Application of UCT Search to
the Connection Games of
Hex, Y, *5Star, and Renkula)!

Tapani Raiko and Jaakko Peltonen
Helsinki University of Technology




Traditional min-max
search




Traditional min-max
search




Traditional min-max
search




Traditional min-max
search

o Requires a fast evaluation function
o Typically equally deep for each branch

o Alpha-beta pruning etc. allow for deeper
search




Connection Games

o Connection games are abstract board games
where connectivity of game pieces is crucial

o In all of the games considered here:

o Board is initially empty

o Two players alternately place a piece of their
own color to an empty point

o When the board is full, the exactly one of the
players has met a winning criterion




Game of Hex

o The goal for black
is to connect the
top and the bottom
edges

o White tries to
connect the left and

right edges




Game of Y

o Both players try to
connect all three

edges with a single

unbroken chain




Game of Renkula!
-

o First published here

o Pieces are place two at
a time to exact
opposites of the sphere

o Connecting any such
pair with an unbroken
chain gives a win




What can we infer from the rules?

Note 1: A winning chain will always form a loop around the
sphere.

Note 2: If one of the players has formed a winning chain, the
other player could no longer form a winning chain even if the
game continued.

Note 3: When the sphere is filled with stones, one of the
players must have made a winning chain.

Note 4: With perfect play, red can always win.




Different board sizes

Board 1 Board 2 Board 3 Board 4

42 polygons: 92 polygons: 162 polygons: 362 polygons:
12 pentagons 12 pentagons 12 pentagons 12 pentagons
30 hexagons 80 hexagons 150 hexagons 350 hexagons




UCT Search

o A tree search like before, but
o Evaluations of the game state are not needed

o Instead, the game is played randomly to the
end, giving a random evaluation of a state

o The tree is grown one node at a time (like in
best first search)




Tree grows by one
node per play-out




Which node?

In state s within the tree, the node a with the

highest upper confidence bound u(s,a) on the
expected reward is chosen

u(s,a) =r(s,a) + c\/

log n(s)

s )

r(s,a) is the current estimate of the reward

n(s,a) is the count of how many times the action
a has been chosen in state s out of n(s) times the
state has been visited

c is a constant for which we used the value 1




Properties of UCT

o Play-out analysis avoids the estimation of a

game state

o In connection games, the estimation is difficult
(compare to piece count in chess)

o Using upper confidence gives a balance
between exploration and exploitation: actions
with good reward are chosen more often, but
actions that are not explored much become
interesting as the confidence is low




Heuristics for
Connection Games

o Playing the game to the end in these games is
equivalent to filling out the rest of the board
with random colored pieces - this is faster

For the latest leaf node it does not make any
difference which of the fill-out moves is

counted as the first one a - we can update all of
them at once!

o As the fill-out phase is fast, it can be useful to
do more than one fill-out at once




Bamboo connection
heuristic

o Bamboo connections are a simple
shape that reappears very often
in these games

Connection can be kept intact
and it is often wise to do so

We recognize the shape and fill
them with one stone of each

color - this makes the program
play stronger




Try them out!

o Implementation for Renkula! is available at
www.nbl.fi/ ~nbl924 / renkula/

o Implementations of Hex, Y, and *Star are at
www.cis.hut.fi/ praiko/connectiongames/




