as the first one a - we can update all of 
them at once!

As the fill-out phase is fast, it can be useful to 
do more than one fill-out at once



Bamboo connection 
heuristic

Bamboo connections are a simple 
shape that reappears very often 
in these games

Connection can be kept intact 
and it is often wise to do so

We recognize the shape and fill 
them with one stone of each 
color - this makes the program 
play stronger

3.1 Heuristics for Connection Games

Here we describe novel heuristics and speed-ups for

UCT suitable for connection games.

Speed-up 1: Suppose a play-out reaches a leaf

node of the UCT tree; typically there will be numer-

ous empty positions left on the board. In all of the

presented games, assuming uniformly random play-

outs, it is easy to show the empty positions end up

filled with random colored stones, an equal number

of each color. This ‘fill-out’ does not need to be done

move by move: it is faster to simply go through the

board once, filling all the empty points.

Speed-up 2: Suppose we are initializing r(s, a)
for the latest leaf node. It does not make any differ-

ence which of the above-described ‘fill-out moves’ is

counted as the first one a. Therefore, assuming it is

e.g. black’s move, r(s, a) for all filled in black stones
a can be updated as if they were the next move.

Heuristic 1: As the random fill-out phase is fast, it

can be useful to do more than one fill-out at once.

Heuristic 2: We consider so-called bamboo con-

nections, also known as bridges, as a special case.

Bamboo connections are a simple shape that reap-

pears very often in any of the presented games. Fig-

ure 6 shows an example in the game of Renkula! but

more generally they can also occur between a stone

and the edge of the board. To break a bamboo con-

nection, both empty positions in the connection must

become filled up with stones of the other player. Us-

ing uniformly random playouts, there are four ways to

fill the empty positions, and the connection is broken

in one of these four cases. It is only rarely useful for

a player to let his/her bamboo connection get broken,

and it is rarely useful to fill both empty positions in a

bamboo connection with your own stones; therefore,

a useful heuristic is to recognise bamboo connections

in the fill-out phase, and fill them with one stone of

each color, thus avoiding the above-described two un-

desirable fill-out cases. The only exception is when

different bamboo connections overlap. In those cases

we acknowledge only the first one found.

Given the above-described improvements, the be-

havior of the resulting connection game AI can be ad-

justed by adjusting the number of play-outs carried

out at each turn, the number of random fill-outs per-

formed at the leaf nodes, and whether to use the bam-

boo connection heuristic. Larger numbers of play-

outs and fill-outs obviously slow down the AI. A use-

ful property of the AI is that it is possible to stop the

search at any time, and simply select a move based

on the current evaluations (this ability is in principle

available for all the games; currently we have imple-

mented it in Renkula! but not in the other games).

Figure 6: A bamboo connection, here shown on a

Renkula! board. Blue player cannot prevent red from

connecting its stones.

4 Conclusion

We have presented a UCT search based AI for

four connection games, including a new game

introduced here. Our implementations of the

game AIs are freely available: the implemen-

tations of Hex, Y, and *Star are available at

www.cis.hut.fi/praiko/connectiongames/,

and the implementation of Renkula! is available

at www.nbl.fi/˜nbl924/renkula/. As a

subjective evaluation, the algorithm seems to be quite

strong at least on small boards.
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Try them out!

Implementation for Renkula! is available at 
www.nbl.fi/~nbl924/renkula/

Implementations of Hex, Y, and *Star are at 
www.cis.hut.fi/praiko/connectiongames/ 


