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Abstract

Logical hidden Markov models (LOHMMSs) are a generalisation of hidden
Markov models to analyze sequences of logical atoms. Transitions are factorized
into two steps, selecting an atom and instantiating the variables. Unification is
used to share information among states, and between states and observations. In
this paper, we show how LOHMMs can be learned using Bayesian methods. Some
estimators are compared and parameter estimation is tested with synthetic data.

1 INTRODUCTION

Hidden Markov models [13] (HMMs) are among the most widely and successfully used
tools for the analysis of sequential data. Areas of application include computational
biology, user modeling, speech recognition, (stochastic) natural language processing, and
robotics. The analyzed sequences consist of symbols that could be named as a, b, c, ...
In a logical sense, the alphabets are propositional. In case the propositional elements are
replaced by logical atoms [11], we end up with sequences like a(c), b(e, ), a(b). Logical
sequences are a natural representation e.g. for the secondary structure of proteins [10]
and Unix shell command logs.

If we would like to analyze logical sequences with a propositional hidden Markov
model, the sequence has to be propositionalized by e.g. leaving the arguments out and
getting a, b, a or flattening the structure getting a., bec, ap. In the former case, we lose
a lot of information. In the latter case, the number of parameters becomes very high
and we lose the shared information between a(c) and a(b). Logical hidden Markov
models [10] (LOHMMs), overcome these weaknesses. In this paper, we go into details
on how to learn a LOHMM from data.

This paper is organized as follows. In the next Section, we will describe logical hidden
Markov models. In Section 3, we discuss learning them in general from Bayesian point
of view. Section 4 describes the adaptation of the Baum-Welch re-estimation in more
detail. Section 5 shows some synthetic experiments. Subsequently, we list related work.



2 LOGICAL HIDDEN MARKOV MODELS

This section gives a short introduction to logical hidden Markov models. A more thor-
ough introduction can be found in [9].

A logical hidden Markov model (LOHMM) is a generative model, which can be
described as a set of transitions and a set of selection probabilities for variables. For
example

b(X,Y) &L start. b(X,Y) "2 (X, Y).
b(X, X) & start. (Y, X) "EY p(x, v). (1)
b(X,Y) “E px, v).
b(X, blue) "I bred, blue).  b(X, 2) "EX b(X, V)

could be interpreted as follows: The hidden state b has two arguments, the colours of the
left and right ball. In the beginning, it is more probable to have same colours than by
selecting independently. At each time step, a coin is thrown. The observation contains
the result of the coin throw (h or ) and the colour of the left ball. If we observe a heads,
it is possible that the balls are switched. If we observe a tail, the right ball might be
replaced by a new one. There is one exception: if the left ball is red and the right one
is blue, the observation is a heads with green, and the left ball is replaced.

Each transition includes 1) the logical atom called body which is the source of the
transition; 2) the logical atom called head which is the destination of the transition; 3)
the logical atom which is observed' and 4) the probability associated to the transition.
The names body and head and the direction to the left are used since transitions of a
LOHMM can be seen as augmented logical clauses.

For reasons that will become clear, we need the more specific relation among atoms.
An atom a is (strictly) more specific than atom b if b can be transformed into a by
substituting some of its variables, but a cannot be transformed into b similarly. For
example a(X, X) is more specific than a(Y, Z) since the variables Y and Z can be
substituted with X, but X cannot be substituted with both Y and Z at the same time.

A logical sequence can be generated from a LOHMM by repeating the steps below.
At each time point, the process is in a (hidden) state represented by a logical atom. It
starts in the special state called start.

1. The body, which is most specific for the current state, is selected (deterministi-
cally).

2. A transition is selected according to the transition probabilities.
3. Variables that appear in the body are instantiated to match the current state.
4. Other variables are instantiated using a selection probability pu.

5. The (instantiated) observation is added to the logical sequence.

! Transitions from start do not produce an observation.



6. The (instantiated) head is used as the current state and the LOHMM is left
unchanged.

We use a simple selection distribution p here: Each argument of an atom has a type
and each type has a distribution over constants associated to it. In our example, the
only type colour is defined as {0.4 : red, 0.3 : green, 0.3 : blue}.

A LOHMM is well-defined, if there is a unique most specific body for every state
and if the transition probabilities for a single body sum up to one. For example, if there
were bodies b(X, X) and b(X, red) in a LOHMM and the current state was b(red, red),
one could not say which body to use. The problem is avoided by adding transitions
with the body b(red, red).

LOHMMs combine logical reasoning with probabilistic (statistical) modelling. For
example, if we know the LOHMM produced the sequence h(green),h(blue), we can
compute that the probability of being in the hidden state b(green, blue) at time 1 is
0.43. If we also know, that the third observation is h(green), we can be certain that the
hidden state at time 1 was in fact b(green, blue).

3 LEARNING A LOHMM FROM DATA

This section describes how a LOHMM can be learned from data using the Bayesian
approach.

Let us first separate a LOHMM into its parameters @ (the probabilities) and the
structure H (the rest). Let us also assume a prior which generates a structure H with
probability p(H) and parameters for it with probability density p(@ | H). Learning a
single LOHMM (%, 6) from data X corresponds to finding a good representative of the
posterior probability mass:

p(0, 1 | X) o< p(X [ 6, H)p(6 | H)p(H). (2)

Instead of finding just one LOHMM, one could use an ensemble of them represented
with a set of sampled points [5] or a distribution with a simple form [7]. This is out of
scope of this paper.

Finding a good representative structure 4 involves a combinatorial search in the
structure space, where for each structure candidate, the parameters @ need to be esti-
mated. One could first try structures that resemble good candidates by using inductive
logic programming [12] techniques. Also, the information from other structures can be
used to guide the parameter estimation. This is further research.

The representative parameters @ for a given structure H can be found using esti-
mation. There are two commonly used estimators: the maximum a posteriori (map)
estimate 0™ and the Bayes estimate 8Z. They are defined as

6™ = argmaxp(X | 6, H)p(0 | H) (3)
08 — / p(X | 0,H)p(8 | )0d6. (4)

The maximum likelihood estimator is a special case of the map estimator assuming the
prior of the parameters p(@ | H) to be uniform. Note that the Bayes estimate is unique
whereas the map estimate is not.



One can also use the Bayes estimator componentwise (¢B). Each component 6 is
estimated by

o7 = / p(X | 6, H)p(6 | H)6,db, (5)

keeping all the other components constant. That is, 6 is 8°® with the kth component
replaced by 6. The componentwise Bayes estimate is no longer unique.

4 PARAMETER ESTIMATION

The Baum-Welch algorithm[13] is used to estimate parameters of hidden Markov models
from data. It is based on forward and backward procedures. These can be adapted
for LOHMMs with few differences. The Baum-Welch algorithm is an instance of the
expectation-maximisation (EM) algorithm. In the E-step, the expected values of the
latent variables are estimated keeping the parameters constant, and in the M-step, the
parameters are updated keeping the latent variables constant. The two steps are iterated
until a convergence criterion is fulfilled. It has been shown [2] that the EM-algorithm
converges to a fixed point. Let us now discuss these two steps.

4.1 Expectation step

The « and § values computed by the forward-backward algorithm are useful for many
purposes. Firstly, the probability of the observation sequence given the LOHMM is
SIMply Pseq = Y ses, @7(8) = Bo(start). Secondly, the probability of being in a state
s at time t given the observation sequence is o (s)B:(s)/pseq- Thirdly, computing the
expected counts required for the maximization step, becomes simple.

The forward-backward algorithm is based on dynamic programming. To ease the
computations, we find sets S; in the beginning of learning. The set S; is defined as the
set of states at time ¢ that are reachable from start and are not conflicting with the
observation sequence o1, 09, ...,or. The reachable states can be found in two phases:

Collect Set Sy = {start}. For each ¢t = 0,1,...,T, using the states S; as sources, find
all states Sy;1 where a transition can be made without conflict with the current
observation o;.

Prune For each t =T,T —1,...,0, remove state from S, if there are only conflicting
transitions to any of the states still in S; ;.

The start state is pruned if and only if the LOHMM could not have produced the
sequence.

Probabilities o and 3 are computed for each state in each S; recursively. The ay(s)
is defined as the probability of the partial observation sequence o4,...,0;_1 and state
s at time ¢ given the LOHMM. The (;(s) is the probability of the partial observation
sequence oy, . ..,or given state s at time ¢ and the LOHMM. Set aq(start) = 1.0 and



Bri1(s) = 1.0 for every s € St 1. Recursion formulae are

=3 )" i (b)papd(cl, b, h, o) (6)

cle€EH bES, 1

=3 " Bua(h)pand(cl, b, h, o), (7)

cl€H heS41

where p. is the transition probability and p is the selection probability of the in-
stantiation of the new variables in the head and observation. The indicator function
d(cl, b, h,0;) =1 whenever transition cl can take from state b to h observing o; and the
transition ¢l has the most specific body for b.

The expected counts for the maximisation step are computed using a and S values.
Let v(cl, b, h,t) be the probability of going from state b at time ¢ to state h at time ¢+ 1
using the transition ¢/ given the LOHMM and the observation sequence:

o (b)papBir1(h)é(cl, b, b, 0y)
pseq

v(cl, b, h,t) = (8)

The expected count s(cl) of using transition ¢/ with the data set X is

Tseq

= > Y>> vl bht), (9)

seqeX t=0 beSt h€Si41

where T, is the length of the sequence seq. The expected counts of the selection
distribution p are also obtained by summing terms v analogously.

4.2 Maximisation step

Assuming the prior distribution of the parameters p(6 | H) to be formed from Dirichlet
distributions, makes the maximisation step easy. Let p(j) € [0,1], 7 = 1,...,k be ran-
dom variables such that $°* i=1,(j) = 1. In our case, p(j) are the transition probabilities
pa corresponding to a certain body or the selection probabilities p corresponding to a
certain type. A Dirichlet distribution is defined as

= [Te) e, (10)

where z(j), the pseudocounts, are parameters controlling the distribution and C is a
normalisation constant, which guarantees that [ P(p)dp = 1. Note that a Dirichlet
distribution with Vj, 2(j) = 1 is uniform.

The terms of log likelihood logp(X | 8,H) that depend on p(j) can be written in
the form ). s(j)log p(j), where s(j) are the expected counts of how many times p(j)
was used. If we assume the counts s(j) to be constant and vary only the probabilities
p(7), we can find the maximum of the a posteriori density analytically:

s(i) +2(1) — 1
> 1s(G) +20) =11

pi) = (11)



The solution of the componentwise Bayes estimate [8]

o(i) = s(7) + 2(7)
> [s() + 2(5)]
resembles closely the map solution (11). The c¢B estimate is actually a map-estimate

with a modified Dirichlet prior (the pseudocounts z(j) increased by one), i.e. the same
convergence results hold.

(12)

5 EXPERIMENTS

Two sets of experiments were made. The first one highlights the differences of the
estimators on a very simple example. The second one shows how the parameters for the
example given in (1) are learned from generated data.

5.1 Comparison of Estimators

Let us consider the following simple HMM written as a LOHMM:

c(1) & start. (1) P c(1). ¢(2) ¢t c(2).

c(2) &5 start. c(1) &L c(1). ¢(2) 29 c(2).
This could be interpreted as someone picking either coin 1 or coin 2 with equal probabil-
ity and then using that coin to generate a sequence of heads and tails. Coin 1 produces
more heads and coin 2 more tails.

Given sequences h, h, h and t,t,t as data, the structure shown above and a uniform
prior over parameters, we now ask, what would the different estimators give as param-
eters. In fact, all of them would give 0.5 for the selection between the coins, but the
probabilities p; and py for the coins 1 and 2 to produce heads are of more interest.

There are three fixed points for the maximum a posteriori (or maximum likelihood)
estimator (Eq. 3). The first one is a saddle point at p; = 0.5, po = 0.5 and the two
others are the global maxima p; = 1.0, p = 0.0 and p; = 0.0, po = 1.0. Using random
initialisation, the Baum-Welch algorithm would end up in the latter two with equal
probabilities and to the first one with probability 0. This estimator would conclude
from the data that one of the coins produces heads every time and the other only tails.
If the estimated model is tested with a sequence h,t, h, it would give a likelihood of
exactly 0. From this failure one could conclude, that maximum likelihood estimator
does not prepare well for new data if there is a limited amount of data available for
learning.

The Bayes estimator (Eq. 4) is hard to evaluate in general, but in this case one can
use symmetry to conclude that it is p; = 0.5, p» = 0.5. Since the estimator is always
unique, it cannot decide which coin produces more heads (resp. tails).

The componentwise Bayes estimator (Eq. 5) has also three fixed points. The first one
is the saddle point at p; = 0.5, p, = 0.5 in analogy with the map-estimator. The stable
points are now at p; = 0.789, po = 0.211 and p; = 0.211, p, = 0.789. Again, random
initialisation will decide which one is chosen. The cB estimator seems to combine the
good properties of the other two. It can operate with limited amount of data like the
Bayes estimator, but can avoid the symmetrical solution.

6
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Figure 1: Log likelithood of the testing set as the function of number of sequences used
for training. The mean and the standard deviation of 5 runs is shown. The horizontal
line corresponds to the LOHMM which generated the data.

5.2 Re-learning parameters

We implemented the algorithms for LOHMM using Sicstus-3.8.6 Prolog. The LOHMM
in (1) was used to generate data sequences of length 10. The train set consisted of 20
sequences and the test set consisted of 50 sequences. The parameters of the LOHMM
were randomly initialised and estimated from fraction of the training data using the
componentwise Bayes estimator. It took about 10 iterations to reach our stopping cri-
terion: increase of less than 0.1 in the log likelihood of the training data. We measured
the likelihood of the test set for each learned model. Figure 1 shows how the results
(expectedly) get better with more data to learn from.

6 RELATED WORK

HMDMs have been extended in a number of different ways e.g. hierarchical HMMs [3], fac-
torial HMMs [6] and based on tree automata [4]. Relational Markov Models (RMMs) [1]
also use logical representations, but they do not allow for variable binding, unification
nor hidden states. LOHMMs are introduced in [10] concentrating on the application to
the secondary structure of proteins.

7 CONCLUSIONS

In this paper we showed, how to learn LOHMMs from data. After comparison, we
chose the componentwise Bayes estimator, which seems to best fit our needs. We ran
experiments with synthetic data to show that the presented algorithms work.

In near future, we concentrate our research on the structural learning of LOHMMs
and on different kinds of selection distributions pu.
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