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ABSTRACT: Principal component analysis (PCA) is a classical data analysis
technique that finds linear transformations of data that retain maximal amount
of variance. We study a case where some of the data values are missing,
and show that this problem has many features which are usually associated
with nonlinear models, such as overfitting and bad locally optimal solutions.
Probabilistic formulation of PCA provides a good foundation for handling
missing values, and we introduce formulas for doing that. In case of high
dimensional and very sparse data, overfitting becomes a severe problem and
traditional algorithms for PCA are very slow. We introduce a novel fast al-
gorithm and extend it to variational Bayesian learning. Different versions
of PCA are compared in artificial experiments, demonstrating the effects of
regularization and modeling of posterior variance. The scalability of the pro-
posed algorithm is demonstrated by applying it to the Netflix problem.

KEYWORDS: Principal Component Analysis, Missing Values, Overfitting,
Regularization, Variational Bayes
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1 INTRODUCTION

Principal component analysis (PCA) is a data analysis technique that can
be traced back to [26]. It can be used to compress datasets of high dimen-
sional vectors into lower dimensional ones. This is useful for instance in
visualization and feature extraction. PCA has been extensively covered in
the literature (see, e.g., [17, 4, 9, 12, 6]). PCA can be derived from a number
of starting points and optimization criteria. The most important of these are
minimization of the mean-square error in data compression, finding mutu-
ally orthogonal directions in the data having maximal variances, and decor-
relation of the data using orthogonal transformations.

In the data compression formulation, PCA finds a smaller-dimensional
representation of data vectors such that the original data could be recon-
structed from the compressed representation with the minimum square er-
ror. Assume that we have n d-dimensional data vectors y1,y2, . . . ,yn that
are modeled as

yj ≈Wxj + m, (1)

where W is a d × c matrix, xj are c-dimensional vectors of principal com-
ponents, and m is a d-dimensional bias vector. We assume that c ≤ d ≤ n.
Principal subspace methods [6, 9] find W, X and m such that the recon-
struction error

C =
n∑
j=1

‖yj −Wxj −m‖2 (2)

is minimized. Without any further constraints, there exist infinitely many
ways to perform such a decomposition. However, the subspace spanned by
the column vectors of the matrix W, called the principal subspace, is unique.
PCA is a specific representation in the principal subspace. It is traditionally
defined using the requirement that the columns are mutually orthogonal,
have unit length and, furthermore, for each k = 1, . . . , c, the first k vectors
form the k-dimensional principal subspace. This makes the solution practi-
cally unique, see [9, 17, 12] for details.

In this article we use the term PCA for methods which seek representa-
tions (1) by minimizing the error (2). Thus we assume that once the princi-
pal subspace is found, it can be transformed into the PCA solution.1 We also
formulate the PCA solution as the one which yields matrix W with mutu-
ally orthogonal columns and uncorrelated principal components which are
scaled to unit variance, that is

WTW = diag(‖W:k‖2) , ‖W:k‖ ≥ ‖W:l‖ , k < l (3)

1

n

n∑
j=1

xjx
T
j = I , (4)

where diag(vk) denotes a diagonal matrix with diagonal elements vk and W:k

is the k-th column of matrix W.
1This is indeed true for the case of fully observed vectors yj but can be more difficult in

the case with missing values, as we discuss later.
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In the matrix notation, the data vectors and principal components can
be compiled into a d × n and c × n matrices Y = [y1 y2 . . . yn ] and
X = [x1 x2 . . . xn ], and yij , wik and xkj denote the elements of the
matrices Y, W and X, respectively. The bias matrix M contains n copies of
the bias vector m as its columns. Principal subspace methods find W and X
such that Y ≈WX + M and the minimized cost function is the sum of the
squared elements (or Frobenius norm) of matrix Y −WX−M:

C = ‖Y −WX−M‖2F . (5)

Let us now consider the same problem when the data matrix Y has miss-
ing entries. In this paper we make the typical assumption that values are
missing at random [20], that is, the missingness does not depend on the un-
observed data. An example where the assumption does not hold is when
out-of-scale measurements are marked missing. In the following example the
data matrix contains N = 9 observed values and 6 missing values (marked
with a sign ×):

Y =

y11 y12 y13 y14 ×
y21 y22 × × y25

× × y33 y34 ×

 .

A natural extension of PCA for the case with missing values would be to find
a representation such that Y ≈WX + M for the observed values. The rest
of the matrix WX+M can be taken as the reconstruction of missing values.

Although the PCA problem in the presence of missing values seems to be
as easy as classical PCA, there are some important distinctions: 1) There is
no analytical solution, for example, the optimal value of the bias term m in
(1) is not generally equal to the row-wise mean of the data matrix, as in classi-
cal PCA. Therefore, iterative learning procedures must be exploited. 2) The
optimized cost function typically has multiple local minima and thus finding
the optimal solution is more difficult. 3) Standard PCA approaches can eas-
ily lead to overfitting, thus regularization is often required. 4) The algorithms
may require heavy computations, especially for large-scale problems. 5) The
concept of the PCA basis in the principal subspace is not easily generalized
in the presence of missing values. 6) The choice of the dimensionality of the
principal subspace is generally more difficult than in classical PCA. Thus,
the PCA problem has many features which are usually associated with non-
linear models. This paper discusses some of these important issues providing
illustrative examples and presenting ways to overcome possible difficulties.

PCA in the presence of missing values can be relevant for many datasets
which appear in practical applications. Datasets may contain relatively few
missing observations and the problem is to adjust standard PCA algorithms
to handle partially observed instances. The choice of the algorithm is not
very crucial in such a simple case, as most of the approaches would provide
similar solutions. However, there are applications in which available observa-
tions are very sparse and the modeling task is often to reconstruct the missing
part from the observed data only. Examples include collaborative filtering
problems which is the task of predicting preferences (or producing personal
recommendations) by using other people’s preferences (see, e.g., [13]) or his-
torical data reconstruction in climatic records (see, e.g., [18]).
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Historically, the missing value problem in PCA was first studied by Dear
[8] who used only one component and just one imputation iteration (see be-
low). It was based on the minimum mean-square error formulation of PCA
introduced by Young [35]. Christofferson [5] also used a one-component
model for reconstructing missing values. Wiberg [34] first suggested to di-
rectly minimize the mean-square error of the observed part of the data. An
algorithm in [7] already worked up to half of the values missing. Missing val-
ues problem using a multivariate normal distribution has been studied even
earlier than using PCA, for instance by [1]. More historical references can
be found in [17].

More recently, PCA with missing values was studied by Grung and Manne
[11]. They proposed using either the imputation or the faster alternating
W–X algorithm (see below). They discussed the overfitting problem and
suggested to delete troublesome rows or columns from data. Tipping and
Bishop [33] introduced the probabilistic formulation of PCA (PPCA). They
mention missing data only shortly and do not give any formulas. Bishop [3]
introduces variational Bayesian PCA (VBPCA) for choosing the number of
components in PCA. Raiko and Valpola [29] reconstructed missing values
with VBPCA to compare some nonlinear models to it. Oba [23] applied
VBPCA for missing value estimation in gene expression profile data, and
mentions that it performs much better than the existing methods for missing
value estimation.

The present article reviews possible approaches to the problem with the
emphasis on probabilistic models and Bayesian methods. The rest of the ar-
ticle is organized as follows. In Section 2, we present classical algorithms
for PCA based on minimizing the mean reconstruction error similar to (2)
and the method based on estimation of the covariance matrix (imputation
algorithm). We review how the algorithms are normally used for fully ob-
served data and explain how they can be adapted to the case with missing
values. We explain possible difficulties of the standard methods including
bad locally optimal solutions, numerical problems and overfitting. Simple
examples are given to illustrate these problems. In the same section, we dis-
cuss the properties of the imputation algorithm, such as implicit remedies
against overfitting and overlearning and its EM interpretation.

Section 3 presents probabilistic models for PCA which provide a good
foundation for handling missing values. First, we introduce formulas for the
recently studied probabilistic PCA model in the case with missing values. We
show how the notion of the PCA basis can be extended to probabilistic PCA
and explain how to find it efficiently given the principal subspace. Later,
we describe Bayesian regularization for handling problems that arise when
data are sparse. We provide formulas for performing maximum a posteriori
estimation and for variational Bayesian inference.

Section 4 discusses large-scale problems and computational complexity:
In case of high dimensional and very sparse data, overfitting becomes a severe
problem and traditional algorithms for PCA are very slow. We introduce a
novel fast optimization algorithm and show how to use it in Bayesian models.

In Section 5, different versions of PCA are compared in artificial experi-
ments, demonstrating the effects of regularization and modeling of posterior
variance. The scalability of the proposed algorithm is demonstrated by apply-
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ing it to the Netflix problem. Finally we conclude in Section 6.
The following notation is used throughout the article. Indices i = 1, . . . , d

and j = 1, . . . , n go over the rows and columns of Y, respectively. The index
of a principal component is denoted by k = 1, . . . , c. Notation ij is used for
the index of yij , the ij-th element of matrix Y. O is the set of indices ij
corresponding to observed values yij , Oi is the set of indices j (similarly Oj is
the set of indices i) for which yij is observed. |Oi| is the number of elements
in Oi and N = |O| is the number of observed data points. Notation Ai: and
A:j is used for the i-th row and j-th column of a matrix A, respectively. The
i-th row of W is denoted by wi, and the j-th column of X is xj .

◦
Y is the

data matrix with zeros in the places of missing values.

2 LEAST SQUARES TECHNIQUES

2.1 Multiple local minima in the cost function

The minimum mean-square error compression of data is the formulation for
PCA [35] that can be generalized to the case with missing values in a very
straightforward manner. The cost function (2) is adapted such that the sum is
taken over only those indices i and j for which the data entry yij is observed
[34]:

C =
∑
ij∈O

(yij − ŷij)2 , (6)

ŷij = wT
i xj +mi =

c∑
k=1

wikxkj +mi . (7)

In this section, we consider algorithms optimizing the cost function (6). We
call it the least squares (LS) approach to PCA for incomplete data.

The cost function (2) in the fully observed case has practically unique
(up to an arbitrary rotation in the principal subspace) global minimum w.r.t.
model parameters W, X, m provided that all eigenvalues of the sample co-
variance matrix are distinct. On the contrary, the cost function (6) can have
multiple local minima. Let us demonstrate this using a simple example in
which the model (1) with one principal component and fixed m = 0 is fitted
to the data

Y =

0.8 0.8
1 ×
× 1

 ≈
w1

w2

w3

 [x1 x2

]
.

To discard the scaling ambiguity of the PCA solution, the column vector
W can be restricted to have unit length. Thus, the minimized error can be
represented as a function of two parameters which define a unit length vector
in the three-dimensional space. The cost function in this simple example
has three local minima, as shown in Fig. 1: The global minimum W =
±[0.49 0.62 0.62]T corresponds to zero cost while the other two minima
(close to ±[0 1 0]T and ±[0 0 1]T) provide a non-zero error. Each of these
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Figure 1: Example of local minima for the cost function (6). d = 3, c = 1,
PCA solution can be defined by a unit length vector W. Left: The cost
function plotted on a surface of unit length vectors. Right: The same plot
using the Euler vector representation: The matrix W is constructed from α
and β as W = eA[ 1 0 0]T with A a 3× 3 matrix with four nonzero elements
a12 = −a21 = α and a13 = −a31 = β.

two local solutions reconstructs perfectly three out of four observed values in
Y.

The cost function (6) can be minimized using any optimization proce-
dure. Two possible approaches are presented below. After that, we present
how the PCA basis can be found within the principal subspace. Finally, we
discuss problems that arise with these methods when the number of missing
values increases.

2.2 Alternating W–X algorithm

Complete data: It is possible to optimize the cost function (5), and there-
fore to find the principal subspace, by updating W and X alternately. When
either of these matrices is fixed, the other one can be obtained from an or-
dinary least squares problem. We will further refer to this approach as the
alternating algorithm.

The algorithm alternates between the updates

X← (WTW)−1WTY , W← YXT(XXT)−1. (8)

This iteration is especially efficient when only a few principal components
are needed, that is c � d [31]. The bias vector m is the row-wise mean of
the data and the above equations assume that it has been subtracted from the
data as a preprocessing step.

Incomplete data: Grung and Manne [11] studied the alternating al-
gorithm in the case of missing values. They assumed that the bias term is
removed, for example, by subtracting the row-wise mean of Y from each row
of Y. In order to get the accurate least squares solution, we include the bias
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term into the estimation procedure, yielding the update rules

xj = (WT
j Wj)

−1WT
j (

◦
Y:j −Mj) , j = 1, . . . , n (9)

mi =
1

|Oi|
∑
j∈Oi

[
yij −wT

i xj
]

(10)

wT
i =

( ◦
Yi: −mi

)T
XT
i (XiX

T
i )
−1 , i = 1, . . . , d . (11)

where mi is the i-th element of m, Wj is matrix W in which an i-th row is
replaced with zeros if yij is missing, vector Mj is formed from m similarly to
Wj , and Xi is matrix X in which a j-th column is replaced with zeros if yij
is missing:

(Wj)i: =

{
wi , ij ∈ O
0 , ij /∈ O

(Mj)i: =

{
mi , ij ∈ O
0 , ij /∈ O

(Xi):j =

{
xj , ij ∈ O
0 , ij /∈ O

. (12)

2.3 Oja-Karhunen (online learning) algorithm

Complete data: The basis of neural network implementation of PCA learn-
ing rules is a gradient descent optimization procedure. Such algorithms work
on-line processing only one input vector yj at once. Thus, the learning
rules implement stochastic gradient descent and the algorithms will even-
tually converge to a basis in the principal subspace. Each data vector may
have to be processed several times for convergence. The same can also be
implemented in a batch procedure.

Using gradient descent w.r.t. matrix W yields the update rule

W←W + γ(Y −WX)XT , (13)

where γ > 0 is called the learning rate. Minimization w.r.t. matrix X can
be performed using the least squares solution in (8). However, some neural
approaches use learning rules which either explicitly orthogonalize W or
which yield an orthogonal W at the convergence. Thus the update of X can
be simplified to X = WTY, which together with (13) is the batch version of
the Oja-Karhunen learning algorithm [24, 9]. The bias m is again removed
from the data as a preprocessing step.

Incomplete data: In the presence of missing values, the gradient descent
update rule for W is

W←W − γ ∂C
∂W

, with
∂C

∂wik
= −2

∑
j∈Oi

(yij − ŷij)xkj ,

where ŷij is given in (7). Matrix X could then be updated using (9), as in
the standard Oja-Karhunen approach. However, a gradient-based update can
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also be used for X:

X← X− γ ∂C
∂X

, with
∂C

∂xkj
= −2

∑
i∈Oj

(yij − ŷij)wik .

The bias term can be updated using (10). As we discuss later (see Sec-
tion 4.2), gradient-based learning can be computationally more efficient than
the alternating algorithm because there is no need to compute matrices
(WT

j Wj)
−1 and (XiX

T
i )
−1 in (9) and (11).

2.4 Rotation in the principal subspace to the PCA basis

The PCA basis of the principal subspace allows some intuitive interpretation
of the compressed data: A nice property of PCA is that it orders the prin-
cipal components according to the amount of data variance they explain.
However, algorithms which minimize the cost functions (2) or (6) generally
converge to any basis in the principal subspace. Thus transformation of the
final solution to the PCA basis might be needed to allow interpretation of the
results.

An estimated principle subspace can be transformed into the PCA solu-
tion in the sense of (3)–(4) by ensuring that the column vectors of W are
mutually orthogonal and that the row vectors of X are also mutually orthog-
onal, while keeping the product WX the same. The solution is to compute
the eigen-decomposition

1

n
XXT = UXDXUT

X (14)

and the singular value decomposition

WUXD
1/2
X = UWΣWVT

W.

The transformed solution is Wpca = UWΣW and Xpca = VT
WD

−1/2
X UT

XX.
This transformation can be done for principal subspaces obtained both for

fully and partially observed data. For fully observed data, we know that the
k < c first columns of W form the k-dimensional principal subspace. In
the presence of missing values, the rotation guarantees (3)–(4), but still, the
solution for k < c dimensional principal subspace might be different.

2.5 Numerical problems and overfitting

The least squares PCA methods can work well for datasets with few miss-
ing values but they may not be applicable for sparse datasets because of the
severe danger of overfitting. Suppose that for some j the number |Oj| of
observed measurements yij is smaller than the number of principal compo-
nents c. Then, the corresponding least square problem is ill posed: the matrix
WT

j Wj is rank deficient and equation (9) cannot be used. Moreover, even if
|Oj| is greater than c, matrix WT

j Wj may be badly conditioned and the cor-
responding xj can become infinitely large. This means that the parameters
would be overfitted to explain well a few observed values but the generaliza-
tion ability of the model would be poor (e.g. reconstruction of missing data
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would be very inaccurate). This is exactly what happens in the vicinity of the
two local minima in the example in Fig. 1.

The same problem can happen when the rows of W are estimated using,
for example, (11): matrix XiX

T
i can be rank deficient or badly conditioned.

This is more probable when some rows of Y contain very few measurements.
However, these problem can generally appear for any dataset and for any al-
gorithm optimizing the cost function (6) regardless of the exact optimization
procedure.

Overfitting problems can be avoided by using proper regularization. One
way to prevent unbounded growth of model parameters is to add terms which
penalize large parameter values into the cost function. This can be done
elegantly using probabilistic models, which is discussed in Section 3.4.

2.6 Method using singular value decomposition

Complete data: Perhaps the most popular approach to PCA is based on sin-
gular value decomposition of the data matrix or (equivalently) eigen-decom-
position of the sample covariance matrix. SVD of the data matrix is given
by:

Y = UΣVT ,

where U is a d × d orthogonal matrix, V is an n × n orthogonal matrix and
Σ is a d × n pseudo-diagonal matrix (diagonal if d = n) with the singular
values on the main diagonal [12]. The PCA solution is obtained by selecting
the c largest singular values from Σ, by forming W from the corresponding
c columns of U, and X from the corresponding c rows of ΣVT [17].

PCA can equivalently be defined using the eigen-decomposition of the
d× d covariance matrix C of the column vectors of the data matrix Y:

C =
1

n
YYT = UDUT .

The diagonal matrix D contains the eigenvalues of C, and the columns of
the matrix U contain the unit-length eigenvectors of C in the same order [6,
9, 17, 12]. Again, the columns of U corresponding to the largest eigenvalues
are taken as W, and X is computed as WTY. This approach can be more
efficient for cases where d� n, since it avoids the computation of the n× n
matrix V.

Incomplete data: The same approach cannot be directly used in the
presence of missing values. Estimating the covariance matrix C becomes
difficult: For example, if we estimate C for the data matrix below, leaving
out terms with missing values from the average, we get for the estimate of the
covariance matrix

Y =

−1 +1 0 0 ×
−1 +1 × × 0
× × −1 +1 ×

 , C =
1

n
YYT =

0.5 1 0
1 0.667 ×
0 × 1

 .

There are at least two problems. First, the estimated covariance 1 between
the first and second components is larger than their estimated variances 0.5
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and 0.667. This clearly leads to the situation where the covariance matrix
is not positive (semi)definite and some of its eigenvalues are negative. Sec-
ondly, the covariance between the second and the third component could
not be estimated at all. For these reasons, this is a viable option only if the
number of missing values is not significant.

A simple alternative is an iterative procedure which alternates between im-
puting the missing values in Y and applying standard PCA to the completed
data matrix (see, e.g., [17]). Initially, the missing values can be replaced, for
example, by the row-wise means of Y. The covariance matrix of the com-
plete data can be estimated without the problems mentioned above. Next,
Wxj + m can be used as a better estimate for the missing values and PCA
can be applied to the updated data matrix. This process can be iterated until
convergence. We will further refer to this approach as the imputation algo-
rithm. In Appendix A, we show that the imputation algorithm also minimizes
the cost function (6) and that it implements the EM steps for a simple prob-
abilistic model. This approach requires the use of the complete data matrix,
and therefore it is computationally very expensive for large-scale problems.

Although the imputation algorithm belongs to the class of least squares
PCA algorithms, it does provide an elegant remedy against overfitting. The
cost function Cia which is minimized by performing SVD can be represented
as a sum of two terms: Cobs which is the true optimized function and a penalty
term Cmis which keeps reconstructions of the missing values close to the im-
puted values (see Appendix A for details). Initialization of the reconstructions
with the row-wise means of the data matrix introduces a bias towards the most
“conservative” solutions.

Our experiments show that the imputation algorithm also has resistance
against overlearning when the training error decreases but the generalization
ability of the trained model gets worse. Badly overfitted solutions correspond
to regions in the parameter space where a small decrease in the cost function
(for training data) can cause a large increase of the reconstruction error (for
test data). However, the term Cmis makes the algorithm shorten the steps and
learning can practically stop once the algorithm enters regions in which the
cost function changes very little.

3 PROBABILISTIC MODELS FOR PCA

3.1 Probabilistic PCA

Probabilistic formulation of PCA offers a number of benefits, including well-
founded regularization, model comparison, interpretation of results, and ex-
tendability. Probabilistic PCA (PPCA) [33] explicitly includes the noise term
in a generative model

yj = Wxj + m + εj . (15)

Both the principal components xj and the noise εj are assumed Gaussian:

p(xj) = N (xj; 0, I) , p(εj) = N (εj; 0, vI) , (16)
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where N (x; µ,Σ) denotes normal probability density function (pdf) over
variable x with mean µ and covariance Σ. The parameters of the model
include W, m and v. The model can be identified by finding the maximum
likelihood (ML) estimate for the model parameters using the EM algorithm.

Complete data: The E-step estimates the conditional distribution of the
hidden variables given the data and the current values of the model parame-
ters:

p(X|Y,W, v) =
n∏
j=1

N (xj; xj,Σx)

where the means xj can be summarized in a matrix X (similarly to matrix
X) and the covariance Σx is same for each xj :

X = Ψ−1WTY , Σx = vΨ−1 , Ψ = WTW + vI . (17)

The M-step re-estimates the model parameters as

W = YXT(nΣx + XXT)−1 (18)

v =
1

nd

d∑
i=1

n∑
j=1

(
yij −wT

i xj
)2

+
1

d
tr(WΣxWT) .

Tipping and Bishop showed that W converges to the principal subspace
[33]. In the zero-noise limit, that is for v → 0, the iterations (17)–(18) reduce
to the least squares projections in (8) [31]. Note also that the ML estimator
for m is given by the row-wise mean of the data [33]. Therefore, it can be
computed once and removed from the data in the preprocessing step.

Incomplete data: The generalization to the case with missing values
yields the following modifications to the EM-algorithm. The E-step:

xj = Ψ−1
j WT

j (
◦
Y:j −Mj) , Σx,j = vΨ−1

j (19)

Ψj = WT
j Wj + vI , j = 1, . . . , n . (20)

The M-step:

mi =
1

|Oi|
∑
j∈Oi

[
yij −wT

i xj
]

(21)

wT
i =

( ◦
Yi: −mi

)T
X

T
i

(
XiX

T
i +

∑
j∈Oi

Σx,j

)−1

, i = 1, . . . , d (22)

v =
1

N

∑
ij∈O

(
yij −wT

i xj −mi

)2
+

1

N

∑
ij∈O

wT
i Σx,jwi ,

where Xi is defined similarly to (12).
There are several important distinctions compared to the fully observed

data: 1) The optimal m depends on other parameters and therefore it has
to be updated in the iterative procedure. 2) The covariance Σx,j is different
for each xj . 3) Each row of W is recomputed based only on those columns
of X which contribute to the reconstruction of the observed values in the
corresponding row of the data matrix. The same applies to the computation
of the columns of X. This makes the computations much more involved.

10 3 PROBABILISTIC MODELS FOR PCA



3.2 Rotation to the PCA basis for PPCA

PPCA is a principal subspace method because the ML estimates of the model
parameters form an arbitrary basis in the principal subspace. The generaliza-
tion of the classical PCA basis to the case of PPCA is not very straightfor-
ward. We give a possible definition of the PCA basis in the subspace found
by PPCA.

It can be shown (see Appendix B) that the following holds for a PPCA
solution at the convergence:

1

n

n∑
j=1

xj = 0 . (23)

Σ∗ =
1

n

(
XX

T
+

n∑
j=1

Σx,j

)
= I . (24)

Any orthogonal rotation of this subspace, that is transformation Qx with an
orthogonal matrix Q, does not affect (23)–(24). Notice that in the noiseless
limit (when v → 0) Σ∗ is the sample covariance matrix of the principal com-
ponents and it is equal to the identity matrix, as required by (4). Therefore,
a (practically) unique PPCA solution can be defined as the orthogonal basis
for which (23)–(24) are fulfilled together with the PCA requirement in (3).
Then, the columns W:k normalized to unit norm and the squared norms
‖W:k‖2 is the analogue of the eigenvectors and eigenvalues of the data co-
variance matrix in classical PCA.

A transformation of the PPCA solution can easily be performed such that
(23)–(24) and (3) hold. The means xj are simply centralized with a proper
update of the bias term m (see Appendix B). Then, a linear transformation
of the subspace can be performed similarly to as explained in Section 2.4,
with the exception that Σ∗ is used in (14). Such a transformation can be
performed once at the end of learning to enable interpretation of the results.
However, our experiments show faster convergence when this transformation
is also performed during learning between iterations of the EM algorithm.

3.3 Overfitting examples

PPCA provides some remedy against overfitting compared to the simplest
least squares algorithms. First, a nonzero noise level v regularizes badly con-
ditioned matrices WT

j Wj in (19)–(20). Second, even if the noise level is
small, badly conditioned matrices Ψj result in large values both in the means
xj and in the covariance matrices Σx,j . This diminishes the effect of large
values in xj when W is re-estimated using (22).

However, PPCA can overfit, for example, if the estimated number of prin-
cipal components is unreasonably large. Let us consider an example when
the observation space is two-dimensional (d = 2) and each data vector is only
partly observed, that is either y1j or y2j is known for all js. These observations
are represented by triangles placed on the two axes in Fig. 2. A solution which
minimizes the PPCA cost function to zero is defined by a line, as shown in
the upper sub-plot. The missing values are then reconstructed by points lying
on the line. In fact, there are infinitely many solutions for (W, v) which are

3 PROBABILISTIC MODELS FOR PCA 11



equally good in terms of the cost function. This is illustrated in the lower
sub-plots in Fig. 2. The solution provided by the learning algorithm depends
on the initial conditions. Different solutions provide very distinct reconstruc-
tions but the reconstruction is naïve for all of them. The situation would not
change significantly if there were a few fully observed data vectors: the found
solution would be defined by those few samples and it would not generalize
well for new data.
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Figure 2: A simple example of overfitting with PPCA: d = 2 and each col-
umn of Y contains only one observed value. Top: The measurements are
marked with blue and red triangles at the two axes. The corresponding re-
constructions are shown with crosses. Bottom left: The cost as a function
of the two elements of W. Parameter v has been optimized to minimize
the cost. Bottom right: The cost as a function of v and W in which the
two elements are equal. In the two plots at the bottom, the red dashed line
represents parameter values which minimize the cost function.

Note that in the presence of missing values, the number of components,
which can be estimated to provide good generalization, may be smaller than
the “true” number of principal components underlying the data. This type of
overfitting could be avoided using tools which can estimate the right number
of components needed for reliable modeling, for example, cross-validation or
Bayesian techniques.

The second example shows that PPCA may overfit when observed val-
ues are distributed unevenly in the data matrix. Let us assume that three-
dimensional (d = 3) data are described well by a model with c = 1 principal
component. The first two rows of Y are fully observed while there are only
two measurements in the third row (see Fig. 3a). Then, the reconstruction
provided by a trained PPCA model can be very inaccurate for the third row.
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It relies on the two available observations (see Fig. 3b), which causes serious
overfitting. Such situations can be relevant to some real-world applications.
For example, historical climatic records typically contain few measurements
in the polar regions.
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Figure 3: An example when PPCA overfits for rows of Y which contain very
few measurements. The three-dimensional (d = 3) data are described well by
one principal component (c = 1). Left: The three rows of Y are shown with
blue lines. The first two rows are fully observed, the only two observations
in the third row are marked with circles. The PPCA reconstruction is shown
with red lines. Right: The blue dots is the scatter plot of the third row of
Y (x-axe) against the principal component estimated by PPCA (y-axe). The
dots corresponding to the two observations are marked with circles. The red
crosses is the reconstruction of the third row (x-axe) against the estimated
principal component (y-axe). The estimated correlation are due to the two
fully observed data vectors.

3.4 Bayesian regularization in PCA

A common way to cope with the overfitting problem is to penalize parameter
values which correspond to more complex explanations of the data. A natural
regularization in PCA is using penalization of large values in matrices W and
X. In the Bayesian formulation, this is equivalent to introducing a prior over
the model parameters. For example, the PPCA model in (15)–(16) can be
complemented with a Gaussian prior over the elements of matrix W:2

p(m) = N (m; 0, wmI) , p(W) =
c∏

k=1

N (W:k; 0, wkI) . (25)

The model (25) uses shared prior for all elements in the same column
of W, parameterized with wk. This is done to allow automatic selection of
the right number of components needed for PCA. The hyperparameters wm,
wk can also be updated during learning (e.g., using the evidence framework
or variational approximations). If the evidence of the relevance of the k-th
principal component for reliable data modeling is weak, the corresponding

2Here, we use a zero mean prior for m for the sake of simplicity. Including a mean
hyperparameter µ, i.e. p(m) =

∏
iN (mi;µ,wm), can be useful in practice.
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wk should tend to zero. This is called automatic relevance determination in
the machine learning literature [4]. Such prior also introduces a bias towards
the PCA basis within the principal subspace.

3.5 Maximum a posteriori estimation

MAPwx approach: point estimates for W and X

The simplest way to identify the model is to find maximum a posteriori
(MAP) estimates of the model parameters. The log-posterior (assuming uni-
form prior for hyperparameters v, wk, wm) is proportional to:

− 1

v

∑
ij∈O

(yij −wT
i xj −mi)

2 −N log 2πv − 1

wm
‖m‖2 − d log 2πwm

−
c∑

k=1

[
1

wk
‖W:k‖2 + d log 2πwk + ‖Xk:‖2 + n log 2π

]
. (26)

We refer to the method which finds the maximum of (26) of w.r.t. all the
unknown quantities W, X, v, wk, wm as the MAPwx approach.

Maximization of (26) can be done by any suitable optimization proce-
dure (see Appendix C). However, there are some difficulties that should be
avoided. First, using an improper prior for hyperparameters leads to a situ-
ation where the posterior pdf is infinitely large when wk → 0, ‖W:k‖ → 0.
This problem can be overcome, for example, by adding a broad prior for
variance hyperparameters into the model. This results in extra terms in (26)
penalizing small values of wk, wm and v.3

The MAPwx approach can suffer from both underfitting and overfitting
problems. Underfitting happens when the algorithm gets stuck in the vicin-
ity of a solution with wk ≈ 0 for some k. This can be interpreted as the
automatic relevance determination deciding that some of the principal com-
ponents are useless, even before they have been properly fitted to the data.
Such solutions may correspond to regions with little changes in the cost func-
tions (plateaus). On the other hand, overfitting can happen since discarding
posterior uncertainty in the estimates of W and X results in underestimated
noise variance v and thus to the problems discussed in Section 2.5.

MAPw approach: Point estimates for W

An approach which is more resistant against overfitting is a direct extension
of PPCA to incorporate priors for W and m. The MAP estimates for W, v,
wk, wm (thus X integrated out from the posterior (26)) can be found using
the EM algorithm. The resulting learning rules resemble the EM algorithm

3In this case, a hyperparameterw, which is a prior variance of a set of zero-mean variables

zi, i = 1, . . . ,m, can be updated as w =
2β+

Pm
i=1〈z2i 〉

2α+m , where
〈
z2
i

〉
denotes the expectation

of z2
i in the posterior, α = 10−3 and β = 10−3 are small constants. This essentially limits

the estimate of w from below such that w ≥ β
α+m/2 . The ML estimate w = 1

m

∑m
i=1

〈
z2
i

〉
is

achieved when α, β → 0. In the rest of the article, we always present the ML update rules for
variance hyperparameters to keep the formulas simple. However, properly modified update
rules are used in corresponding practical implementations.
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for PPCA with the following modifications of the M-step:

mi =
wm

|Oi|(wm + v/|Oi|)
∑
j∈Oi

[
yij −wT

i x:j

]
wT
i =

( ◦
Yi: −mi

)T
X

T
i

(
XiX

T
i +

∑
j∈Oi

Σx,j + v diag(w−1
k )
)−1

,

wk =
d∑
i=1

w2
ik , wm =

d∑
i=1

m2
i ,

for each i = 1, . . . , d. This simple modification of PPCA is often enough to
solve the basic overfitting problems considered in Section 3.3.

3.6 Variational Bayesian PCA (VBPCA)

The variational Bayesian (VB) approach to PCA was first introduced in [3] for
the case of fully observed data. Let us present it by considering the problem
of ML estimation of the hyperparameters ξ = (v, wk, wm) in the model de-
fined in (15)–(16), (25). In this case, the model parameters θ = (W,X,m)
are treated as hidden variables. Application of the EM algorithm to this prob-
lem requires computation of the posterior p(θ|Y, ξ) on the E step, which is
generally intractable.

The variational view of the EM algorithm [21] justifies replacing the ac-
tual posterior p(θ|Y, ξ) with a simpler pdf q(θ), which is selected to have
a tractable form. Then, the E-step is modified to update the approximation
q(θ) so as to minimize the cost function

C(q) =

∫
q(θ) log

q(θ)

p(Y,θ|ξ)
dθ . (27)

Thus, the cost function is a function of variational parameters θq, the param-
eters of the approximating pdf q. On the M-step, the approximation q(θ ; θq)
can be used as it was the actual posterior p(θ|Y, ξ).

The complexity of the cost function depends on the form of the approx-
imating pdf q(θ). A computationally convenient form for the PCA model
is

q(θ) =
d∏
i=1

q(mi)
d∏
i=1

q(wi)
n∏
j=1

q(xj) . (28)

The cost function can be minimized alternately w.r.t. one factor q(θi) in
(28) while keeping the other ones fixed. The E-step is thus divided further
into three separate steps that update W, X, and m. Using conjugate priors
for model parameters allows computation of the optimal pdfs q(θi) on each
step. For example, the optimal q(mi), q(wi) and q(xj) are Gaussian. Then
the update of any of them boils down to re-estimation of the corresponding
mean and covariance matrix.

The update rules for VBPCA are given in Appendix D. Note that the
update rules resemble the EM algorithm for the PPCA model: The PPCA
learning rules can be obtained by setting Σwi

= 0, m̃i = 0, wk → ∞,
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and wm → ∞. The mean parameters W, X, m of the approximating pdfs
can be used as estimates of the corresponding model parameters while the
covariance matrices Σwi

, Σx:j
and variances m̃i provide analogue of confi-

dence intervals, that is they estimate the uncertainty about the corresponding
unknown quantities.

Note that in the fully Bayesian formulation, the hyperparameters are as-
signed priors too and all the model parameters are treated equally. The actual
cost function is

Cvb =

∫
q(θ) log

q(θ)

p(Y,θ)
dθ ,

where θ includes W, X, m and v, wk, wm. We omitted the effect of the
prior for v, wk, wm in Appendix D to simplify the equations (see a footnote
in Section 3.5). A useful property of the VB cost function is that it provides a
lower bound of the model evidence in the vicinity of a found solutionM:

log p(Y|M) ≥ Cvb . (29)

There are important advantages of VBPCA compared to the previously
discussed techniques:

1. VBPCA is more resistant against overfitting compared to the MAPwx
and MAPw approaches. The reason for that is that VB estimation is
sensitive to posterior probability mass rather than posterior probability
density. Typically, overfitted solutions correspond to high peaks in the
posterior density while robust solutions contain much of the posterior
probability mass in their neighborhood.

2. The method provides estimates of the confidence intervals for all un-
known quantities. This can be useful to detect unreliable results similar
to the one presented in Fig. 3. The pdf of a missing value yij , ij /∈ O
can be approximated as a Gaussian with mean yij and variance ỹij (see
Appendix D). The latter can be used as a measure of uncertainty of the
missing value reconstruction.

3. The value of the cost function can be used for comparison between
different VBPCA solutions (local minima).4 A smaller cost yields a
greater lower bound of the solution evidence. This is especially use-
ful in the presence of missing values when the cost function is likely
to have multiple local minima even for the simplest models (see Sec-
tion 2.1).

4 PCA LEARNING FOR LARGE-SCALE PROBLEMS

4.1 Computational complexity

Obtaining a reasonably good solution in appropriate time is a very important
issue for high-dimensional problems in which learning may take several days.

4Valid model comparison requires proper prior and taking into account posterior uncer-
tainty for all model parameters. However, we discard the corresponding terms of the cost
function for hyperparameters because their influence is negligible in practice.
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The algorithms presented in the previous sections scale differently to prob-
lems with large dimensions and sparse datasets. The computational com-
plexity of different optimization schemes as well as the models in which they
are applicable are listed in Table 1. For example, the alternating optimiza-
tion algorithm for PPCA requires computation and inversion of matrices Φi

and Ψj , which are generally unique for each row of W and each column of
X, respectively. The corresponding computational complexityO(Nc2+nc3)
per iteration5 is quite a bit heavier than with complete data, whose complex-
ity is O(ndc) [31] per iteration.

Optimization Imputation Alternating Gradient
method with SVD W–X (Oja-Karhunen)

Complexity O(nd2) O(Nc2 + nc3) O(Nc+ nc)
LS X X X

PPCA X
MAPwx X X
MAPw X
VBPCA X
PPCAd X

VBPCAd X

Table 1: Summary of applicability of optimization algorithms to different
models, and the computational complexities (per iteration) of different opti-
mization methods, assuming naïve computation of products and inverses of
matrices and ignoring the computation of SVD in the imputation algorithm.

Another important issue for sparse datasets is efficient memory usage. It is
preferable that the amount of used memory scales linearly with the number
of observed values regardless of the data matrix dimensionalities. Only the
imputation algorithm requires memory for the complete data matrix, and
even that requirement can be diminished at a cost of greater time complexity.

4.2 Gradient-based learning

The gradient-based optimization scheme, extending the Oja-Karhunen ap-
proach to regularized PCA models, can be very efficient for large-scale prob-
lems and sparse datasets. The computational complexity of one iteration
scales very well with dimensionalities, which can lead to faster learning in
practice. The gradient-based approach can also be advantageous compared
to the alternating optimization scheme as the latter discards the joint effect
of parameters W and X on the changes in the cost function. This results in
slow convergence without proper speed-up procedures (see, e.g., [14]).

We also propose to use a speed-up to the gradient descent algorithm. In
Newton’s method for optimization, the gradient is multiplied by the inverse
of the Hessian matrix. Newton’s method is known to be fast-converging, but
using the full Hessian is computationally costly in high-dimensional prob-
lems (d � 1). We propose a simplified approach which uses only the diago-

5The computational complexity of the alternating W–X scheme can be reduced if
the matrices required inversion (e.g., Φi, Ψj for PPCA) are computed once for all rows
(columns) of Y that have observed values at exactly the same columns (rows respectively).
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nal part of the Hessian matrix and includes a control parameter α that allows
the learning algorithm to vary from the standard gradient descent (α = 0) to
the diagonal Newton’s method (α = 1). The final learning rules then take
the form

θi ← θi − γ
(
∂2C

∂θ2
i

)−α
∂C

∂θi
.

For example, the cost function (6) has the second-order derivatives

∂2C

∂w2
ik

=
∑
j∈Oi

x2
kj ,

∂2C

∂x2
kj

=
∑
i∈Oj

w2
ik ,

which can be computed efficiently for sparse data. We showed the efficiency
of the proposed optimization scheme in the application to large-scale PCA
problems in [28, 27].

The idea of gradient-based learning can be extended directly to regular-
ized PCA as well. For example, the gradients required for gradient-based
implementation of the MAPwx approach are given in Appendix C.

A potential problem of gradient-based learning is that cost functions of reg-
ularized PCA models can have regions with almost constant values (plateaus
corresponding to one of the principal component set to zero). This can yield
very slow convergence once the algorithm enters such area.

4.3 Factorial variational approximations

The problem of overfitting can be especially important for high-dimensional
sparse datasets. The situations discussed in Sections 2.5 and 3.3 are more
probable when data points are sparsely distributed in high dimensions. There
are many more pairs of data dimensions where an unexisting correlation can
be falsely invented. Thus, methods penalizing large values of model parame-
ters and taking into account their posterior uncertainty are especially relevant
here.

The PPCA, MAPw and VBPCA (Sections 3.1, 3.5 and 3.6 respectively)
approaches, which take into account the posterior uncertainty at least in X,
are hardly applicable for large-scale problems. First, the computational bur-
den of one iteration of the alternating W–X scheme is very large (see Ta-
ble 1). Application of the gradient-based optimization is cumbersome be-
cause one needs to update c × c covariance matrices. Second, the required
memory is at least nc2 elements for storing posterior correlations only in X.
This becomes infeasible for many large-scale problems even for a decent
number of principal components.

The MAPwx approach scales well for large dimensionalities and therefore
can be an attractive approach for large-scale datasets. However, the MAPwx
does not quite solve the overfitting problem, so we would like to find a good
compromise.

A possible solution is to take into account only some posterior correlations
and to use variational techniques for learning. For example, the posterior
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approximation q(θ) in VBPCA can be made fully factorial leading to

q(θ) =
d∏
i=1

q(mi)
d∏
i=1

c∏
k=1

q(wik)
k∏
c=1

n∏
j=1

q(xkj) . (30)

instead of (28). Such posterior approximation was used, for example, in [30]
for PCA in the presence of missing values. The implementation proposed
there was based on the imputation algorithm and thus not easily scalable for
high-dimensional sparse problems.

The fully factorial approximation (30) reduces significantly the number of
variational parameters. They now include the mean parameters mi, wik and
xkj and the variance parameters m̃i, w̃ik, x̃kj in addition to hyperparameters
v, wk, wm, which can be point-estimated.

The corresponding cost function (see Appendix E) can be minimized in
different ways. For example, one can alternate between minimization w.r.t.
all {wik, w̃ik,∀i, k} and all {xkj , x̃kj,∀k, j} keeping the others fixed. This
would be computationally heavy as it would require computation of matrices
Φ−1
i and Ψ−1

j , similarly to VBPCA from Appendix D. Another possibility is
to minimize the cost function w.r.t. each pair of parameters wik, w̃ik (xkj , x̃kj
respectively) keeping the rest of the parameters fixed. This approach is likely
to result in slow convergence.

Minimization of the VB cost function in the fully factorial case (30) can be
done efficiently using the gradient-based optimization scheme, as explained
in Section 4.2. The complete algorithm works by alternating four update
steps: {w̃ik,∀i, k}, {x̃kj,∀k, j}, {wik, xkj, ∀i, k, j}, and {v, wk, wm,∀k}. The
required derivatives are reported in Appendix E. We will further refer to this
algorithm as VBPCAd.

The idea of fully factorial approximation can also be used for reducing the
complexity of PPCA. The posterior of the hidden states p(X|Y,W,m, v)
can be approximated to be fully factorial on the E step. The approximation
can be fitted to the true posterior by minimizing the cost function

C(W,m, v, q(X)) =

∫
q(X) log

q(X)

p(Y,X|W,m, v)
dX . (31)

Using the fully factorial q(X) in (31) is motivated by the view of the EM algo-
rithm presented in [21]. The resulting update rules are same as in VBPCAd
(see Appendix E) with the exception that wk →∞, wm →∞, w̃ik = 0, and
m̃i = 0. We refer to this approach as PPCAd.6

There is an interesting connection between the speed-up proposed in Sec-
tion 4.2 and the fully diagonal posterior approximation. The second order

6The fully factorial approximation does not restrict the generality of the PPCA model
in the case of complete data. Using variational approximation introduces a bias in favor of
solutions for which the form of the posterior approximation agrees with the form of the true
posterior (see, e.g., [16]). Equation (17) tells that the posterior covariance Σx,j is the same
for each j in the case of fully observed data. It is diagonal if and only if the columns of
W are mutually orthogonal. This is requirement (3) of PCA. Requirement (4) is fulfilled
because of the assumed prior model for X in PPCA. Thus the fully factorial approximation
forces the PPCA model towards the PCA basis. The fully factorial approximation in the
case with missing values generally introduces a bias in favor of solutions where the posterior
covariances on the average are closer to being diagonal.
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derivatives needed for the speed-up coincide with the inverse of the posterior
variance of each parameter, and thus their computation is practically free.

5 EXPERIMENTS

5.1 Artificial data

The purpose of this section is to compare the performance of the different
PCA algorithms discussed in the previous sections. We consider two char-
acteristics: speed and accuracy in the task of missing value reconstruction.
We also show advantages and drawbacks of the discussed approaches. The
compared techniques include the least squares approaches as well as PPCA
and Bayesian techniques. Table 2 summarizes different variants of the regu-
larized (probabilistic) PCA models. The approaches differ on the posterior
model for X and on the use of prior for W.

Table 2: Variants of probabilistic approaches to PCA with missing values

prior for W posterior for W posterior for X
yes no point diag full point diag full

PPCA X X X
PPCAd X X X
VBPCA X X X
VBPCAd X X X
MAPw X X X
MAPwx X X X

In the experiments, the gradient-based (gr) optimization procedure with
the speed-up proposed in Section 4.2 was used for MAPwx, least squares (LS),
PPCAd and VBPCAd approaches. The control parameter was set α = 2/3.
The optimization which alternates (alt) between minimization w.r.t. W and
X was used for the least squares, PPCA, MAPw, and VBPCA models. The
imputation (imp) algorithm was also considered. The different algorithms
are marked as (gr), (alt), and (imp) on the figures when necessary.

We generated data matrices Y according to the noisy PCA model (15)
with m = 0 and fixed dimensionalities d, c and n. The mixing matrix W
was generated by taking a uniformly random orthogonal matrix and scaling
its columns by 1, 2, . . . , c. Noise variance was set to v = 0.01.

Observed values were selected randomly in Y, the rest of the data matrix
was used for validation (to compute the test error). The ratio of observed
values to the total number of elements in a data matrix

β =
N

dn
(32)

was varied. We generated 30 data matrices for each β and ran different al-
gorithms on all datasets in two experiments: 1) a typical situation when the
number of samples n is much greater than the dimension d of the data vec-
tors; 2) a difficult case when n is close to d.
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The methods were compared using three quantities: the average training
rms error, the average test rms error and the average time to convergence.
The average values were computed across different datasets. The algorithms
were run until the deviation of the training error was less than 0.0001 dur-
ing 100 iterations. This stopping criterion was used to estimate the time to
convergence.

The imputation algorithm was initialized with zeros for unobserved val-
ues while the other algorithms were initialized randomly. To study the effect
of multiple local minima, we also initialized VB techniques using 100 iter-
ations of the PPCAd algorithm (marked on the figures as “VBPCA (i)” and
“VBPCAd (i)”). The number of estimated principal components was set to
the number of components used to generate the data.

Experiment 1: Typical simple case
The number of samples n was set much larger than the dimensionality d of
data vectors: d = 10, c = 2, n = 1000. The ratio of observed values β was
varied in the interval [0.2 0.9]. The results of the experiments are presented
in Fig. 4. Here we present some of our observations based on the obtained
results:

• All the methods provide the same error with very little overfitting when
the amount of missing values is relatively small. Therefore, the best
strategy here is to use the fastest method, for example, the least squares
approach.

• The imputation algorithm performs very well in the considered exper-
iments: It converges relatively fast even for sparse data and it does not
have serious problems with overfitting. Therefore, it can be used very
efficiently for datasets with reasonable dimensionalities d and n. How-
ever, the complexity of the required computations grows fast with the
increase of the dimensionalities, and therefore the algorithm is hardly
applicable to large-scale datasets.

• Gradient-based and alternating LS algorithms work well when the amount
of missing data is small. The quality of their performance deteriorates
even for a decently small ratio of missing values: The algorithms easily
get stuck at local minima with infinitely growing parameters X (simi-
larly to the example from Section 2.1). Once arrived at a local minima,
learning proceeds very slowly: prediction of only some observations is
improved by using large parameter values. In such cases, the cost func-
tion was slowly but surely decreasing, but the probing error was grow-
ing to very large values (see Fig. 4). The algorithms might have been
stopped before convergence.

• Approaches using variational approximations (VBPCA, VBPCAd, PP-
CAd) may suffer from the underfitting problem: The models may be
overpenalized by setting some of the useful principal components to
zero. The algorithms seem to find such local minima more often for
sparse data (see, e.g., the larger test error for VBPCAd for β = 0.2).
Special care has to be taken to avoid such solutions, for example, us-
ing flat prior for W at the beginning of VB learning typically helps.
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We have used this in the presented experiments and most “bad” local
were avoided. If this special care is taken, the accuracy of these three
methods is similar to PPCA, MAPw and the imputation algorithm.

• The fastest algorithms with relatively little overfitting for sparse data are
based on fully factorial variational approximations (PPCAd and VBP-
CAd). Their speed and generalization properties are very similar when
d � n, if undesirable local minima (solutions with zero components)
are avoided.

• PPCA and MAPw approaches have less problems with multiple local
minima compared to the approaches using variational approximations.
However, their convergence is quite slow compared to approaches based
on point estimates for X (MAPwx) or fully factorial approximations
(PPCAd, VBPCAd). The difference between PPCA and MAPw is very
small in terms of the rms error. In general, MAPw can be more resis-
tant to overfitting happening in separate rows of the data matrix (see
the second example in Section 3.3). Both algorithms can hardly be
used for very high-dimensional problems because of the heavy compu-
tations of the posterior covariance matrices.

• MAPwx approaches are fast and accurate when there is little missing
data. The two variants of the algorithm optimize the same cost func-
tion but can get stuck at (different) local minima. This explains the
difference of the test error for the two approaches for β ≤ 0.5.

Experiment 2: Difficult case
The data dimensionalities in the second experiment were d = 100, c = 10,
n = 100. The ratio of observed values β was varied in the interval [0.05 0.35].
The results of the experiments are presented in Fig. 5. Here we present some
of our observations based on the obtained results:

• All the methods excepts for VB approaches severely overfit for very
sparse data. For example, for β = 0.05 the training error is zero while
the test error is large. The results provided for β = 0.05 by VBPCA and
VBPCAd are more reliable: for example, VBPCA sets all the principal
components to zero, yielding large (but similar) training and test errors.

• The MAPwx approach is not efficient in the case of sparse data be-
cause of the overfitting problem (see, e.g., results for β = 0.15, 0.2).
Although large values of both parameters W and X are penalized in
MAPwx models, the corresponding algorithms get easily stuck in local
minima, overfitting to only part of the data.

• The imputation approach does not perform well either: It converges
quite slowly and it also generalizes poorly to new data.

• Using more complex posterior models only for parameter X (in PPCA
and PPCAd) slightly reduces the overfitting effect. A bit better gener-
alization is achieved when a prior for W is also used (in MAPw).
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• For structured sparse data when d ≈ n, the best performance is achieved
by using the VB techniques. The advantage of VBPCA is largest for
β = 0.2: with an initialization that decreases chances of underfitting,
VBPCA converges fast and provides the best test error.

Note that most of the algorithms converge fast for very sparse datasets
(β = 0.05) or relatively dense data (β = 0.35). These are the cases when
overfitting is hard to avoid and when the learning problem is relatively sim-
ple, respectively. There is an increase of the time to convergence in the
“transition phase” between the two extreme cases. The longest convergence
time is observed for β = 0.2 when, interestingly, the number of estimated
parameters is approximately equal to the number of data points.7

One of the reasons why VB approaches outperform the alternative meth-
ods is that they can cut off from the model principal components which can-
not be estimated reliably. For example, none of the principal components
was used in the trained VBPCA models for very sparse data (β = 0.05) while
all 10 components were used for the datasets with β = 0.35. This result
suggests that the optimal number of principal components which can be es-
timated for reliable reconstruction of missing data can be smaller than the
“true” number of components underlying the data.

The downside of the automatic determination of the dimensionality of the
principal subspace by VB methods is the existence of multiple local minima
in the cost function: Any component set to zero is a potentially attractive
solution for the method. In the presented experiments, we used two dif-
ferent initializations and the trained VBPCA models were different for most
datasets. The good news is that the goodness of different local minima can be
compared using the VB cost function values, which is the lower bound of the
data likelihood, as shown in (29). Fig. 6 presents the test rms errors against
the cost function values obtained for VBPCA and VBPCAd for the datasets
with β = 0.2. The results show that a solution with a smaller cost function
value generally provides a smaller test rms error both for VBPCA and VBP-
CAd. The correlations between the cost function values and the test rms
errors are more evident for VBPCA than for VBPCAd because VBPCA gives
a tighter lower bound for the data likelihood due to of a better approxima-
tion. Note also from Fig. 6 that the actual number of principal components
used strongly affects the reconstruction quality.

The practical problem of finding the global minimum of the VB cost func-
tion is the need to run the learning algorithm many times. It is also advisable
to avoid “bad” local solutions, for example, by proper initialization. The re-
quired computations for VBPCA can be quite heavy, especially for large-scale
datasets. In such cases, VBPCAd, as a “light” version of VBPCA, might be
more efficient.

5.2 Experiments with Netflix data

We have tested different PCA approaches in the presence of missing values in
the task of collaborative filtering. The Netflix problem [22] is a collaborative

7The moment of convergence was estimated as the time instant after which the changes
of the training rms error were negligibly small, although the final stages of learning had very
little effect on the test error.
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Figure 6: Experiment with d = 100, c = 10, n = 100 and the ratio of
observed values β = 0.2. Test rms error (y-axes) against cost function values
(x-axes) obtained with VBPCAd (left) and VBPCA (right). The solid line
separates solutions obtained for two different initializations: random and with
100 iterations of PPCAd. The dotted lines connect two local minima for the
same dataset. The plots show the values after convergence. Different markers
represent the number of components effectively used in the corresponding
model.

filtering task that has received a lot of attention recently. It consists of movie
ratings given by n = 480189 customers to d = 17770 movies. There are
N = 100480507 ratings from 1 to 5 given, and the task is to predict 2817131
other ratings among the same group of customers and movies. 1408395 of
the ratings are reserved for validation (or probing). Note that 98.8% of the
values are thus missing.

The PCA approach is one of the most popular techniques considered by
Netflix contestants (see, e.g., [10, 32, 25, 19]). In our recent conference
papers [27, 28], we tried to estimate c = 15 principal components from
the data using unregularized (LS) PCA, MAPwx, and VBPCAd approaches.
The main conclusion was that when data are very sparse, overfitting becomes
a serious problem and the imputation algorithm becomes very slow. The
proposed remedy was to use, for example, VBPCAd instead.

Fig. 7 presents results with MAPwx and VBPCAd using a varying num-
ber of principal components. MAPwx starts to overfit after about 5 hours
of computation, that is, the root mean square (rms) error on the test data
(upper curves) starts to degrade even if the rms error on the training data
is still diminishing. This does not happen with VBPCAd as the validation
error seems to decrease monotonically after the early fluctuation. The exper-
iments also confirm that VBPCAd is computationally scalable to very large
problems. We also tried to run VBPCA, but the straightforward Matlab im-
plementation turned out to be too slow to produce meaningful results. All
experiments were run on a dual cpu AMD Opteron SE 2220 using Matlab.

Our best rms error for probing Netflix data was 0.9055 achieved with VBP-
CAd with 50 components. This is a good result compared to other imple-
mentations of similar PCA models reported by other contestants (see, e.g.,
[2, 19]). The results suggest that the PCA model is too simple to solve the
Netflix problem: The model captures global similarities while local correla-
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tions should also be taken into account to achieve better performance [2].
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Figure 7: Experiments with the Netflix data. The rms error (y-axis) is plotted
against the processor time in hours. The lower curves show the training error
while the upper curves show the test error (for the probing data provided by
Netflix). The time scale is linear from 0 to 1 and logarithmic above 1.

6 DISCUSSION

We have reviewed the problem of PCA learning in the presence of miss-
ing values and discussed various approaches to it. We demonstrated that the
simplicity of PCA is lost when introducing missing values. Firstly, the bias
term can no longer be removed as a preprocessing step, since the optimal
bias depends on the other parameters. Secondly, the estimation of the co-
variance matrix of the data becomes difficult and thus the solution by eigen-
decomposition cannot be used directly. Thirdly, the convergence to a unique
solution cannot be guaranteed even for the simplest PCA models.

Missing values also make the problem of overfitting more relevant to PCA,
so there is a need for some form of regularization. In regularized solutions,
reconstructions of data vectors are no longer the projections of the data to the
principal subspace. Regularization can be done elegantly using probabilistic
models.

The relevant probabilistic models are generally more complex compared
to the complete data case. For example, the posterior covariance of principal
components Σx,j is no longer same for each sample. Thus, a diagonal pos-
terior covariance Σx,j is no longer sufficient for finding the optimal PCA so-
lution. Regularized models typically have more local minima. In particular,
there are local minima of the cost function when some of the hyperparame-
ters go to zero.

In the paper, we have considered only some possible approaches to over-
come the overfitting problem. Other possible alternatives include, for exam-
ple, the evidence framework (see, e.g., [4]), Tikhonov regularization (which
is closely related to MAPwx) and early stopping. For early stopping, the data
are divided into training and validation sets. Both the training and validation
errors are estimated as the error of reconstruction of missing values from the
principal components. Learning is stopped when the validation error starts
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growing due to overlearning. We have tried early stopping in the experiments
with artificial data (similar to the ones presented in Section 5.1) but the per-
formance provided by the probabilistic methods considered in this article was
generally better.

Large-scale PCA problems require fast converging learning algorithms
which allow for efficient implementation. Additionally, sparse datasets re-
quire that the amount of computer memory would scale linearly with the
number of observed values regardless of the data matrix dimensionalities. In
the paper, efficient solutions are proposed based on fully factorial variational
approximations and approximate Newton’s iteration for the relevant optimiza-
tion procedure. An alternative learning algorithm based on natural gradient
was discussed in [28].

The PCA approaches considered in this article can be used in different
tasks. We summarized our recommendations based on the experimental re-
sults from Section 5 in Fig. 8.

β ≈ 1:
small d, n, c large d, n, c
imputation LS gradient

average β:
small c large c

d� n PPCA PPCAd
d ≈ n VBPCA VBPCAd

small β:
small c large c

d� n MAPw VBPCAd
d ≈ n VBPCA VBPCAd

Figure 8: Recommendations on the use of PCA methods for different degrees
of sparsity β defined as in (32).

A Matlab toolbox which contains implementations of all the considered
PCA techniques is available online at http://www.cis.hut.fi/projects/
bayes/. Some of the implemented algorithms scale well to large-scale sparse
datasets, which is achieved by low level implementation of core computa-
tions and by support of parallel computing. For example, the experiments
with the Netflix data reported in Fig. 7 have been obtained using the pro-
vided Matlab code.
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A NOTES ON THE IMPUTATION ALGORITHM

The cost function minimized by the imputation algorithm

The imputation algorithm is shown to belong to the class of least squares PCA
algorithms, that is that it minimizes the cost function (6). Performing SVD on
the complete data matrix is equivalent to finding a low-rank approximation
of Y which minimizes the cost function (2). Let us rewrite (2) as:

Cia = Cobs + Cmis , (33)

Cobs =
∑
ij∈O

(
yij − ŷij(θ)

)2
, Cmis =

∑
ij /∈O

(
yij − ŷij(θ)

)2
, (34)

where θ = (W,X,m) is the model parameters, ŷij(θ) are the reconstruc-
tions obtained with θ as in (7), and y = ŷij(θprev) are the imputed missing
values computed using θ from the previous iteration (denoted by θprev).

The imputation algorithm minimizes (33) as a function Cia(Yimp,θ) al-
ternately w.r.t. the imputed values Yimp = {yij , ij /∈ O} and the model
parameters θ. Let Y ∗imp be the minimizer of Cia(Yimp,θ) w.r.t. Yimp for a fixed
θ:

Y ∗imp = Yimp(θ) = arg min
Yimp

Cia(Yimp,θ) . (35)

This naturally implies that Cmis(Y
∗

imp,θ) = 0 and therefore

Cobs(θ) = Cia(Y
∗

imp,θ) . (36)

Taking into account (36), we get

dCobs

dθ
=
dCia

dθ

∣∣∣∣
Y ∗imp

=
∂Cia

∂θ

∣∣∣∣
Y ∗imp

+
∂Cia

∂Yimp

∣∣∣∣
Y ∗imp

∂Yimp

∂θ
=
∂Cia

∂θ

∣∣∣∣
Y ∗imp

, (37)

A NOTES ON THE IMPUTATION ALGORITHM 31



where ∂Cia/∂Yimp = 0 because of (35).
The cost (33) is minimized w.r.t. θ only when Cia(θ) = Cia(Y

∗
imp,θ) =

Cobs(θ), which together with (37) suggests that the minima of Cia(Yimp,θ)
coincide with the minima of Cobs(θ) which is the cost function (6).

EM interpretation of the imputation algorithm

The imputation algorithm can be seen as the application of the EM steps to
the model

yj = Wxj + m + εj

with isotropic Gaussian noise p(εj) = N (εj; 0, vI) and the model param-
eters W, xj , m, v. Note that xj belong to the model parameters and the
missing values are treated as hidden variables. This is contrary to the prob-
abilistic PCA model in [33, 31] (see Section 3.1) where xj are treated as
hidden variables.

Let us consider the t-th iteration of the imputation algorithm denoting
the set of missing values by Ymv = {yij | ij /∈ O} and the parameter values
found at the t-th iteration as θt = (W,X,m, v)t. The algorithm alternates
between two steps:

1. E-step. The missing values Ymv are updated as yij =
∑c

k=1w
t
ikx

t
kj+m

t
i ,

which is equivalent to computing the mean of the posterior distribution
p(Ymv|θt).

2. M-step. The expected complete-data log-likelihood:∫
log p(Y|θ)p(Ymv|θt) dYmv = 〈log p(Y|θ)〉θt =

= −dn
2

log 2πv − 1

v

∑
ij∈O

(
yij −wT

i xj −mi

)2
−1

v

∑
ij /∈O

[(
yij −wT

i xj −mi

)2
+ vt

]
,

is minimized w.r.t. W, X, m by performing PCA on the completed
matrix Y.

B ROTATION OF THE PCA BASIS FOR PROBABILISTIC PCA

The variational view of the EM algorithm [21] allows for an interpretation of
the PPCA learning algorithm in which the cost function

C(W,m, v, q(X)) =

∫
q(X) log

q(X)

p(Y,X|W,m, v)
dX (38)

is minimized w.r.t. to the model parameters W, m, v and the pdf q(X). The
E-step fixes the model parameters and minimizes the cost function w.r.t. the
distribution q(X) while the M-step minimizes C w.r.t. W, m and v assuming
that q(X) is fixed.
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The cost function (38) can be rewritten as:

C =

∫
q(X) log

q(X)

p(X)
dX−

∫
q(X) log p(Y|W,X,m, v)dX . (39)

Now we note that one can always transform linearly the columns of X and
compensate it by a proper transformation of parameters W and m without
changing the second term in (39). For example, subtraction of a constant mx

from x can be compensated by changing the bias term m correspondingly:

y = Wx + m = W(x−mx) + Wmx + m = Wx1 + m1 . (40)

Similarly, rotation of the columns of X can be compensated by changing W:

y = Wx + m = (WA−1)(Ax) + m = W2x2 + m . (41)

Such transformations generally affect the first term in (39) and at the conver-
gence this term should be minimized w.r.t. any linear transformations. Note
that the first term in (39) is the Kullback-Leibler divergence between q(X)
and p(X):

D(q(X)||p(X)) =

∫
q(X) log

q(X)

p(X)
dX =

∑
j

∫
q(xj) log

q(xj)

p(xj)
dxj

=
1

2

[
− log det

∏
j

Σx,j +
∑
j

tr(Σx,j) +
∑
j

xT
j xj

]
. (42)

Therefore we seek the transformation that keeps the explanation of the ob-
served variables equally good but makes the latent variables as close to the
prior model as possible.

The transformation (40) changes (42) as

D(qm||p) =
1

2

[
− log det

∏
j

Σx,j +
∑
j

tr(Σx,j)

+
∑
j

(xj −mx)
T(xj −mx)

]
. (43)

The optimal mx can be found by taking the derivative of (43) and equating
it to zero, which yields

mx =
1

n

n∑
j=1

xj .

Similarly, the transformation (41) yields

D(qW||p) =
1

2

[
− log det

∏
j

AΣx,jA
T + n tr(AΣ∗A

T)
]
, (44)

where

Σ∗ =
1

n

(
XX

T
+
∑
j

Σx,j

)
. (45)
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Taking the derivative of (44) w.r.t. A yields

−n(AT)−1 + AΣ∗ = 0

and therefore the optimal A satisfies

AΣ∗A
T = I . (46)

Hence, the optimal linear transformation of X is done by centralization
of the posterior means xj and diagonalization of the matrix in (45). This
transformation resembles normalization and so called whitening (see, e.g.,
[15]) of the posterior distributions of the latent variables. At the convergence,
no linear transformation can decrease the value of the cost function (38),
which implies that 1

n

∑n
j=1 xj = 0 and Σ∗ = I.

The PPCA solution has a rotational ambiguity: Using any linear transfor-
mation (41) with an orthogonal matrix A does not affect (46) and therefore
the corresponding solution is equally good w.r.t. the cost function values. We
can use this fact to define the PCA rotation within the principal subspace
(see Section 3.2).

C MAPWX APPROACH TO PCA

The linear observation model y = Wx + m + ε is accompanied with the
following Gaussian priors:

p(x) = N (x; 0, I) p(ε) = N (ε; 0, vI)

p(m) = N (m; 0, wmI) p(W) =
c∏

k=1

N (W:k; 0, wkI)

The cost function is

CMAP =
∑
ij∈O

(
1

v
(yij −wT

i xj −mi)
2 + log 2πv

)
+

1

wm
‖m‖2 + d log 2πwm

+
c∑

k=1

(
1

wk
‖W:k‖2 + d log 2πwk + ‖Xk:‖2 + n log 2π

)
.

The alternating optimization procedure can be implemented as follows:

xj = (WT
j Wj + vI)−1WT

j (
◦
Y:j −Mj) , j = 1, . . . , n ,

mi =
wm

|Oi|(wm + v/|Oi|)
∑
j∈Oi

[
yij −wT

i x:j

]
, i = 1, . . . , d ,

wT
i = (

◦
Yi: −mi)

TXT
i (XiX

T
i + v diag(w−1

k ))−1 , i = 1, . . . , d ,

v =
1

N

∑
ij∈O

(yij −wT
i xj −mi)

2 , wk =
1

d

d∑
i=1

w2
ik , wm =

1

d

d∑
i=1

m2
i .
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Gradient-based learning discussed in Section 4.2 requires:
∂CMAP

∂wik
=
wik
wk

+
1

v

∑
j∈Oi

−
(
yij −wT

i xj −mi

)
xkj ,

∂CMAP

∂xkj
= xkj +

1

v

∑
i∈Oj

−
(
yij −wT

i xj −mi

)
wik .

∂2CMAP

∂w2
ik

=
1

wk
+

1

v

∑
j∈Oi

x2
kj ,

∂2CMAP

∂x2
kj

= 1 +
1

v

∑
i∈Oj

w2
ik .

D VARIATIONAL BAYESIAN PCA (VBPCA)

The cost function of VBPCA

Cvb =

∫
q(θ) log

q(θ)

p(Y,θ|v, wk, wm)
dθ

=

〈
1

2wm
mTm +

d

2
log 2πwm

〉
+

d∑
i=1

〈
1

2
wT
i diag(w−1

k )wi +
1

2

c∑
k=1

log 2πwk

〉
+

n∑
j=1

〈
1

2
xT
j xj +

c

2
log 2π

〉
+
∑
ij∈O

〈
1

2v
(yij −mi −wT

i xj)
2 +

1

2
log 2πv

〉
+ 〈log q(θ)〉 (47)

is minimized w.r.t. the approximating pdf q(θ) and model hyperparame-
ters v, wk, wm. Here we use the notation θ = (W,X,m) and 〈f(θ)〉 =∫
f(θ)q(θ)dθ.
Using the following form of q

q(W,X,m) =
d∏
i=1

N (mi;mi, m̃i)
d∏
i=1

N (wi; wi,Σw,i)
n∏
j=1

N (xj; xj,Σx,j)

allows for the following optimization procedure. The update of the principal
components:

xj = Ψ−1
j W

T
j (

◦
Y:j −Mj) , Σx,j = vΨ−1

j

Ψj = W
T
j Wj +

∑
i∈Oj

Σw,i + vI , j = 1, . . . , n .

The update of the bias term:

mi =
wm

|Oi|(wm + v/|Oi|)
∑
j∈Oi

[yij −wT
i xj] (48)

m̃i =
vwm

|Oi|(wm + v/|Oi|)
, i = 1, . . . , d . (49)

The update of matrix W:

wT
i = (

◦
Yi: −mi)

TX
T
i Φ
−1
i , Σw,i = vΦ−1

i

Φi = XiX
T
i +

∑
j∈Oi

Σx,j + v diag(w−1
k ) , i = 1, . . . , d
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and the variance parameters:

v =
1

N

∑
ij∈O

(yij −wT
i xj −mi)

2

+
1

N

∑
ij∈O

[m̃i + wT
i Σx,jwi + xT

j Σw,ixj + tr(Σx,jΣw,i)] ,

wk =
1

d

d∑
i=1

w2
ik + w̃ik , wm =

1

d

d∑
i=1

m2
i + m̃i , (50)

where w̃ik is the k-th element on the diagonal of Σwi
.

In analogy to PPCA (see Appendix B), one can transform a VBPCA so-
lution to fit the prior model better. The requirements (23)–(24) are then
supplemented by

ΣW = W
T
W +

d∑
i=1

Σw,i = diag(λi) , λi ≥ λk , i < k .

The pdf of a missing value yij , ij /∈ O can be approximated as a Gaussian
with the mean and variance parameters defined as

yij = wixj +mi

ỹij = m̃i + wT
i Σx,jwi + xT

j Σw,ixj + tr(Σx,jΣw,i) .

E VB PCA WITH FULLY FACTORIAL APPROXIMATION (VBPCAD)

The VBPCAd approach uses the fully factorial posterior approximation

q(W,X,m) =
∏
i

N (mi;mi, m̃i)
∏
i,k

N (wik;wik, w̃ik)
∏
k,j

N (xkj;xkj, x̃kj) .

Then, the cost function (47) splits into the sum of simple terms:

Cvb =
∑
ij∈O

Cxij +
d∑
i=1

Cbi +
d∑
i=1

c∑
k=1

Caik +
c∑

k=1

n∑
j=1

Cskj ,

where the individual terms are

Cxij =
1

2v

[
(yij −wT

i xj −mi)
2 + m̃i +

c∑
k=1

(
w̃ikx

2
kj + w2

ikx̃kj + w̃ikx̃kj
)]

+
1

2
log 2πv ,

Cbi =

〈
log

q(mi)

p(mi)

〉
=
m2
i + m̃i

2wm
− 1

2
log

m̃i

wm
− 1

2
,

Caik =

〈
log

q(wik)

p(wik)

〉
=
w2
ik + w̃ik
2wk

− 1

2
log

w̃ik
wk
− 1

2
,

Cskj =

〈
log

q(xkj)

p(xkj)

〉
=

1

2
(x2

kj + x̃kj)−
1

2
log x̃kj −

1

2
.
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Variational parameters mi, m̃i, wk and wm are updated to minimize the
cost function using the update rules in (48)–(50). Parameters w̃, x̃ can be
updated to minimize the cost function:

w̃ik = v

[
v

wk
+
∑
j∈Oi

x2
kj + x̃kj

]−1

, (51)

x̃kj = v

[
v +

∑
i∈Oj

w2
ik + w̃ik

]−1

. (52)

The update rule for v is

v =
1

N

∑
ij∈O

[
(yij −wT

i xj −mi)
2 + m̃i +

c∑
k=1

(
w̃ikx

2
kj + w2

ikx̃kj + w̃ikx̃kj
)]
.

Derivatives required for gradient-based optimization:

∂Cvb

∂wik
=
wik
wk

+
1

v

∑
j∈Oi

−
(
yij −wT

i xj −mi

)
xkj + wikx̃kj ,

∂Cvb

∂xkj
= xkj +

1

v

∑
i∈Oj

−
(
yij −wT

i xj −mi

)
wik + w̃ikxkj .

The second-order derivatives which can be used to speed up learning, as
explained in Section 4.2, coincide with the inverse of the updated variances
given in (51)–(52): ∂2Cvb/∂w

2
ik = w̃−1

ik and ∂2Cvb/∂x
2
kj = x̃−1

kj .
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