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Abstract

Playing out the game from the current state to the end many times randomly, provides statistics that
can be used for selecting the best move. This play-out analysis has proved to work well in games such
as Backgammon, Bridge, and (miniature) Go. This paper introduces a method that selects relevant
patterns of moves to collect higher order statistics. Play-out analysis avoids the horizon effect of regular
game-tree search. The proposed method is especially effective when the game can be decomposed into
a number of subgames. Preliminary experiments on the board games of Hex and Y are reported.

1 Introduction

Historically, chess has been thought to be a good test-
bed for artificial intelligence. In the last 10 years,
though, computers have risen above human level.
This is largely due to fast computers being able to
evaluate a huge number of possibilities. One can ar-
gue, whether these programs show much intelligence
after all.

There are still games that are similar to chess in
some sence but have proved to be difficult for com-
puter players. These games include Go, Hex, Y, and
Havannah. The games have some common factors:
First, the number of available moves at a time is large,
which prevents the use of brute-force search to ex-
plore all the possibilities as the search tree grows ex-
ponentially with respect to depth. Second, there are
lots of forcing moves which boost the so called hori-
zon effect. If the program sees a limited number of
moves ahead (search depth), there is often a way to
postpone the interesting events beyound that horizon.

This paper introduces a method that avoids these
two pitfalls. The search is performed by playing out
games from the current situation to the end several
times randomly. This is known as play-out analysis or
Monte Carlo playing. The number of explored possi-
bilities is constant with respect to search depth. Also,
as the games are played out all the way to the end,
there is no need to evaluate a game in progress, thus
avoiding the horizon effect.

1.1 Game of Hex

Hex is a two-player boardgame with no chance. It
is played on ann × n rhombus of hexagons. The

Figure 1: A small filled Y board is shown to be won
by black by micro reductions.

players have colours red and blue and the edges of
the board are coloured red and blue such that paral-
lel edges have the same colour. The game is started
with an empty board and the players alternately fill
a cell with a piece of ones own colour. Red player
wins if the red edges are connected with a path of red
cells and vice versa. When the board fills up, exactly
one of the players has formed a connecting path, see
Figure 5 for an example game.

1.2 Game of Y

The game of Y is a two-player boardgame with no
chance and a relative to the more popular Hex. Y
is played on a triangular board formed of hexagonal
cells that are empty in the beginning. Two players
alternately fill empty cells with pieces of their own
colour. The player who creates an unbroken chain of
pieces that connect all three edges, wins. Note that
corners belong to both edges. The standard board in
Figure 2 is slightly bent with three of the hexagons
replaced by pentagons.

The fact that Y cannot end in a draw on a straight
board can be proven using so called micro reductions
described in (van Rijswijck, 2002). Sizen board is
reduced to a sizen − 1 board where each cell on the



Figure 2: Top: The game of Y is usually played on
the bent board, on points rather than cells. Bottom:
The bent board can be transformed into a straight one
for analysis such as micro reduction. Filling a point
in the bent board fills all the cells with the same letter
in the straight board. Only one corner is shown.

reduced board gets the majority colour of the three
nearest cells on the original board. An example is
given in Figure 1. It turns out that if a chain touches
a side of the board, it does so also on the reduced
board. A winning chain will thus be a winning chain
on all the smaller boards including the trivial board of
size1. Figure 2 shows how the same analysis can be
done for the bent board by first transforming it into a
straight one.

1.3 Related Work

Abramson (1990) proposed the expected-outcome
heuristic for game state evaluation. The value of a
game state is the expected outcome of the game given
random play from that on. The value can be used to
evaluate leaf nodes in a game-tree that has the cur-
rent state as the root node and possible moves as chil-
dren of the node. The expected-outcome heuristic ap-

plies to a large number of games with or without ran-
domness or hidden information and with one or more
players. It is best applicable to games that always
end after a reasonable number of moves, such as the
games of Hex and Y. Expected outcome heuristic is
also known as roll-out analysis or play-out analysis.

In many planning problems and games, the order
of moves or actions is not always important. This ap-
plies especially in games of Hex and Y where the or-
der does not have any role as long as the same moves
are made. In Monte Carlo playing, unimportance of
the order means that the all-moves-as-first heuristic
(Brügmann, 1993) works well: After a game has been
played out, not only the evaluation of the first move is
changed, but all the subsequent moves are handled as
they were the first move. Thus, in the games of Hex
and Y, instead of playing the game out, one can just
fill the empty cells by pieces of random colour. Sam-
pling colours for the empty cells then corresponds to
Monte Carlo playing. Those cells that were filled by
the winning player, are important.

All-moves-as-first heuristic is very good in reduc-
ing the number of random samples compared to ba-
sic expected outcome, but unfortunately it limits the
lookahead into just one move in some sense. Bouzy
(2004) proposed a hybrid between expected-outcome
and all-moves-as-first heuristics. A shallow game tree
is made where each leaf is evaluated using the all-
moves-as-first heuristic.

Müller (1999) proposed decomposition search with
an application to Go endgames. The idea is that the
game can be decomposed into a sum of subgames
which are somewhat independent of each other. Be-
cause the subgames are small, the full game tree can
be constructed for each of them, including local pass
moves. Then, many of the moves can be pruned for
instance because they are dominated by other moves
in the same subgame. The global search is thus sped
up a lot, allowing perfect solution of end-games of
dozens of moves. A similar approach is suggested to
be used heuristically for middle-game where the divi-
sion into subgames is not yet strict.

Already Brügmann (1993) suggested an extension
of the all-moves-as-first heuristic into an higher order
heuristic, where not just the value of each move is
evaluated but the value of making a move after some
otherN moves have been made. Time was not ripe
for higher order considerations for computational re-
sources. If there areM moves available, one would
have to collect enough statistics forMN combina-
tions of moves. Now, thirteen years later, it would
still be a waste of resources to try to uniformly esti-
mate all combinations.



Inductive logic programming (ILP) (Muggleton
and De Raedt, 1994) involves finding patterns of in-
creasing size in data. A pattern in this case is a set of
moves (in addition to the ones that have been already
made) and the data are the random games. One can
estimate the value of a move given that the pattern
has already been played. New patterns are created by
refinement operators, in this case by adding a move
to an existing pattern. By using ILP, we can make
the higher-order heuristic selective, that is, we do not
have to estimate allMN combinations of moves but
only MP whereP is the number of patterns.

2 Higher order statistics in play-
out analysis

Black and white player are playing a game with alter-
nate moves. At some states of the game, a play-out
analysis means thatk hypothetical continuationsc of
the game are played out to the end and statistics from
these play outs are used to determine the next move.
The play outs might be sampled by drawing moves
from a uniform distribution over all legal moves, or
by other means. To sample a semi-random move, one
can add noise from a random number generator to a
heuristic evaluation of each move and select the best
one.

The expected-outcome heuristiche evaluates the
movem0 as

he(m0) =

∑k

i=1
χ(ci is a win)χ(m0 first move ofci)
∑k

i=1
χ(m0 first move ofci)

,

(1)

whereχ is the indicator function (χ(true) = 1 and
χ(false) = 0). The best move is thus the one that
lead to most wins in the play outsc.

Note that in Hex and Y the order of moves does
not matter. One can play the game from current state
all the way to filling the board. The winner of the
game can be determined from the filled board without
knowing the order of moves. One can think that the
single play out represents all the possible play outs
that lead to the same position. This leads to the all-
moves-as-first heuristicha:

ha(m0) =

∑k

i=1
χ(ci is a win)χ(m0 is made inci)
∑k

i=1
χ(m0 is made inci)

.

(2)

The best move is the one that lead to wins when used
at any point in the continuation. An example is shown

in Figure 3. Often, play out is done using a semi-
random move selection with the heuristic itself.

Higher order heuristichh evaluates the movem0

after movesm1, m2, . . . , ml are made in any order.

hh(m0 | {mj}
l
j=1

) = (3)
∑k

i=1
χ(ci is a win)χ(m0 after{mj}

l
j=1

in ci)
∑k

i=1
χ(m0 after{mj}l

j=1
in ci)

.

The sets of moves{mj}
l
j=1

are called patterns. Many
different patterns apply in a future state when sam-
pling a play out, and one must decide how to com-
bine evaluations corresponding to different patterns.
Also, one has to be selective which patterns are taken
into consideration. Before going into these details, an
example is shown in Figure 4.

2.1 Combining the evaluations by differ-
ent patterns

Many patterns can apply to the same state, that is,
the moves of more than one pattern have been made.
It would be possible to construct complicated rules
for combining their evaluations; e.g. the average of
the evaluations of applying patterns weighted with a
function of the pattern size. One should note that play
out is the most time intensive part of the algorithm
and combining happens at every play-out move so it
has to be fast. The proposed combining rule is:

• The maximum of evaluations given by each pat-
tern that applies but is not a subpattern of an-
other applying pattern.

The motivation is that the more specific pattern gives
more accurate information about a move than its sub-
pattern. In Figure 4, patterns 1, 2, and 4 apply to
the example state, but pattern 1 is a subpattern of the
other two so it is not taken into account. Using the
maximum helps in computational complexity. One
can take the maximum first within a pattern and then
over different patterns. The evaluations of a pattern
can be stored in a heap to make the time complexity
logarithmic with respect to the number of available
moves.

2.2 Selection of patterns

An algorithm based on inductive logic programming
is used to select patterns. The process starts with just
the empty pattern (for whichl = 0). Repeatedly, after
a certain number of play outs, new patterns are added.
An existing pattern generates candidates where each
possiblem0 is added to the pattern, one at a time. The



candidate is accepted if it has appeared often enough,
and if m0 is a relevant addition to the pattern. If the
original pattern makes movem0 more valuable than
without the pattern, the moves seem to be related.
The used criterion was based the mutual information
between the made move and winning, given the pat-
tern. If the move makes winning less likely, the cri-
terion was set to zero. Then the maximum of mutual
informations of the move and winning, given any of
the subpatterns, is substracted from the score. When
new patterns are added, statistics are copied from its
parent with a small weight. Also, the statistics of the
first play-outs are slowly forgotten by exponential de-
cay.

2.3 Exploration and exploitation

One has to balance between exploring lots of truly
different play outs and exploiting the known good
moves and studying them more closely. Here it is
done by using simulated annealing: In the beginning,
the amount of noise is large, but towards the actual se-
lection of the move, the amount of noise is decreased
to zero linearly.

Another possibility would be to add a constant (say
1) to the numerator and the denominator of Equa-
tion 3 for emphasising exploration of unseen moves.
This corresponds to an optimistic prior or pseudo-
count. When the time comes to select the actual
move, one wants to de-emphasise unseen moves,
which is done by adding the constant only to the de-
nominator.

2.4 Final move selection

To select the best move after play-out analysis is
done, it is possible to simply pick the movem0 with
the highest heuristic value:

arg max
m0

hh(m0 | {}). (4)

This is the only option with first-order heuristics, but
higher order heuristics allow for more. One can make
a min-max tree search in the tree formed by known
patterns. For instance, using the second-order heuris-
tics, one selects the movem1, for which the best an-
swerm0 by the opponent is the worst:

arg min
m1

max
m0

hh(m0 | {m1}). (5)

2.5 Summary of the algorithm

Given a states(0) select a movem(0) by

1: PatternsP = {{}}, # of play outk = 0
2: Play-out depthj = 0
3: Movem(j) = argmaxm hh(m | p) + noise
4: Make movem(j) in states(j) to get news(j + 1)
5: Increasej by one
6: If s(j) not finished, loop to 3
7: Increasek by one
8: Save movesm(·) and the result ofs(j) in ck

9: Loop to 2 for some time
10: Add new patterns toP
11: Loop to 2 for some time
12: m(0) = argminm1

maxm0
hh(m0 | {m1})

On line 3, the moves of the patternp ∈ P and
p ⊂ {m(0), . . . , m(i − 1)} and there must be no
q ∈ P such thatp ⊂ q ⊂ {m(0), . . . , m(i − 1)}.
On line 10, the candidate patterns are all patterns in
P extended by one move, and they are accepted if
the particular move has been selected by that pattern
more than some threshold number of times on line 3.

3 Experiments

The proposed method was applied to the games
of Hex and Y. An implementation is available at
http://www.cis.hut.fi/praiko/hex/. Figure 5 shows a
game of Hex played by the proposed method against
itself. The red player won as can be seen from the
path starting from moves 43, 33, 21. The level of play
is not very high, but taking into consideration that the
system is not game-specific and that the implementa-
tion is preliminary, the level is acceptable.

Figure 6 shows the position before move 31. Be-
cause of symmetry of the criterion for selecting new
patterns, they are generated in pairs, for instance, the
patterns red ata and blue ata were the first two. Pat-
terns in the order of appearance{}, {a}, {c}, {d},
{h}, {blue c, f}, {reda, b}, {red c, d}, {redd, c},
{blue a, g}, and so forth. The patterns are clearly
concentrated on areas of interest and they are local.

A tournament between 8 different computer play-
ers was held in the game of Y such that each player
met every opponent 10 times as black and 10 times as
white, 640 games in total. The first playerA made
just random moves chosen uniformly from all the
available moves. Three playersB, C, andD used
the all-moves-as-first heuristic with 100, 1000, and
10000 fully random play-outs per move, accordingly.
PlayersE andF used second-order heuristics, that is,
considering all patterns where a single move is made
by the player in turn. The final two playersG andH

used selective patterns, whose number varied from 0
to 99 and size from 0 to 7. The playersE–H used



player order # playouts time/ms win %
A - 0 5 0
B 1 100 8 16
C 1 1000 36 66
D 1 10000 276 65
E 2 1000 125 65
F 2 10000 1155 61
G N 1000 240 64
H N 10000 14735 63

Table 1: The number of playouts, the order of used
statistics, the average thinking time in milliseconds
per move, and the winning percentage against other
players is given for each player.

A B C D E F G H
A 7 0 0 0 0 0 0 0
B 10 6 0 1 1 0 0 0
C 10 10 7 3 7 6 6 6
D 10 10 5 2 5 5 5 8
E 10 10 7 7 7 6 3 6
F 10 10 6 6 4 4 6 3
G 10 10 4 5 5 6 8 6
H 10 9 4 5 6 7 6 6

Table 2: Wins out of ten for the black player (label on
the left) against the white player (label on the top).

the second-order move selection in Equation (5). The
number of play-outs and the average time per move
is shown in table 1.

The results are shown in Table 2. Black won 53%
of the matches since the first move gives an advan-
tage. PlayerA lost all games againt other players.
PlayerB was also clearly worse than the others. The
differences between the playersC–H are not clear
from the limited amount of data.

4 Discussion

The experiments did not show improvement over
first-order heuristics. This might be due to a larger
need for samples, or perhaps the criteria for select-
ing new patterns were unoptimal. Baum and Smith
(1997) propose a well-founded measure of relevance
of expanding a leaf in a search tree when evaluations
are probabilistic. This measure could be applied here
as well. There is a lot of room for other improvements
in general and in reducing computational complexity
as well as taking into use application-specific heuris-
tics.

The applicability of the proposed approach is lim-
ited to games where the order of moves is not very

important as long as all of them are made. In Hex
and Y this applies exactly, whereas in games of Ha-
vannah and Go, it applies approximatively. Perhaps
patterns with more complicated structure could be in-
troduced, such as any boolean formula over moves
and order relations among moves.

The random filling heuristic in the game of Hex
corresponds to communication reliability in graph
theory. Two-terminal network reliablity (Brecht and
Colbourn, 1988), or probabilistic connectedness, is
the probability that two nodes in a network can com-
municate. Edges are assumed to have statistically in-
dependent probabilities of failing but nodes are as-
sumed reliable. The studies in graph theory have
brought results such as that the exact calculation of
two-terminal reliability requires exponential compu-
tations.

The random filling heuristic for the game of Y is
used by van Rijswijck (2002). He uses implicit ran-
dom colouring of empty cells but instead of sampling
from the distribution, he uses micro reduction repeat-
edly until the single value on the size-1 board can be
directly used as a heuristic. At each step of the re-
duction, all the probabilities are assumed to be inde-
pendent, which makes the heuristic quick and dirty.
The transformation in Figure 2 allows the usage of
this heuristic also on the bent board. It would be in-
teresting to test this against the proposed approach.

The proposed method generalises trivially to all
1-or-more-player games and to other rewards than
win/loss. The 1 player version has a connection
to nonlinear planning (see book by McAllester and
Rosenblitt, 1991). Planning aims at finding a se-
quence of actions that lead to some goal. Some-
times plan involves non-interacting steps that can be
reordered. This is taken into account in a nonlinear
plan which only contains a partial order among ac-
tions. The set of patterns and statistics can be inter-
preted as a nonlinear plan.

The idea of estimating statistics for growing pat-
terns is also used in natural language processing by
(Siivola and Pellom, 2005). The model probabilisti-
cally predicts the next word given a context or pattern
of n previous words. New patterns are generated by
adding a word to an existing pattern. For the final
model, some of the patterns are pruned.

Currently all the patterns and statistics are forgot-
ten after each move, while they could still be used.
Also, the proposed system could be used with ma-
chine learning. Patterns reappear from game to game
so life-long learning should be possible. Games such
as Hex, Y, Go, and Havannah all have also limited
translational invariance which could be used for gen-



eralisation. Machine learning in this setting is left as
future work.

5 Conclusion

One can collect statistics from playing out the game
randomly to the end many times. This paper pro-
posed a method for a selective collection of higher
order statistics, that is, evaluations of some combi-
nations of moves. If the game can be divided into a
number of subgames, the proposed system seems to
be able to find relevant combinations concentrated on
a single subgame at a time. The preliminary experi-
ments did not yet show significant improvement over
the first-order approach, but a door has been opened
for further improvement.

The paper also gave some analysis on the game of
Y. The proof of impossiblity of draws was extended
to cover the bent board. A quantitative difference be-
tween the straight and the bent board with respect to
the importance of the centre was shown. Also, play-
out analysis was applied to the games of Hex and Y
for the first time.
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Figure 3: The expected-outcome, or equivalently in
this case, the all-moves-as-first heuristic for the first
move on a straight (top) and a bent (bottom) Y board.
The colour shows the probability of a black win as-
suming random play after the first move. Note that
the straight board gives a large emphasis on the cen-
ter, which is the reason why the bent board is often
used instead.
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Figure 5: An example game of Hex by self-play of
the proposed system.
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Figure 6: At move 31, the first patterns use the cells
marked witha, b, . . . , h. See text for explatations.


