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Abstract

Lately there has been the interest of categorization and pattern detection in large data sets, including
the recovering of the dataset missing values. In this project the objective will be to recover the subset
of missing values as accurately as possible from a movie rating data set. Initially the data matrix is
preprocessed and its elements are divided in training and test sets. Thereafter the resulting matrices
are factorized and reconstructed according to probabilistic principal component analysis (PCA). We
compare the quality of reconstructions done with sampling and variational Bayesian (VB) approach.
The results of the experiments showed that sampling improved the quality of the recovered missing
values over VB-PCA typically after roughly 100 steps of Gibbs sampling.

1 Introduction

Human preferences (thequality tags we put on
things) are language terms that can be easily trans-
lated into a numerical domain. We could assign low
values to odd things and high values to enjoyable
things, i.e.; rate things according to our experience.
These ratings serve us to easily (and grossly) classify
and order our preferences from the ones we like the
most to the ones we dislike the most. Of course we
are limited: we can not rate what we do not know,
however; it may be of our interest to know the possi-
ble ratings of these unknowns.

In this project we will be working with large and
sparse matrices of movies ratings. The objective will
be to recover a subset of the missing values as accu-
rately as possible. Recovering these missing values
equal to predicting movies ratings and, therefore; pre-
dicting movies preferences for different users. The
idea of correctly recovering movies ratings for differ-
ent users has been a hot topic during the last years
motivated by the Netflix prize.

The concept of mining users preferences to predict
a preference of a third user is called Collaborative Fil-
tering, it involves large data sets and has been used by
stores like Amazon and iTunes.

We can start by considering that the preferences of
the users are determined by a number of unobserved

factors (that later we will call components). These
hidden variables can be, for example, music, screen-
play, special effects, etc. These variables weight dif-
ferent and are rated independently, however; they, to-
gether, sum up for the final rating, the one we ob-
serve. Therefore; if we can factorize the original ma-
trix (the one with the ratings) in a set of sub-matrices
that represent these hidden factors, we may have a
better chance to find the components and values to
recover the missing ratings [1]. One approach to find
these matrices is to use SVD (Single Value Decom-
position), a matrix factorization method. With SVD
the objective is to find matricesU V minimizing the
sum-squared distance to the target matrixR [2].

For this project we consider matrixY to be our
only informative input. MatrixY is, usually, large
and disperse, i.e.; with lots of missing values. The ob-
servable values are the ratings given to movies (rows)
by users (columns). Our objective is to recover the
missing values, or a subset of them, with a small er-
ror. We can factorize matrixY such that

Y ≈ WX + m, (1)

where the bias vectorm is added to each column of
the matrixWX. MatricesW X m will let us re-
cover the missing values, of course, the quality of the
recovering depends on the quality of these matrices.
Sampling will let us improve the fitness of matrices



W X m to better recover matrixY. We can use VB-
PCA (Variational Bayes PCA) for the initial decom-
position of the input matrixY. VB-PCA is known
to be less prone to over-fitting and more accurate for
lager-scale data sets with lots of missing values com-
pared to traditional PCA methods [3, 4]. However;
VB-PCA is not compulsory for sampling, a random
initialization method is also explored in this project.

2 Sampling PCA

Sampling can be seen as the generation of numerical
values with the characteristics of a given distribution.
Sampling is used when other approaches are not fea-
sible.

For high-dimensional probabilistic models Markov
chain Monte Carlo methods are used to go over the in-
tegrals with good accuracy. Gibbs sampling is a well
known MCMC method [5, 6]. In Gibbs approach we
sample one variable, for exampleW, conditioned to
the remaining variables,X m. In the following step
we sample another variable fixing the rest; we repeat
this process generating as many samples as necessary.

In our project we have matrixY that is a joint dis-
tribution of the formY = WX + m+noise to pre-
dict the missing values inY we need to solve:

P (YMIS |YOBS) =

∫
P (YMIS |W,X,m) (2)

P (W,X,m|YOBS) dW dX dm.

Solving the integral is complex, therefore; we
make use of Gibbs sampling to approximate its
solution. To recover matricesW X m we need
to solveP (W|YOBS ,X,m), P (X|YOBS ,W,m)
andP (m|YOBS ,W,X) each one following a Gaus-
sian distribution, contrary toP (W,X,m|YOBS)
that follows an unknown and complex distribution.
The mean matrices,̄X W̄ m̄, and covariance matri-
ces,Σx Σw m̃, are calculated according to the for-
mulas provided at [4] Appendix D; this is done as
follows:

X̄:j = (W̄T
j W̄j + vI)−1

W̄
T
j (Y̊:j − m̄j) (3)

Σx,j = v(W̄T
j W̄j + vI)−1 (4)

W̄i: = (Y̊i: − m̄i)
T
X̄

T
i (X̄iX̄

T
i + v diag(w−1

k ))
(5)

Σw,i = v(X̄iX̄
T
i + v diag(w−1

k )) (6)

m̄i =
wm

|Oi|(wm + v/|Oi|)

∑
jǫOi

[yij − W̄i:X̄:j ] (7)

m̃i =
vwm

|Oi|(wm + v/|Oi|)
. (8)

Indicesj = 1, . . . , p and i = 1, . . . , m go over
the rows (people) and columns (movies) of matrixY,
andyij is the ijth element of matrixY. X̄:j is the
column j of matrix X̄, W̄i: is row i of matrix W̄,
m̄i is elementi of vectorm. v andwm are hyper-
parameters.̊Y is the data matrix where the missing
values have been replaced with zeroes.O is the set of
indicesij for which yij is observed.Oi is the set of
indicesj for which yij is observed.|Oi| is the num-
ber of elements inOi. I is the identity matrix.diag
is the diagonalizing of the referred values.Wj is ma-
trix W in which anith row is replaced with zeros if
yij is missing,mj is vectorm in which eachith ele-
ment is replaced with zero ifyij is missing, andXi is
the matrixX in which ajth column is replaced with
zeros ifyij is missing.

Using the mean and covariance matrices we are
able to sampleW′

X
′ andm

′ using the methods pre-
sented in [6]. With the sampled and mean matrices
we recover afull matrix Y

′, i.e.; including the miss-
ing values; more of this is explained in the following
subsections.

2.1 Recovering the Missing Values

To recover the matrixY we need to multiply ma-
trix W by X and add them bias vector to each col-
umn. Referring to the ideas presented by [1], matrix
W represents thedifferent and weightedfactors that
conform a movie. On the other hand, matrixX rep-
resents the values assigned to each factor by the dif-
ferent users. The resulting matrixY′ has, therefore,
the ratings given to moviesm by usersp. The bias
term,m, is used to compensate the differences in re-
sults from the recovered matrixY′ and the original
observed values used during the training.

To prove thequalityof the ratings in the recovered
matrix Y

′ it is necessary to have a test set different
from the training set. At every step during sampling
when the values are recovered we calculate the Root
Mean Square Error,RMSE, using the test set as base-
line. RMSE is a well known measure to quantify the
amount by which a predictor differs from the value
being predicted.

The sampling and recovering process is as follows:

1. Start pointi = 1, with matricesWi
X

i andm
i.

2. Calculate mean matrix̄X and covariance matrix
Σx usingW

i by Eqs. (3)–(4).



3. RecoverY′ with W
i andX̄ by Eq. (1).

4. Increasei by one.

5. SampleXi using fromN(X̄,Σx).

6. Calculate mean matrix̄W and covariance ma-
trix Σw usingX

i by Eqs. (5)–(6).

7. Recover matrixY′ with W̄ andX
i by Eq. (1).

8. SampleWi from N(W̄,Σw).

9. Calculate bias mean̄m and variancem̃ using
W

i
X

i by Eqs. (7)–(8).

10. Sample biasmi from N(m̄, m̃).

11. Loop from step 2.

This can be graphically visualized at Figure 1. At ev-
ery loop, when calculating the mean matricesW̄ X̄

(steps 2 and 6), we use the original matrixY, this
leads to an improvement in the recovered values (bet-
ter representing the original matrix with the observed
values) and hence and improvement in the future
sampled matrices.
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Figure 1: Sampling PCA process.

Every time matrixY′ is calculated (steps 3 and 7)
the missing values are recovered. At every recovering
step the missing values are averaged with the previ-
ously recovered ones

ȳk+1 =
kȳk + yk+1

k + 1
, (9)

wherek is the step,̄y is the average of the previous
values andy are the new recovered values. Using the
average will lead to better results than just using the
single-samples alone. The more samples are aver-
aged, the close the approximation is to the true in-
tegral in Equation 2.

3 Tests and Results

The Sampling PCA method was tested with an arti-
ficial data set and the MovieLens data set. For the
MovieLens test the missing values were also pre-
dicted randomly to observe how close a random pre-
diction is from the sampling approach, i.e.; to grossly
measure the benefit of using sampling. With the ar-
tificial data we will focus on recovering all missing
values while with MovieLens data only a subset of
the missing values.

3.1 Artificial Data

The initial testing was done using artificially gener-
ated data. The artificial data consists on generating
matricesW[m, c] (normally distributedN (0, 1), ran-
dom values);X[c, p] (uniformly distributed[0 . . . 1],
random values) and, an additional noise matrix
N[m, p] (normally distributedN (0, var) where noise
variance (var) is given in the table below). Matrix
Y[m, p] is generated asY = WX + N. From ma-
trix Y a given percentage of ratings is selected at ran-
dom and set toNaN in matrixYt, i.e.; set to be miss-
ing values1.

Three data sets were generated with the following
characteristics:

Set m p c Noise Var Missing Values

A 100 125 8 0.05 50%
B 150 200 15 0.3 70%
C 300 450 18 0.5 85%

Using the VB-PCA approach,PCA FULL function
[4], we recoverW X andm (plus hyper-parameters)
from matrix Yt. We do this using 10, 20 and 30
components. With the recovered matrices we run the
Sampling PCA algorithm; 500 samples are generated
from each input.

We can observe at Table 1, how the noise, size and
proportion of missing values of the original matrixY

affect the quality of the recovered missing values. It
is also noticeable that when the problem is simple, as

1Wheremstands for number of movies;p for number of people
andc for number of components.



c=10 c=20 c=30

A PCA Full 0.264886 0.264909 0.264939
Sampling 0.265208 0.265511 0.266457

B PCA Full 0.965070 0.865517 0.992878
Sampling 0.959550 0.866838 0.989643

C PCA Full 1.238677 1.163651 1.238233
Sampling 1.232581 1.160960 1.230279

Table 1: RMSE results on artificial data.
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Figure 2: Sampling progress with artificial data.

it is in with data set A,PCA FULL recovers the ma-
trix with a small error, therefore; no improving can
be expected, or achieved, when sampling. On the
other hand, with data set C, where the missing val-
ues are many and the matrix is noisy and large the
recovering achieved fromPCA FULL is just good but
it is improved with the Sampling PCA algorithm. An
important value affecting the results is the number of
components,c. Because wedo not knowthe origi-
nal number of components we try with 10, 20 and 30,
and notice that as we get closer to the original number
of components our results improve. At Figure 2, are
the samplingRMSE error progress through 500 sam-
ples compared to thePCA FULL RMSE error using the
best results within each data set.

From the artificial testing we can conclude, first;
the number of components used play an important
role and, second; as more complex is the problem
better results can be expected when using Sampling
PCA.

3.2 MovieLens Data

The MovieLens [7] data set consist of 100,000 ratings
given by 943 users to 1682 movies. Each rating is a
triplet, the value of the rating, the user giving the rat-

c=10 c=20 c=30

PCA FULL

Y
′ vsYt 0.743154 0.743614 0.744083

PCA FULL

Y
′ vsYp 0.892615 0.892397 0.892211

PCA DIAG

Y
′ vsYt 0.762655 0.768235 0.768326

PCA DIAG

Y
′ vsYp 0.889250 0.889069 0.888687

Table 2: RMSE results onPCA FULL /DIAG for Train-
ing and Probing parts of the MovieLens data.

ing and the movie being rated. The ratings go from
1 to 5, not all movies have been rated nor all users
have given rates. Having 100,000 ratings mean that
less than 10% of the total possible triplets are avail-
able. The data set was divided into TrainingYt and
ProbingYp sets after empty columns/rows were re-
moved, i.e.; users without ratings or movies no rated.
The Training set is a matrix of 943x1674 and con-
tains 95,000 ratings. The Probing set is a matrix of
the same size but contains, only, 4999 ratings.

The first step consists on recovering matrices
W

′

X
′

andm
′

(and hyper-parameters) from matrix
Yt using the VB-PCA implementationsPCA FULL

and PCA DIAG, using 10, 20 and 30 as number of
components. TheRMSE of the recovered matrix,
Y

′ againstYt and Yp can be seen at Table 2.
PCA FULL performed better with the Training matrix
while PCA DIAG was better for the Probing values.
For both approaches more components mean worse
results against the Training set but better against the
Probing one.

With the recovered matrices and hyper-parameters
we perform Sampling PCA. Two options are ex-
plored, the first option consist in using all the recov-
ered data as starting point for sampling. The second
option consists on only using the hyper-parameters;
W

′

X
′

andm
′

matrices are initialized with random
values.

3.2.1 Sampling From PCA Full/Diag

In this first approach sampling is performed using
the recovered matrices and hyper-parameters. For
each set of variables 2000 samples are generated,
the numeric results can be observed at Table 3. Re-
sults show an improvement compared to theY

′ vs
Yp RMSE values at Table 2. The use of 20 compo-
nents seems to return the best results, also, the use
of PCA DIAG shows better results. The best results
(shadowed) represent a small improvement, less than



c=10 c=20 c=30

PCA FULL 0.888123 0.887418 0.887837
PCA DIAG 0.884606 0.883733 0.884129

Table 3: RMSE results in the MovieLens problem af-
ter sampling (2000 samples).
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Figure 3: Reconstruction error in the MovieLens data
as a function of used samples, initialized by and com-
pared toPCA FULL solution.

1% against the top result obtained using the VB-PCA
approach alone (shadowed at Table 2). However;
a small improvement for recovering missing values
tasks its an important gain.

At Figure 3, we can observe theRMSE value of
each sample through the 2000 samples taken, with
different number of components and usingPCA FULL

data as baseline; the values are compared against the
RMSE of VB-PCA approach. At Figure 4, a simi-
lar plot is observable but in this case usingPCA DIAG

data as baseline. For both Figures, in all sub-plots, we
can notice that the sampling algorithm is unstable for
the initial samples, theRMSE valuejumpsaround the
RMSE recovered from the VB-PCA approach. How-
ever; for the last hundreds of samples stabilization is
noticeable, showing small differences after each sam-
ple.

3.2.2 Sampling Using Random Initialization

Another approach to perform Sampling PCA con-
sist in only using the hyper-parameters recov-
ered fromPCA FULL /DIAG. MatricesW

′

X
′

and
m

′

are randomly initialized (uniformly distributed
values[0 . . . 1]). This is possible because the algo-
rithms used to recalculate matricesW

′
X

′ and m
′

and their covariances take into account the training
matrixYt. At each iteration of the sampling the ma-
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Figure 4: Reconstruction error in the MovieLens data
as a function of used samples, initialized by and com-
pared toPCA DIAG solution..

c=10 c=20 c=30

PCA FULL 0.887070 0.887121 0.886675
PCA DIAG 0.885025 0.884074 0.885066

Table 4: RMSE results after sampling, random ini-
tialization.

tricesW
′
X

′ andm
′ values are updated to better fit

Yt.

The initial samples will be highly deviated from
the objective value, therefore; they can be eliminated
before the real prediction is made. In our test we re-
move the initial 30 samples. Later, we generate 1000
new samples to make the predictions of the missing
values. Again 10, 20 and 30 components are used
and the hyper-parameters fromPCA FULL /DIAG. The
Figure 5, shows the discarded samples and how
spread they were compared to the finalRMSE. The
first 10 samples are the most disperse ones, latest
samples are more stable in theirRMSE value, spe-
cially, when the number of components is 20 and 30.

Figure 6, shows theRMSE value at each sample
during the sampling process. The results of the sam-
pling process are at Table 4. The results are simi-
lar to those obtained using the first approach, how-
ever; its worth noticing that forPCA FULL the results
are better in all the instances and only half the sam-
ples were generated (the same hyper-parameters were
used). This may be related on how the recovered ma-
trices, learningYt, directly affect the sampling pro-
cess.
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Figure 5: RMSE for first samples after random ini-
tialization (discarded samples).
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Figure 6: Sampling process for random initialization.

4 Conclusions

This project lead to interesting results. The artifi-
cial tests let us know that small matrices with small
portion of missing values are not easily improved by
sampling. For the MovieLens test we observed that
sampling improved the quality of the recovered miss-
ing values over VB-PCA using the later as an initial
step. We also noticed that the random initialization
does not affect sampling and the results are good. The
best results were obtained usingPCA DIAG and 20
components; the worst results were obtained using
PCA FULL and 10 components. A future improve-
ment could be achieved rounding the recovered val-
ues that are outside the range of the expected ones,
i.e.; values≤ 1 to 1 and≥ 5 to 5. A look at the
recovered vector, for the best results, shows 6 values
below 1 and 32 above 5.
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