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notation that we use on the Boltzmann 
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transformations for the machine where 
some of its bits are flipped for all samples, 
and show the equivalence of the 
transformed model to the original one. Then 
we show that traditional update rules are not 
invariant to the transformations, propose a 
new update rule called the enhanced 
gradient, and finally show its invariance to 
the transformations. 
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Derivations of the Enhanced Gradient for
the Boltzmann Machine

Tapani Raiko, KyungHyun Cho, and Alexander Ilin

Aalto University

Abstract

This technical report extends the conference paper [1] and the abstract [2] with de-

tailed derivations and proofs. First we recap notation that we use on the Boltzmann

machine and its learning. Then we define transformations for the machine where

some of its bits are flipped for all samples, and show the equivalence of the trans-

formed model to the original one. Then we show that traditional update rules are

not invariant to the transformations, propose a new update rule called the enhanced

gradient, and finally show its invariance to the transformations.

1 Boltzmann Machine

Boltzmann machine has a binary state column vector x, of which part is observed

(visible) and part is latent (hidden) x =
[
x
T
v x

T
h

]T . The machine has parameters
θ which include a square weight matrix W and a bias column vector b. The state

vector x varies for each sample1, whereas parameters are constant. The probability

of the machine being in state x is defined as

P (x | θ) =
1

Z(θ)
exp [−E(x | θ)] (1)

E(x | θ) = −
1

2
x
T
Wx− b

T
x, (2)

where Z(θ) =
∑

x
exp [−E(x | θ)] is a normalizing constant called the partition

function, and the E(x | θ) is called the energy function. The weight matrix W

is symmetric (Wij = Wji) and the diagonal elements are zero (Wii = 0), that is,

1We do not use sample indices in the notation of this report.



connections between units are undirected, and a unit is not connected to itself.

2 Traditional Gradient

Parameters are typically learned to maximize likelihood. Data set or distribution d

contains samples of the visible part of the state xv . The traditional gradient is ob-

tained by taking a partial derivative of the log likelihood with respect to the parame-

ters. It is

∂ 〈log P (xv | θ)〉d
∂Wij

=
∂

∂Wij

〈
log
∑
xh

P (xv ,xh | θ)

〉
d

(3)

=
∂

∂Wij

〈
log

∑
xh

exp[−E(xv ,xh | θ)]∑
x
exp[−E(x | θ)]

〉
d

(4)

=
∂

∂Wij

[〈
log
∑
xh

exp

(
1

2
x
T
Wx+ b

T
x

)〉
d

− log
∑
x

exp

(
1

2
x
T
Wx+ b

T
x

)]
(5)

=

〈∑
xh

exp
(
1

2
x
T
Wx+ b

T
x
)

1

2
xixj∑

xh
exp
(
1

2
xTWx+ bTx

)
〉

d

−

∑
x
exp
(
1

2
x
T
Wx+ b

T
x
)

1

2
xixj∑

x
exp
(
1

2
xTWx+ bTx

) (6)

=
1

2
〈xixj〉d −

1

2
〈xixj〉m . (7)

where 〈·〉d is the expectation over the data distribution in which observed units are

clamped to the data xv and hidden units follow the conditional distribution of the

model given the observed units P (xh | xv ,θ), and 〈·〉m is the expectation over the

model distribution P (x | θ) defined in Equation (1). In order to take into account the

restrictionWij = Wji we define as the gradient

∇Wij =
∂ 〈logP (xv | θ)〉d

∂Wij

+
∂ 〈log P (xv | θ)〉d

∂Wji

(8)

= 〈xixj〉d − 〈xixj〉m . (9)

For the bias term, we get the gradient similarly

∇bi =
∂ 〈log P (xv | θ)〉d

∂bi
(10)

=

〈∑
xh

exp
(
1

2
x
T
Wx+ b

T
x
)
xi∑

xh
exp
(
1

2
xTWx+ bTx

)
〉

d

−

∑
x
exp
(
1

2
x
T
Wx+ b

T
x
)
xi∑

x
exp
(
1

2
xTWx+ bTx

)
(11)

= 〈xi〉d − 〈xi〉m . (12)



A gradient ascent update is

θ ← θ + η∇θ, (13)

where η is a constant step size.

3 Bit-Flip Transformations

Let us define a transformation where some of the bits of a Boltzmann machine are

flipped. This can be seen as another representation of the data for the visible units,

and another representation of the hidden data for the hidden units. A binary vector f

is a constant to all samples and it indicates which bits are flipped. The transformation

is

x̃i = x
1−fi
i (1− xi)

fi (14)

W̃ij = (−1)fi+fjWij (15)

b̃i = (−1)fi

⎛
⎝bi +

∑
j

fjWij

⎞
⎠ . (16)

Theorem 3.1. The transformed machine is equivalent to the original one, that is,

P (x̃ | θ̃) = P (x | θ) for all states x.

Proof.

E(x̃ | θ̃) = −
1

2
x̃
T
W̃x̃− b̃

T
x̃ (17)

=
∑
ij

−
1

2
x
1−fi
i (1− xi)

fi(−1)fi+fjWijx
1−fj
j (1− xj)

fj

−
∑
i

(−1)fi

⎛
⎝bi +

∑
j

fjWij

⎞
⎠x

1−fi
i (1− xi)

fi (18)

=
∑
ij

1

2
(xi − fi)Wij(xj − fj)−

∑
i

⎛
⎝bi +

∑
j

fjWij

⎞
⎠ (xi − fi) (19)

=
∑
ij

−
1

2
xiWijxj −

∑
i

bixi +
∑
ij

1

2
xiWijfj +

∑
ij

1

2
xiWijxj

−
∑
ij

1

2
fiWijfj −

∑
ij

fjWijxi +
∑
i

⎛
⎝bi +

∑
j

fjWij

⎞
⎠ fi (20)

=
∑
ij

−
1

2
xiWijxj −

∑
i

bixi

−
∑
ij

1

2
fiWijfj +

∑
i

⎛
⎝bi +

∑
j

fjWij

⎞
⎠ fi (21)

= E(x | θ) + const. (22)



Since the energy functions are the same up to a constant, the probability distributions

P are the same.

Theorem 3.2. Transforming twice with the same vector f results in the original ma-

chine, that is, ˜̃xi = xi, ˜̃Wij = Wij , and ˜̃bi = bi.

Proof. Flipping a binary state twice results in the original state so ˜̃xi = xi obviously.

˜̃
Wij = (−1)fi+fjW̃ij (23)

= (−1)fi+fj (−1)fi+fjWij (24)

= Wij, (25)

˜̃
bi = (−1)fi

⎛
⎝b̃i +

∑
j

fjW̃ij

⎞
⎠ (26)

= (−1)fi

⎡
⎣(−1)fi

⎛
⎝bi +

∑
j

fjWij

⎞
⎠+

∑
j

fj(−1)fi+fjWij

⎤
⎦ (27)

= bi +
∑
j

fjWij −
∑
j

fjWij (28)

= bi. (29)

4 Transform, Update, Transform back

Let us study what happens when a Boltzmann machine is first transformed using

Equations (14)–(16), then update using the traditional gradient in Equation (13), and

finally transformed back using the same transformation vector f . One might expect

to get the same updated model regardless of the transformation, but that is not the

case.

First we define

covP (xi, xj) = 〈xixj〉P − 〈xi〉P 〈xj〉P (30)

〈·〉dm =
〈·〉d + 〈·〉m

2
(31)

and note that

〈xi〉dm∇bj =
1

2
〈xi〉d 〈xj〉d +

1

2
〈xi〉m 〈xj〉d

−
1

2
〈xi〉d 〈xj〉m −

1

2
〈xi〉m 〈xj〉m (32)



to help get the form in Equation (37). The three-step update for the weights is

Wij ← (−1)fi+fj
[
(−1)fi+fjWij + η

(
〈x̃ix̃j〉d − 〈x̃ix̃j〉m

)]
(33)

= Wij + η(−1)fi+fj
[〈

x
1−fi
i (1− xi)

fix
1−fj
j (1− xj)

fj
〉
d

−
〈
x
1−fi
i (1− xi)

fix
1−fj
j (1− xj)

fj
〉
m

]
(34)

= Wij + η
[
〈(xi − fi)(xj − fj)〉d − 〈(xi − fi)(xj − fj)〉m

]
(35)

= Wij + η
[
〈xixj〉d − 〈xixj〉m − fi∇bj − fj∇bi

]
(36)

= Wij + η
[
covd(xi, xj)− covm(xi, xj) + (〈xi〉dm − fi)∇bj +

(
〈xj〉dm − fj

)
∇bi
]
.

(37)

Let us use a shorthand∇fWij = 〈xixj〉d−〈xixj〉m−fi∇bj−fj∇bi for the resulting

gradient when using the transformation f .

The three-step update for the bias is

bi ← (−1)fi

⎧⎨
⎩b̃i + η (〈x̃i〉d − 〈x̃i〉m) +

∑
j

fj

[
W̃ij + η

(
〈x̃ix̃j〉d − 〈x̃ix̃j〉m

)]⎫⎬⎭
(38)

= (−1)fi

{
(−1)fi

⎛
⎝bi +

∑
j

fjWij

⎞
⎠+ η

[ 〈
x
1−fi
i (1− xi)

fi
〉
d

−
〈
x
1−fi
i (1− xi)

fi
〉
m

]
+
∑
j

fj(−1)fi+fj [Wij + η∇fWij]

}
(39)

= bi +
∑
j

fjWij + η (〈xi〉d − 〈xi〉m) +
∑
j

fj (−Wij − η∇fWij) (40)

= bi + η

⎛
⎝∇bi −

∑
j

fj∇fWij

⎞
⎠ . (41)

From Equations (37) and (41) we can note that the transformation vectors f do not

cancel out and thus we end up with different parameters after the update depending

on the transformation.



5 Enhanced Gradient

We propose a so called enhanced gradient as a better alternative to the traditional

gradient for learning Boltzmann machines. The enhanced gradient is

∇eWij = covd(xi, xj)− covm(xi, xj) (42)

= 〈xixj〉d − 〈xixj〉m −
〈xi〉d + 〈xi〉m

2
∇bj −

〈xj〉d + 〈xj〉m
2

∇bi (43)

∇ebi = ∇bi −
∑
j

〈xj〉dm∇eWij (44)

= ∇bi −
∑
j

〈xj〉d + 〈xj〉m
2

∇eWij (45)

and we will show in Section 6 that it is invariant to the bit-flipping transformations.

The enhanced gradient is a weighted average of all possible updates with different

transformation vectors f as described in the previous section. We chose the weights

for the different updates inspired by Equation (37) to be

∏
i

〈xi〉
fi
dm (1− 〈xi〉dm)1−fi (46)

that sum up to one when considering all the exponentially many alternative transfor-

mation vectors f .

The enhanced gradient for the weights is derived as follows

∇eWij =
∑

f∈{0,1}n

[∏
k

〈xk〉
fk
dm (1− 〈xk〉dm)1−fk

]

[
covd(xi, xj)− covm(xi, xj) + (〈xi〉dm − fi)∇bj + (〈xj〉dm − fj)∇bi

]
(47)

=
∑

fi,fj∈{0,1}

∏
k,i �=k �=j

[〈xk〉dm + (1− 〈xk〉dm)]

〈xi〉
fi
dm (1− 〈xi〉dm)1−fi 〈xj〉

fj
dm (1− 〈xj〉dm)1−fj

[
covd(xi, xj)− covm(xi, xj) + (〈xi〉dm − fi)∇bj + (〈xj〉dm − fj)∇bi

]
(48)

=
∑

fi,fj∈{0,1}

〈xi〉
fi
dm (1− 〈xi〉dm)1−fi 〈xj〉

fj
dm (1− 〈xj〉dm)1−fj

[
covd(xi, xj)− covm(xi, xj) + (〈xi〉dm − fi)∇bj + (〈xj〉dm − fj)∇bi

]
(49)



= covd(xi, xj)− covm(xi, xj)

+ (1− 〈xi〉dm)(1− 〈xj〉dm)
[
〈xi〉dm∇bj + 〈xj〉dm∇bi

]
+ 〈xi〉dm (1− 〈xj〉dm)

[
(〈xi〉dm − 1)∇bj + 〈xj〉dm∇bi

]
+ (1− 〈xi〉dm) 〈xj〉dm

[
〈xi〉dm∇bj + (〈xj〉dm − 1)∇bi

]
+ 〈xi〉dm 〈xj〉dm

[
(〈xi〉dm − 1)∇bj + (〈xj〉dm − 1)∇bi

]
(50)

= covd(xi, xj)− covm(xi, xj) (51)

For the bias term, it would be possible to derive similarly

∇′
ebi =

∑
f∈{0,1}n

[∏
k

〈xk〉
fk
dm (1− 〈xk〉dm)1−fk

]
⎡
⎣∇bi −

∑
j

fj (∇Wij − fi∇bj − fj∇bi)

⎤
⎦ (52)

= ∇bi −
∑
j

∑
fi,fj∈{0,1}

〈xi〉
fi
dm (1− 〈xi〉dm)1−fi 〈xj〉

fj
dm (1− 〈xj〉dm)1−fj

fj (∇Wij − fi∇bj − fj∇bi) (53)

= ∇bi −
∑
j

〈xj〉dm [(1− 〈xi〉dm)(∇Wij −∇bi) + 〈xi〉dm (∇Wij −∇bj −∇bi)]

(54)

= ∇bi −
∑
j

〈xj〉dm (∇Wij −∇bi − 〈xi〉dm∇bj) . (55)

However, there is an alternative formulation that turns out to be more elegant in

form and to work slightly better in practice. The update of the bias depends on

the update of the weights as seen in Equation (41). Rather than using a different

weight update ∇fW for each bias update, we use the enhanced gradient for the

weights when doing each bias update, that is, replacing Equation (41) by bi ←

bi + η
(
∇bi −

∑
j fj∇eWij

)
. Now we get the final formulation of the enhanced

gradient for the bias:

∇ebi =
∑

f∈{0,1}n

[∏
k

〈xk〉
fk
dm (1− 〈xk〉dm)1−fk

]⎛
⎝∇bi −

∑
j

fj∇eWij

⎞
⎠ (56)

= ∇bi −
∑
j

∑
fi,fj∈{0,1}

〈xi〉
fi
dm (1− 〈xi〉dm)1−fi 〈xj〉

fj
dm (1− 〈xj〉dm)1−fjfj∇eWij

(57)

= ∇bi −
∑
j

〈xj〉dm [(1− 〈xi〉dm)∇eWij + 〈xi〉dm∇eWij] (58)

= ∇bi −
∑
j

〈xj〉dm∇eWij. (59)



6 Invariance of the Enhanced Gradient

Theorem 6.1. The enhanced gradient

∇eWij = covd(xi, xj)− covm(xi, xj) (60)

∇ebi = ∇bi −
∑
j

〈xj〉dm∇eWij (61)

is invariant to the bit-flipping transformations as described in Section 3.

Proof. We again compose a three-step update consisting of a transformation, update

by enhanced gradient, and transformation back. If the resulting model is the same

regardless of the transformation vector f , we have proven the claim. The combined

update for the weights is

Wij ← (−1)fi+fj
[
W̃ij + η (covd(x̃i, x̃j)− covm(x̃i, x̃j))

]
(62)

= Wij + (−1)fi+fjη

[
covd(x

1−fi
i (1− xi)

fi , x
1−fj
j (1− xj)

fj)

− covm(x1−fi
i (1− xi)

fi , x
1−fj
j (1− xj)

fj )

]
(63)

= Wij + η [covd(xi, xj)− covm(xi, xj)] . (64)

The combined update for the bias is

bi ← (−1)fi

⎡
⎣b̃i + η∇eb̃i +

∑
j

fj(W̃ij + η∇eW̃ij)

⎤
⎦ (65)

= (−1)fi

{
(−1)fi

⎛
⎝bi +

∑
j

fjWij

⎞
⎠+ η

[
〈x̃i〉d − 〈x̃i〉m

−
∑
j

〈x̃j〉dm
(
〈x̃ix̃j〉d − 〈x̃ix̃j〉m − 〈x̃j〉dm 〈x̃i〉d + 〈x̃j〉dm 〈x̃i〉m − 〈x̃i〉dm 〈x̃j〉d + 〈x̃i〉dm 〈x̃j〉m

) ]

+
∑
j

fj

[
(−1)fi+fjWij + η

(
〈x̃ix̃j〉d − 〈x̃ix̃j〉m − 〈x̃i〉d 〈x̃j〉d + 〈x̃i〉m 〈x̃j〉m

) ]}

(66)



= bi + η

{
〈xi − fi〉d − 〈xi − fi〉m −

∑
j

[
〈xj − fj〉dm

(
〈(xi − fi)(xj − fj)〉d

− 〈(xi − fi)(xj − fj)〉m − 〈xj − fj〉dm 〈xi − fi〉d + 〈xj − fj〉dm 〈xi − fi〉m

− 〈xi − fi〉dm 〈xj − fj〉d + 〈xi − fi〉dm 〈xj − fj〉m

)

+ fj
(
〈xixj〉d − 〈xixj〉m − 〈xi〉d 〈xj〉d + 〈xi〉m 〈xj〉m

) ]}
(67)

= bi + η

{
∇bi −

∑
j

[ (
〈xj〉dm − fj

)
(
∇Wij − fj∇bi − fi∇bj − 〈xi〉dm∇bj + fi∇bj − 〈xj〉dm∇bi + fj∇bi

)
+ fj

(
∇Wij − 〈xi〉dm∇bj − 〈xj〉dm∇bi

) ]}
(68)

= bi + η

[
∇bi −

∑
j

(
〈xj〉dm∇Wij − 〈xj〉dm 〈xi〉dm∇bj − 〈xj〉

2

dm
∇bi

− fj∇Wij + fj 〈xi〉dm∇bj + fj 〈xj〉dm∇bi

+ fj∇Wij − fj 〈xi〉dm∇bj − fj 〈xj〉dm∇bi

)]
(69)

= bi + η

⎡
⎣∇bi −

∑
j

〈xj〉dm
(
∇Wij − 〈xi〉dm∇bj − 〈xj〉dm∇bi

)⎤⎦ (70)

= bi + η

⎛
⎝∇bi −

∑
j

〈xj〉dm∇eWij

⎞
⎠ . (71)





Bibliography

[1] KyungHyun Cho, Tapani Raiko, and Alexander Ilin. Enhanced gradient and adaptive
learning rate for training restricted Boltzmann machines. In Proceedings of the Inter-
national Conference on Machine Learning (ICML 2011), Bellevue, Washington, USA,
June 2011.

[2] Tapani Raiko, KyungHyun Cho, and Alexander Ilin. Enhanced gradient for learning
Boltzmann machines (abstract). In The Learning Workshop, Fort Lauderdale, Florida,
April 2011.

11



9HSTFMG*aecjeh+ 

ISBN 978-952-60-4295-4 (pdf) 
ISBN 978-952-60-4294-7 
ISSN-L 1799-4896 
ISSN 1799-490X (pdf) 
ISSN 1799-4896 
 
Aalto University 
School of Science 
Department of Information and Computer Science 
www.aalto.fi 

BUSINESS + 
ECONOMY 
 
ART + 
DESIGN + 
ARCHITECTURE 
 
SCIENCE + 
TECHNOLOGY 
 
CROSSOVER 
 
DOCTORAL 
DISSERTATIONS 

A
alto-S

T 2
0
/2

011 

This technical report extends the 
conference paper (Cho et al., 2011) and the 
abstract (Raiko et al., 2011) with detailed 
derivations and proofs. First we recap 
notation that we use on the Boltzmann 
machine and its learning. Then we define 
transformations for the machine where 
some of its bits are flipped for all samples, 
and show the equivalence of the 
transformed model to the original one. Then 
we show that traditional update rules are not 
invariant to the transformations, propose a 
new update rule called the enhanced 
gradient, and finally show its invariance to 
the transformations. 

Department of Information and Computer Science 

Derivations of the 
Enhanced Gradient 
for the Boltzmann 
Machine 
Tapani Raiko, KyungHyun Cho, and Alexander Ilin 

TECHNICAL REPORT SCIENCE + 
TECHNOLOGY 




