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a b s t r a c t

Unsupervised learning of feature hierarchies is often a good strategy to initialize deep architectures for
supervised learning. Most existing deep learning methods build these feature hierarchies layer by layer
in a greedy fashion using either auto-encoders or restricted Boltzmann machines. Both yield encoders
which compute linear projections of input followed by a smooth thresholding function. In this work,
we demonstrate that these encoders fail to find stable features when the required computation is in the
exclusive-or class. To overcome this limitation, we propose a two-layer encoder which is less restricted
in the type of features it can learn. The proposed encoder is regularized by an extension of previous
work on contractive regularization. This proposed two-layer contractive encoder potentially poses a
more difficult optimization problem, and we further propose to linearly transform hidden neurons
of the encoder to make learning easier. We demonstrate the advantages of the two-layer encoders
qualitatively on artificially constructed datasets as well as commonly used benchmark datasets. We also
conduct experiments on a semi-supervised learning task and show the benefits of the proposed two-layer
encoders trained with the linear transformation of perceptrons.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Unsupervised learning of feature hierarchies – pre-training
– has often been used in recent years for the initialization of
supervised learning of deep architectures, e.g. for the categoriza-
tion of images. This initialization was found to improve results for
many-layered – so-called deep – neural networks (Bengio, Lamblin,
Popovici, & Larochelle, 2007; Hinton & Salakhutdinov, 2006; Ran-
zato, Poultney, Chopra, & LeCun, 2007) and has spurred research on
understanding and improving feature learning methods (e.g. Cho,
Raiko, & Ilin, 2011; Erhan, Manzagol, Bengio, Bengio, & Vincent,
2009; Glorot & Bengio, 2010a; Rifai, Vincent, Muller, Glorot, & Ben-
gio, 2011c). Classical pre-training for a multi-layer perceptron is
performed layer-wise in a greedy fashion, that is, after training the
parameters of one layer, they are fixed for the training of the next
higher layer parameters. After pre-training, all parameters are fine-
tuned jointly in a supervised manner on the task.

The greedy initialization steps successively buildmore complex
features and at the same time avoid problems occurring when
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training deep architectures directly. Erhan et al. (2009) argue
that many-layered architectures have more local minima and that
gradients are becoming less informative when passing through
many layers. In contrast, commonly employed auto-encoders (AE)
and restricted Boltzmann machines (RBM) are shallow. They have
fewer local minima and gradients are not diluted.

In some cases, layer-wise pre-training might not help fine-
tuning, e.g. when extracted features bear no relation with the
desired output. Recently, Rifai et al. (2011c) showed that stable
features of the training data are useful for supervised training on
a wide range of datasets. These features do not change when the
input varies slightly. The failure mode we address in this paper
is when these stable features cannot be recognized by the pre-
training method. AEs and RBMs both yield encoders which consist
of a linear projection followed by a smooth thresholding function.
This is a highly restricted function class. In fact, while the deep
MLP can learn almost arbitrary functions (Hornik, Stinchcombe, &
White, 1989),Minsky and Seymour (1969) showed that a one-layer
neural network as is used for AE and RBM is not able to learn the
class of not linearly separable functions, of which the well-known
XOR problem is the simplest example.

We argue here that deep architectures pre-trained with the
common one-layer encoders often fail to discover features which
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are of the XOR class (whichwe shall refer to as non-linear features),
and that fine-tuning may not repair this defect. We construct
problems that cannot profit from pre-training and show that pre-
training may even be counter-productive in these cases.

These problem cases can be solved for auto-encoders by in-
troducing a hidden layer in the encoder, yielding a compromise
between the advantages of increased expressiveness and disad-
vantages of increased depth.

To remedy the problem of increased depth, we propose to
extend contractive regularization (Rifai et al., 2011c) to two-layer
auto-encoder pre-training. We further propose to add shortcuts
to the autoencoder, which helps learning a combination of simple
and complex features. Our training procedure employs themethod
of linearly transforming perceptrons, recently proposed by Raiko,
Valpola, and LeCun (2012).

We show that contractive regularization can resolve the con-
structed cases and performs better than greedy pre-training on
benchmark datasets. Finally, we evaluate the proposed two-layer
encoding with shortcut method on the task of semi-supervised
classification of handwritten digits and show that it achieves bet-
ter generalization than greedy pre-training methods when only a
few labeled examples are available.

2. Related work

The representational power of deep architectures has been
thoroughly analyzed (Bengio & Delalleau, 2011; Le Roux & Bengio,
2008). Le Roux and Bengio (2008) showed that, in principle, any
distribution can be represented by an RBM with M + 1 hidden
units, where M is the number of input states with non-zero
probability. The question of which features can be represented,
is not addressed, however. Bengio and Delalleau (2011) analyzed
the representational power of deep architectures and showed that
they can represent some functions with exponentially less units
than shallow architectures. It is not clear, however, whether these
representations can be learned in a greedy way.

There is considerable evidence that the performance of deep
architectures can be improved when the greedy initialization
procedure is relaxed. Salakhutdinov and Hinton (2009) report
advantages when performing simultaneous unsupervised opti-
mization of all layer parameters of a stack of RBMs as a deep
Boltzmann machine. The authors rely on a greedy initialization,
however, which we demonstrate here might establish a bad start-
ing point. Ngiam, Chen, Koh, and Ng (2011) train a deep be-
lief network without greedy initialization and also report good
results. Their approach might not scale to many-leveled hierar-
chies though, and relies on a variant of contrastive divergence to
approximate the gradient. Recently, Cireşan, Meier, and Schmid-
huber (2012) obtained top results on a number of image classifi-
cation datasets with deep neural networks. They did not rely on
pre-training, but used other regularization methods, such as con-
volutional network structure with max-pooling, generation of ad-
ditional training examples trough transformations, and bagging.

3. Background

In this section, we discuss each of the three methods combined
on our approach – auto-encoders, contractive encodings and linear
transformations – in more detail.

3.1. Auto-encoders

An auto-encoder consists of an encoder and a decoder. The
encoder typically has the form

h = fenc(x) = σ(o) = σ(Ax), (1)
where σ is a component-wise sigmoid non-linearity, e.g. σi(o) =

tanh(oi). The encoder transforms the input x ∈ RN to a hidden
representation h ∈ RM via the (learned) matrix A ∈ RM×N . The
decoder is then given by

x̂ = fdec(h) = A′h ∈ RN , (2)
where we restrict ourselves to the symmetric case A′

= A⊤. Even
though biases are commonly used, we omit them here for clarity.
The main objective for auto-encoders is to determine A such that x̂
is similar to x. For binary x, this amounts to minimizing the cross-
entropy loss

ℓbin(x,A) = −

N
i


xi log(x̂i) + (1 − xi) log(1 − x̂i)


. (3)

Auto-encoders have gained popularity as a method for pre-
training of deep neural networks (e.g. Bengio, Lamblin, Popovici, &
Larochelle, 2006). In deep neural networks, gradient information
close to the input layer is ‘‘diluted’’ since it passed through
a series of randomly initialized nonlinear layers. This effect
makes it difficult to learn good high-level representations (Erhan
et al., 2010). Pre-training moves weights to an area where they
relate to the input and therefore allow for cleaner gradient
propagation. Bengio (2009) and Bengio, Courville, and Vincent
(2013) further hypothesize that stacking of unsupervised neural
networks disentangles factors of variations and that the untangled
representations make supervised learning easier.

Pre-training typically proceeds in a greedy fashion. Consider a
deep network for a classification task, y = A(L)h(L), with h(l+1)

=

σ(A(l)h(l)), where y is the output layer,h(l), l ∈ 1, . . . , L are hidden
layers, and h(0)

= x is the input layer. Then, L − 1 auto-encoders
are learned in succession, minimizing ℓ·(h(l),A(l)) and keeping
A(l′<l) fixed. It is frequently observed that following this protocol,
successively higher-level representations of the inputs are attained
(Bengio et al., 2006). This pre-training is, however, greedy, and
a joint optimization of all layers might yield superior results
in principle. In practice, however, joint optimization without
pre-training suffers from the same gradient dilution problem
as originally addressed by the deep-learning methodology and
often yields bad performance. After pre-training, the supervised
classification objective is optimized jointly with respect to all
parameters (A(1), . . . ,A(L)). This final step is called fine-tuning.

3.2. Contractive encodings

To avoid overfitting the training data, or in order to obtain
the overcomplete representations, it is common to regularize the
auto-encoder learning. A common regularizer for MLPs is the L2
penalty on the weight matrices. This regularizer is well-motivated
for linear methods (e.g. ridge regression or logistic regression),
where it penalizes strong dependence of y on few variables in x,
and thus ensures invariance of y to small changes in x.

For MLPs, which contain saturating non-linearities, this desir-
able property can be achieved with both strongly positive and
negative weights. Rifai et al. (2011a) and Rifai, Vincent, Muller,
Glorot, and Bengio (2011d) show that the generalization of the L2
penalty in the presence of saturating non-linearities is the contrac-
tive penalty.

The contractive penalty penalizes the squared Frobenius norm
of the Jacobian Jfenc of fenc with respect to the input x, where the
Jacobian is defined by

Jfenc =


∂ f 1enc
∂x1

· · ·
∂ f 1enc
∂xN

...
. . .

...

∂ f Menc
∂x1

· · ·
∂ f Menc
∂xN

 .
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Fig. 1. Auto-encoder pre-training can be counter-productive. The simple network on the left should learn y = x1 Yx2 . Pre-training of Amakes an uninformed choice between
representations V1 and V2 without loss of generality, but only V2 is linearly separable and helps fine-tuning.
By minimizing the Jacobin Jfenc , the hidden representation com-
puted by the encoder becomes more invariant to small changes in
the input x, resulting in robust representations.

The combined objective is given as

ℓCAE(h(l),A(l)) = ℓ·(h(l),A(l)) + λ∥Jfenc∥
2, (4)

where λ is the regularization strength. Rifai et al. (2011a, 2011d)
demonstrate that training a stack of simple auto-encoders with
the contractive penalty produces features which identify the data
manifold, which later on helps fine-tuning.

3.3. Linear transformations in perceptrons

Raiko et al. (2012) proposed a method of linearly transforming
perceptrons in a deep MLP network to avoid difficulties in training
a deep neural network without pre-training.

Let us focus on a single hidden layer within a possibly deepMLP
network. The inputs to this layer are denoted xk and its outputs
are yk, where k is the sample index.We allow shortcut connections
that by-pass one ormore hidden layers such that the inputs to each
hidden layer may be distributed over several previous layers of the
network. The mapping from xk to yk is modeled as

yk = Aσ

Bxk


+ Cxk, (5)

where A, B, and C are weight matrices. In order to avoid separate
bias vectors that complicate formulas, the input vectors xk are as-
sumed to have been supplemented with an additional component
that is always one.

Let us assume that σ is a tanh nonlinearity and supplement it
with auxiliary scalar variables αi and βi for each component σi. We
define

σi(bixk) = tanh(bixk) + αibixk + βi, (6)

where bi is the ith row vector of matrix B.
αi’s and βi’s are updated during training in order to help

learning the other parameters A, B, and C. By updating αi’s and βi’s
we will ensure that

0 =

K
k=1

σi(bixk), and 0 =

K
k=1

σ ′

i (bixk). (7)

These are satisfied by setting αi and βi to

αi = −
1
K

K
k=1

tanh′(bixk),

βi = −
1
K

K
k=1


tanh(bixk) + αibixk


.

Wemotivate these seemingly arbitrary update rules below.
The effect of changing the transformation parameters αi and βi

are compensated exactly by updating the shortcut mapping C by

Cnew = Cold − A(αnew − αold)B − A(βnew − βold) [0 0 · · · 1] , (8)

where α is a matrix with elements αi on the diagonal and one
empty row below for the bias term, and β is a column vector with
components βi and one zero below for the bias term. Thus, any
change in αi and βi does not change the overall mapping from xk
to yk at all, but they do change the optimization problem instead.

One way to motivate the transformations in Eq. (7), is to study
the expected output yt and its dependency on the input xt :

1
K


k

yk = A


1
T


k

σ(Bxk)


+ C


1
K


k

xk


, (9)

1
K


k

∂yk

∂xk
= A


1
K


k

σ ′(Bxk)


B⊤

+ C. (10)

We note that by making nonlinear activations σ(·) zero mean
in Eq. (7) (left), we disallow the nonlinear mapping Aσ (B·) to
affect the expected output yk, that is, to compete with the bias
term. Similarly, by making the nonlinear activations σ(·) zero
slope in Eq. (7) (right), we disallow the nonlinear mapping Af (B·)
from affecting the expected dependency on the input, that is,
to compete with the linear short-cut mapping C. In traditional
neural networks, the linear dependencies (expected ∂yk/∂xk) are
modeled by many competing paths from an input to an output
(via each hidden unit), whereas this architecture gathers the linear
dependencies to be modeled only by C.

Raiko et al. (2012) showed experimentally that less competition
between parts of themodel speeds up learning significantly. It also
helped getting state-of-the-art learning results for MLP networks
on three tasks (MNIST classification, CIFAR-10 classification,
and MNIST deep auto-encoders). Vatanen, Raiko, Valpola, and
LeCun (2013) drew more careful connections to second-order
optimization methods, showing that the reparameterization done
using transformations make first-order optimization methods
behave more like a second-order method.

Recently, Dauphin et al. (2014) argued that plateaus around
saddle points in the parameter space dramatically slow down
learning and giving an illusory impression of local minima.
They proposed a second-order optimization method that is able
to escape saddle points and showed that one can continue
optimization from a seemingly converged optimization by a first-
order method. They also discussed whether actual local minima
are as big an issue as has long been thought. It remains an
interesting open issue whether the good empirical performance of
the transformations is related to this phenomenon.

4. Where pre-training of one-layer encoders fails

Let us assume that we want to approximate the Boolean
function f (x1, x2) := x1 Y x2, where · Y · denotes the exclusive-
or relation (XOR). For this purpose, we consider the neural
network with a two-unit hidden layer shown in Fig. 1 (left) and
perform auto-encoder pre-training for the first-layer matrix B.
During the pre-training phase, two filters have to be learned,
mapping the input vector again to a two-dimensional space h =

(h1, h2). Without further information, this mapping might choose
a representation which is not linearly separable (denoted ‘‘V1’’
in Fig. 1). In this case, pre-training does not aid fine-tuning,
it chooses a feature representation that is not helpful for the
classification task. Of course, this argument merely stresses the
distinction between supervised and unsupervised learning. It does
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not follow that pre-training is not helpful per se. Our observation
has, however, important consequences for greedy pre-training.

We can easily extend the argument of the previous paragraph
to a case where greedy pre-training does not find stable non-linear
features that are obvious from the data. Let us assume we have
a dataset of three variables, where xk = (xk1, x

k
2, x

k
1 Y xk2). The

only stable feature of this dataset is x1 Y x2, i.e. a two-layered
denoising auto-encoder should be able to recover xk3 from the first
two components and any of the xk1, x

k
2 from the other variable and

xk1 Y xk2. If unfortunate greedy training of the first layer prevents
the second layer from learning that x1 and x2 are XOR-related –
as demonstrated above – the second layer will fail to discover this
relation. Even worse, pre-training might leave the weights in a
state where recovery using fine-tuning is not possible. We will
empirically verify these claims in the experiments section.

4.1. Two-layer encoders and contractive regularization

Considering the failure mode of one-layer encoders discussed
above, an intuitive extension is tomake the encodermore powerful
by adding a hidden layer h′

∈ RP to the encoder, such that
fenc(x) = h = σ(Ah′) = σ(Aσ(Bx)), with x ∈ RM , A ∈ RN×P ,
B ∈ RP×M . Extending contractive regularization (Rifai et al., 2011c)
to two-layer encoders yields

∥Jfenc(x)∥
2
F =

N
n

M
m


1 − fenc(x)2n

2
×


P
p

AnpBpm(1 − h(x)2p)

2

, (11)

where h(x) is the hidden layer activation. In contrast to one-
layer contractive regularization, which has the complexity of a
forward pass, this regularizer is O(MPN). To reduce the time
required to do experiments, we only compute the regularizer for
few randomly chosen instances in the mini-batch. The precise
number is a tradeoff between acceptable training time and
accuracy, which needs to be cross-validated. The simultaneous
perturbation method (SPSA, Spall, 1998), which has not received
much attention recently, could potentially be employed to reduce
the regularization cost to a second forward-pass.

4.2. Two-layer encoders and shortcut connections

In this paper, we argue that while two-layer encodings are
harder to learn, we can combine their ability to detect highly
non-linear features with the easy-to-learn one-layer encodings
by introducing shortcuts. Shortcut weights C (see, e.g., Eq. (5))
from the input to the second hidden layer can be regularized as
in Rifai et al. (2011d), while the two-layer encoder is regularized
as introduced above. We employ linear transformations and
compensations (Section 3.3) to ensure that simple features
continue to be learned by the shortcut weights, while the two-
layer part of the encoder can focus on the difficult features. For
this purpose, we extend the two-layer contractive regularizer to
account for the linear transformations in (5) and (6),Jfenc(x)2F =


(1 − fenc(x)2)2⊤


C + A(Bα

+ B′)
2

, (12)

where Bα
pm = αpBpm, B′

pm = Bpm(1− tanh2(Bp·x)). Fig. 2 illustrates
the proposed encoder structure.

5. Experiments

In our experiments, we aim to establish the following claims:
1. One-layer encoders are severely restricted.
2. Two-layer encoders can be better learned with the proposed

contractive regularizer.
Fig. 2. Schematic visualization of our encoder. Features h of input x are
determined both by a one-layer encoder via C, and by a two-layer encoder via B
and A. Contractive regularization (Rifai et al., 2011d) and two-layer contractive
regularization (Schulz & Behnke, 2012) are used to learn stable linear/non-linear
representations in h, respectively. Linear transformations in the two-layer part are
moved to C using compensations (Raiko et al., 2012) (not shown).

Table 1
Hyper-parameter distribution used in our experiments.

Hyper-parameter Distribution

Auto-encoder learn rate logU(0.01, 0.2)
MLP learn rate logU(0.01, 0.2)
Regularization strength (λ) U(0.001, 2)

3. Two-layer encoders can further profit from shortcut connec-
tions in the case of semi-supervised learning.

Our experiments follow a common protocol. For a fixed ar-
chitecture, we repeatedly sample all free hyper-parameters from
the distributions detailed in Table 1. For a weight matrix A ∈

RN×M , weights are initialized uniformly with aij ∼ U

−

√
6/N+M,

√
6/N+M


as proposed by Glorot and Bengio (2010a). The dataset

is split in training, validation and testing sets. We stop each train-
ing stage before the loss on the validation set increases. The model
with the best final validation error is trained again using training
and validation set, for the same number of epochs as determined
in the validation phase, and is finally evaluated on the test set.

5.1. Detecting constraint violations in LDPC codes

Wenow extend the toy example of Section 4 to amore realistic,
albeit still constructed, task. A low density parity check (LDPC)
code, also known as Gallager code (Gallager, 1962), is a code
that allows error correction after transmission through a noisy
channel. This is achieved by relating the bits in the message with
a set of random constraints known to both sender and receiver. A
constraint c over a set of variablesC ismet iff 0 ≡ (


x∈C x) mod 2.

Note, that the modulo operation generalizes the XOR operation to
multiple binary variables.

We consider a subproblem of decoding an LDPC code, namely
detecting constraint violations in the code. To this end, we
construct a dataset where a code word w ∈ {0, 1}N is constrained
by N constraints Cn with three participating variables, each. Each
variable participates in three random constraints. Whether a
constraint is violated inw can be determined by a two-layer neural
network withw as its input. The hidden layer has four neurons for
every constraint. Each of these four neurons detects a different case
where the corresponding three neurons in the input sum to an even
number (i.e., for configurations 000, 011, 110, and 101).We denote
theweightmatrix realizing this Aand, as detects conjunctions in the
input data. A second weight matrix, Aor, then detects whether any
of the four neurons in the hidden layer was active and turns on the
corresponding neuron in the output layer v. Thus, the values in v
indicate which constraints in C are violated inw.

For our small problem size, the matrix C can be generated
by creating binary matrices with the correct number of ones and
verifying the number of ones per row and column. The matrices
Aand and Aor can then be derived directly from the constraint
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Fig. 3. Left: Thematrices Aand and A⊤
or used in the LDPC experiments.Weights depicted in black, gray, andwhite denote−1, 0, and 1, respectively. Right:Weights of the best-

performing auto-encoder after greedy pre-training on LDPC. Sections of first-layer weight matrix roughly corresponding to Aand and A⊤
or on the left. Left and right matrices

should be equal up to permutation, but the greedy pre-training is unable to detect the non-linear features of the LDPC dataset.
Fig. 4. Constructed example where greedy auto-encoders fail. The matrices Aand
and Aor are hand-crafted to calculate


i wi mod 2. Matrices and resulting

representations in parenthesis have to be recovered, i.e. learned, by the auto-
encoder to solve the reconstruction task.

matrix. The matrices used in our experiments are shown on the
left side of Fig. 3.

We now frame learning Aand and Aor as a task for the auto-
encoder shown in Fig. 4. The auto-encoder reconstructs the code
wordw and the constraint violation vector v together:

(w1, w2, . . . , wn, v1, v2, . . . , vn) = x !
= fdec(fenc(x)), (13)

where fenc(x) = σ(Aor σ(Aand x)) (14)

and fdec(h) = σ(A⊤

and σ(A⊤

or(h))). (15)

Sincewi ∼ Binomial(1, 0.5), w cannot be compressed to less than
N bits. Hence, a hidden layer size N creates a bottleneck where no
more than the complete codeword can be represented.

The dataset is constructed from all N = 15 bit strings and
randomly split into training (60%), validation (20%), and test set
(20%). After pre-training, we fine-tune all weight matrices of the
network by reconstructing (w, v) using the logistic reconstruction
loss—again with early stopping on the validation set. An instance
is reconstructed correctly if the sign of the outputs corresponds to
the input. This task is clearly related to the pre-training objective,
as during pre-training the hidden layer should fully represent the
code.

The results are visualized in Fig. 5(a). We show the fraction
of draws from the hyper-parameters which performs better than
a given validation error. For greedy pre-training, the chances of
finding a model which performs well on the validation set are very
small. This is reflected in the test errors displayed in Table 2 (LDPC).
Only conditions where both layers are trained simultaneously are
able to solve the task. The problem is also apparent in the learned
weights after pre-training, shown on the right side of Fig. 3. Since
the relations in the dataset can only be detected in the second
hidden layer, greedy pre-training cannot learn anything useful.
Finally, we compared the models to a model where we removed
the first hidden layer. As expected from the construction of the
Table 2
Comparison of pre-training methods for fixed architecture.

Condition Test error (%)
# Layers Pre-training Regularization LDPC MNIST-rot MNIST

1 No None 88.6 13.8 1.8
1 Yes None 81.8 15.7 1.6
1 Yes Contractive 71.1 14.1 1.6
2 Greedy Contractive 6.8 13.2 1.6
2 Greedy None 5.3 14.6 1.7
2 No None 0.0 12.5 1.7
2 Non-greedy None 0.0 12.5 1.7
2 Non-greedy Contractive 0.0 11.4 1.4

dataset, this network architecture is insufficient to solve the task
and yields the highest error.

The model with first and second layer size of 75 and 15,
respectively, is the smallest possible model to solve the task. Since
pre-training relies on chance, its performance should improvewith
the layer size. To analyze the difficulty of the task, we increased the
number of neurons in the first hidden layer by 400% and found only
marginal improvements in the error after pre-training, as shown
in Fig. 6. Thus, relying on chance to find good non-linear features
does not work well for the LDPC dataset. Increasing the size of
the second layer, on the other hand, almost solves the dataset at
160% of the minimal size. This is also expected, since the second
layer sizemainly influences the total compression ratio of the auto-
encoder. In the case of M = 25, the ratio is reduced from a factor
of 30/15 = 2 to 30/25 = 1.2.

Our experiments demonstrate that greedy layer-wise pre-
training drives an auto-encoder to learn mainly ‘‘linear’’ features.
Non-linear relations contained in the data cannot always be
recovered by higher layers, confirming our first claim.

5.2. Benchmark datasets

We also compare our approach on two benchmark datasets,
MNIST and the rotated MNIST dataset MNIST-rot. Here, we fix the
architecture of the network to input size N = 784, first hidden
layer size P = 1000, second hidden layer size M = 500, and
choose a batch size of 16. Qualitatively, we get the same results as
in the constructed LDPC example for both datasets. The two-layer
regularized encoder ismore robustwith respect to choice of hyper-
parameters (Fig. 5(b)) and finds better minima (Table 2, MNIST-
rot andMNIST). Additionally, we analyzed the reconstruction error
after pre-training models with best classification performance.
On the MNIST-rot validation set, the one-layer case achieves an
error of 126.3, greedy contractive pre-training yields 98.3, and the
regularized two-layer encoder reaches 88.9. The reconstruction
results for MNIST have the same ranking. This demonstrates that
the features learned in the two-layer encoder are not only better
for classification, they are also better representations of the input,
which strongly supports our second claim.
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a b

Fig. 5. Comparison of pre-training effects for fixed architecture (30×75×15 for LDPC, 784×1000×500 forMNIST-rot). Graphs show fraction of draws fromhyper-parameter
distribution which performs better than given validation error.
Fig. 6. Performance of models on LDPC dataset after greedy pre-training as a
function of layer size. While increasing the second layer size M with fixed P = 75
quickly solves the task, increasing the first layer size P while fixing M = 15 only
helps marginally. Error-bars show standard deviations over five cross-validation
runs of the best selected hyper-parameter configuration.

5.3. Two-layer encoders and shortcut connections

We evaluate the shortcut connections in a semi-supervised
setting on MNIST. We assume that only 1200 training samples
have their labels available, while all the other training samples are
unlabeled. The task is to use anMLP trained on the training samples
to classify 10000 test samples.

Our base model is a multi-layer perceptron (MLP) with two
hidden layers having tanh hidden neurons. The output of the MLP
is

y = W (σ (Aσ (Bx))) , (16)

whereW, A and B are weight matrices. We have omitted biases for
simplicity of notation. As baseline, we trained this MLP both with
andwithout pre-training. For the pre-trainedMLP, we consider the
bottom two layers as an autoencoder with two hidden layers and
trained them using both labeled and unlabeled samples.

When the hidden neurons, or perceptrons, in the MLP were
linearly transformed, we added shortcut connections from the
input to the second hidden layer to maintain the equivalence after
the transformation. In that case, the output of the MLP is

y = Wh = Wσ(Ah′
+ Cx), (17)
where h′
= σ(Bx) + Bαx + β, and C is the weight matrix of the

shortcuts.1
As a comparison,we tried both using either one of the two-layer

contractive encoding and the linear transformation and using both
of them together. In this way, we can easily see the effectiveness
of the proposed way of using both approaches together.
Specifically, we used six different training strategies:

1. S: MLP trained with labeled samples (S) only,
2. U + S: MLP pre-trained with unlabeled samples (U) and fine-

tuned (S),
3. C+U+S:MLP pre-trained (U) and fine-tuned (S)with two-layer

contractive encoding (C),
4. T + U + S: MLP with shortcuts pre-trained (U) and fine-tuned

(S) with linear transformation (T),
5. 2C+U+ S: MLP pre-trained (U) with stacked contractive auto-

encoders (2C) and fine-tuned (S), and
6. C+T+U+S:MLPwith shortcuts pre-trained (U) and fine-tuned

(S) using both the two-layer contractive encoding (C) and linear
transformation (T)

We estimated hyper-parameters such as learning rates, weight
decay constant, contractive regularization strength and the sizes
of the hidden layers using hyperopt (Bergstra, Bardenet, Bengio, &
Kégl, 2011). For anyunregularizedmodels,weused cross-validated
L2 weight decay.

We used five-fold cross-validation, with 48000 and 12000
examples for training and validation, respectively, in pre-training.
Pre-training was stoppedwhen the loss on the validation set failed
to improve. For fine-tuning we used 1000 examples for training
and 200 for validation. Due to the small validation set size, we
took great care in selecting the best model. We first determine
the expected number of training epochs until the optimum is
reached by averaging the early-stopping epoch over all folds. The
model performance is then given by the average validation set
classification error over folds at this epoch during training.

The weight matrices A and B were initialized randomly
according to the normalized scale (Glorot & Bengio, 2010b), while
C was initialized with zeros.

In Table 3, the resulting classification accuracies for all six
strategies are presented. As expected, any approach with pre-
training significantly outperforms the case where only labeled
sampleswere used for supervised training (S). The best performing
strategy was the one which pre-trained the MLP as the two-layer

1 When we pre-trained the MLP as a two-layer contractive encoding, we tied the
weights A and B between the encoder and decoder. However, we did not share C,
αl ’s and βl ’s.
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Fig. 7. Test error for varying fine-tuning dataset size (600, 1200, 2400). Standard
deviations are over five trials with different draws of the dataset. All fine-tuning
hyperparameters were cross-validated for every point.

Table 3
Classification accuracies depending on training strat-
egy onMNIST using 1200 labeled examples. Standard
deviations are over five trials with different draws of
the training set.

Condition Test error

S 10.0 ± 1.4
U + S 7.4 ± 2.2
C + U + S 7.8 ± 1.3
T + U + S 8.0 ± 1.7
2C + U + S 7.2 ± 2.6
C + T+ U + S 6.2 ± 1.2

contractive encoding using the linear transformation (C+T+U+S).
This strategy was able to outperform the strategiesU+S, C+U+S
as well as T + U + S. Our proposed method also has an advantage
over the stacked contractive auto-encoder (2C+U+ S). This trend
also holds when the fine-tuning dataset size is decreased, with the
ratio between test and validation set size held constant, as shown
in Fig. 7. At larger fine-tuning dataset sizes, the difference between
the regularized methods vanishes.

Interestingly, using either the two-layer contractive encoding
or the linear transformation only turned out to be only as good
as the naïve pre-training strategy (U + S). This suggests that it is
not easy to train the two-layer contractive encoding well without
a good training algorithm. Only when training became easier by
linearly transforming perceptrons to have zero-mean and zero-
slope on average, we were able to see the improvement (C + T +

U + S), which confirms our third claim.

6. Discussion

Two-layer encoders are a natural extension of greedy pre-
training that enables learning of non-linear features. As stressed
in Section 5.1, an important class of features are disjunctions of
conjunctions. These functions have a large number of intermediate
results compared to the number of outputs, which requires a large
number of features in the hidden layers. Another important class
of functions are subspace projections, for instance in independent
subspace analysis (ISA), where the projection of features in the
subspace is stable, but the computed features are not.

Such overcomplete features, where M > N , are often suc-
cessfully used in deep learning, last but not least by Rifai et al.
(2011b, 2011c). Intuitively, the overcomplete representation in the
first hidden layer provides the second hidden layermore combina-
tions to choose from. A two-layer auto-encoder, on the other hand,
does not need to guess which features might help in the higher
layer, since they are jointly determined. Therefore, two-layer auto-
encoders might be able to achieve higher performance more reli-
ably with the same number of hidden units, which is supported
in our experiments by greater robustness to the choice of hyper-
parameters and lower reconstruction error.

Especially the LDPC example dataset shows that overcomplete
intermediate representations are crucial for some tasks. With one-
layer encoders, strong regularization is required to avoid learning
the identity function. A two-layer encoder, on the other hand, can
have an arbitrarily large hidden layer which only captures the
intermediate results of the feature calculation. Regularization –
here, stability of the features – is only applied to the second hidden
layer, which does not need to be overcomplete.

Along with its advantage, the two-layer encoder comes with
a difficulty in training. We observed this difficulty in the case of
semi-supervised learning where only a fraction of samples were
allowed to have labels. The method of linearly transforming neu-
rons in a deep neural networkwas used to overcome this difficulty.
Interestingly, the experiments showed that it is important to use
both the two-layer contractive encoding aswell as the linear trans-
formation to achieve good performance.

7. Conclusions

Common pre-training of deep architectures by RBM and AE
simplifies one hard deep problem to multiple less difficult single-
layer ones. In this paper, we argued that this simplification goes
one step too far, to the extent where the class of features which
can be learned by the pre-training procedure is restricted severely.

Guided by the observation that one-layer neural networks
cannot learn functions in the exclusive-or class, we constructed
a task to detect constraint violations in low density parity check
codes, which relies heavily on modulo computations. For this
dataset, layer-wise pre-training was counterproductive for fine-
tuning and only two-layer methods could solve the task.

To obtain unrestricted representational power, we employed
two-layer encoders, which can be regularized using an adaption
of the contractive regularizer (Rifai et al., 2011c) and combined
with one-layer encoders by using linear transformations and the
powerful learning algorithm developed by Raiko et al. (2012) and
Vatanen et al. (2013).

We empirically demonstrated the validity of our claimby show-
ing that on a task of classifying handwritten digits, pre-training
with two-layer encoders resulted both in better average perfor-
mance under the same hyper-parameter prior and better abso-
lute performance. For semi-supervised learning, when only a small
number of training samples out of training samples are assumed to
have annotated labels, we showed that pre-training indeed helps
significantly. Furthermore, we were able to see that generaliza-
tion performance could be improved by pre-training an MLP with
a two-layer contractive encoding using the linear transformation,
further confirming the validity of our claim.
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