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Missing-Feature Reconstruction With a Bounded
Nonlinear State-Space Model

Ulpu Remes, Kalle J. Palomaki, Tapani Raiko, Antti Honkela, and Mikko Kurimo

Abstract—Missing-feature reconstruction can improve speech
recognition performance in unknown noisy environments. In this
work, we examine using a nonlinear state-space model (NSSM)
for missing-feature reconstruction and propose estimation with
observed bounds to improve the NSSM performance. Evaluated
in large-vocabulary continuous speech recognition task with
babble and impulsive noise, using observed bounds in NSSM state
estimation significantly improved the method performance.

Index Terms—Missing data, noise robustness, speech recogni-
tion, state space methods.

I. INTRODUCTION

ISSING-FEATURE methods for automatic speech

recognition are motivated by evidence on human
speech perception in noise [1]. The methods assume a noisy
speech signal can be divided in speech and noise dominated
spectrotemporal components. The speech-dominated compo-
nents are assumed reliable representations for the underlying
clean speech signal whereas in the noise-dominated unreliable
components, the clean-speech information is assumed lost. The
missing-feature approach is rather well-suited for unpredictable
noise conditions and sudden noise events, and while most
work on the missing-feature methods has been conducted on
limited-vocabulary data, reconstruction approaches such as
cluster-based imputation [2] and sparse imputation [3] have
proven effective in large-vocabulary continuous speech recog-
nition as well [4].

In this work, we investigate missing-feature reconstruction
based on nonlinear state-space modeling. Here, nonlinear
dynamic factor analysis [5], [6] is applied for estimating a
nonlinear state-space model (NSSM) for speech data. The
missing values in the noisy speech signal are restored using
the model and a state-sequence estimate calculated from the
reliable speech components. The reconstruction performance
was evaluated in [6] on clean-speech samples that contained
20-200 ms temporal gaps.
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In noisy environments, where missing values coincide with
the noise-dominated spectrotemporal components, the reliable
values are few compared to the artificially constructed samples
used in [6]. On the other hand, since real environmental noise
is primarily additive, the clean-speech energy in the missing
components can be assumed not to exceed the observed noisy-
speech energy. To utilize this information in missing-feature
reconstruction, we introduce the observed bounds into NSSM
state estimation. The bounded NSSM method is evaluated in
large-vocabulary continuous speech recognition task using i)
clean speech samples with missing values distributed as de-
scribed in [6] and ii) speech corrupted with either babble or im-
pulsive noise. Babble noise is a common benchmark in noisy-
speech recognition experiments and impulsive noise is assumed
to be the best test bench for the temporal modeling capability of
the NSSM method. NSSM has not been evaluated in a speech
recognition task previously.

II. METHODS

A. Missing-Feature Reconstruction

When speech signal is corrupted with additive noise from
an uncorrelated source, the sth component of the 7th noisy
speech feature Y (7, ) in log-compressed mel-spectral domain
can be approximated as Y (7,i) ~ max{X(r, ), N(r,4)},
where X (7, ) denotes the clean speech and N (7,4) the noise
power. Missing-feature methods divide the noisy observations
into reliable and unreliable components depending on whether
the component is dominated by speech or noise. The reli-
able components Y,.(7,4) in the noise-corrupted observations
Y (7) are assumed fair estimates for the clean speech so that
the corresponding clean speech values X.(7,i) = Y,(7,¢),
whereas the clean-speech values X, (7, ¢) corresponding to the
unreliable components are effectively missing. The unreliable
components only provide an upper bound for the corresponding
clean-speech values, X, (7,7) < Y,(7,i). The so called re-
construction or imputation methods substitute the missing
values with clean-speech estimates b’ (7,i) which are often
calculated based on a model derived from a set of clean-speech
training data.

B. Spectrographic Mask Estimation

Dividing the noisy speech signal into unreliable and reliable
spectrotemporal components is referred to as spectrographic
mask estimation. The approach used in this work is based on the
negative energy criterion [1]. The observed features Y (7, ) are
considered reliable if exp(Y (7,4)/N(r,1)) > v, where N(, )
denotes a noise estimate and <y is a threshold parameter. For
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babble noise (see Section III-B for data set description), we use
noise estimates calculated during speech pauses detected using
a speech—nonspeech classifier as described in [4]. Here, the
frames Y (7) classified as nonspeech are temporally smoothed
to produce the noise estimate N (7). For impulsive noise, we
estimate the impulse locations in time domain and define the
noise estimates as N(7) = Y (r) if impulse is detected in frame
7and N(7) = N(r — 1) with 8 = 0.985 otherwise. Impulse
detection is based on modeling speech as an autoregressive
process and analyzing the model prediction error as proposed
in [7]. The parameters used in mask estimation were optimized
using the development data described in Section I1I-B.

C. Reconstruction With a Nonlinear State-Space Model

The clean-speech features in log-compressed mel-spectral
domain are modelled as the output of a nonlinear state-space
model (NSSM) where the observations X (7) are predicted
from a hidden state variable S{7) as specified in the model
equations

X(r) = f(S5(7)) + My ()
S(r) =g(S(r = 1)) + Ma(7)

(1)
2)

where the mappings f and g are nonlinear and M;(7) and
M (7) are Gaussian modeling error terms with zero mean and
unknown diagonal covariance. In nonlinear dynamic factor
analysis [5], the mappings are modelled using multilayer per-
ceptron (MLP) networks and the model parameters estimated
using variational Bayesian learning. Parameter estimation is
based on minimizing a cost function that measures the Kull-
back—Leibler (KL) divergence between the approximate and
true posteriors, which is equivalent to maximizing the lower
bound of the log marginal likelihood log P(X). For a thorough
discussion on the model and the variational learning approach,
see [5].

Missing-feature reconstruction using NSSM was proposed in
[6]. It is based on the learning approach described above, but
the model parameters are fixed after training, and in the recon-
struction phase, the KL cost function is evaluated over the noisy
observations Y (7) and minimized with respect to the approxi-
mate posterior distributions of the state variable S(7). Starting
from a random initialization, the evaluation and minimization
steps are repeated in an iterative manner. The cost function is a
sum of terms of which the most relevant to missing feature re-
construction is the prediction error term (cf. [5, eq. (5.7)]):

Cox Y ZUM(T; i) THX(r,0) — Y (7,4))? )

where X (7) = f(S(7)) are the observation mean predictions at
kth iteration. ops(7,4) = oas(7) is the ith diagonal component
in the covariance matrix learned for M1 (7) if Y (7, 1) is reliable
and o4 (7,4) = oo if Y(r, ) is unreliable [6]. Thus, unreliable
observations do not affect the prediction error. To improve state
inference over long gaps of missing values, the partial deriva-
tives of the cost function with respect to the state posteriors are
replaced with approximate total derivatives; see [6] for details.

Final predicted observations X~ are calculated based on
the state sequence S™ that the NSSM estimation has con-
verged to. The reconstructed features X(7,i) = Y{(7,i) if
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Y(r,i) € Y, and X(1,i) = X*(r,i) if Y(r,i) € Y,
as discussed in Section II-A. The resulting estimates X (7)
are constrained not to exceed the observed upper bound as
X(7,1) = min{X(7,4),Y (7,4)}. In preliminary experiments,
using the clean-speech estimates degraded speech recognition
performance compared to using noisy observations unless the
minimum rule was applied.

We have described so far the baseline NSSM method which
does not use observed bounds in state estimation. In this work,
we propose an approach for bounded NSSM state estimation.
The observed bounds are introduced in state estimation by
defining the component-specific variances in (3) as

oar(ri) = {JM(’IZ), ify €Y, orX>YorX<L @)

o, otherwise
where Y = Y(7,4) are the observed features and X = X(7,1)
the predicted clean-speech observations at kth iteration, and the
lower bounds L. = L(4) are the estimated average log-mel-spec-
tral energies in silence frames. Note that the variances o s (7, %)
are redetermined at every iteration, and the unreliable observa-
tions increase the prediction error (3) if their estimated values
at current iteration lie outside the given bounds.

D. Other Missing-Feature Reconstruction Methods

Since NSSM has not been evaluated in a speech recognition
task before, we compare the method performance to cluster-
based imputation [2] and sparse imputation [3]. Cluster-based
imputation represents clean speech frames as independent ob-
servations sampled from a Gaussian mixture model (GMM)
whereas sparse imputation is a nonparametric method based on
modeling clean speech segments as linear combinations of a
limited number of example segments stored in a clean speech
dictionary. The methods have previously performed well on the
babble-noise data used in this work [4] and should thus provide
competitive reference results for the NSSM approach. Sparse
imputation also incorporates temporal modeling since features
are processed in windows that span several time frames. Other
methods that use time context in missing-feature reconstruction
include e.g., correlation-based imputation [2] which is not used
in this work since it has invariably resulted in lower perfor-
mance rates than cluster-based imputation when evaluated on
realistic data.

III. EXPERIMENTS

A. System

The large-vocabulary continuous speech recognition system
used in this work has been described in [8]. The speech signal
is represented with 12 MFCC and a log energy feature and
their first and second order differentials. The features are nor-
malised with cepstral mean subtraction (CMS) and maximum
likelihood linear transformation (MLLT). The acoustic models
are state-clustered hidden Markov models for context-depen-
dent triphones constructed using a phonetic decision tree. The
output densities of the states are modelled as Gaussian mix-
tures and the durations by gamma distributions. The decoder
is a time-synchronous beam-pruned Viterbi token-pass system
and the language model a morph-based growing n-gram model



REMES et al.: MISSING-FEATURE RECONSTRUCTION

trained on 145 million words of Finnish book and newspaper
data.

Missing features are reconstructed in the 21-D log-com-
pressed mel-spectral domain. The NSSM used in this work has
a 7-D state space and the nonlinear mappings f and g in (4) and
(5) are modelled as MLP networks with 30 and 20 neurons in
the hidden layers, respectively. The parameters were estimated
in 5000 training iterations and in reconstruction phase, the
states were estimated in 200 iterations using the total deriva-
tives approach proposed in [6]. With babble and impulsive
noise data (see Section III-B), state estimation is initialized
with five iterations during which the unreliable components are
assumed reliable and their values fixed to the estimated average
energy in silence, L(%).

The GMM in cluster-based imputation has 10 Gaussian com-
ponents with full covariance matrices, which results in a clean-
speech model with approximately the same number of param-
eters as the NSSM. The model parameters are estimated using
the expectation-maximization (EM) algorithm implemented in
the GMMBAYES Matlab toolbox!. The bounded estimates are
solved iteratively over the frequency channels as proposed in
[2] with maximum of 200 iterations. The implementation and
parameters for sparse imputation are as in [4] and the features
are processed in 15-frame windows in both noise conditions.
Finally, the spectrographic mask threshold is v = 4 dB for the
NSSM and cluster-based reconstruction methods and v = 5 dB
for the sparse imputation method in babble noise condition and
v = 1 dB for all methods in impulsive noise condition. The
thresholds and the window width for sparse imputation were op-
timized using the development data described in Section I1I-B .

B. Data

The data used in this work is from the Finnish SPEECON
database. Acoustic models are trained with a 30-h training set
that contains clean speech recorded with a headset in quiet
conditions. The NSSM and GMM models are trained with
500 read sentences (52 minutes) randomly selected from the
SPEECON training set and the exemplar dictionary for sparse
imputation sampled from 14 hours of read sentences. The
speech—nonspeech classifier used in mask estimation is trained
with babble-noise corrupted television news data from the
Finnish Broadcasting Company (YLE).

In the previous work [6], the reconstruction performance of
NSSM was evaluated on clean speech data with 7' = 3 and
T = 30 consecutive frames missing in every 100 frames. In this
work, we use clean speech samples corrupted with pink noise
from NOISEX-92 with a signal-to-noise rate (SNR) 0 dB fol-
lowing the pattern used in [6]. The evaluation data corrupted
with pink noise bursts consists of 350 sentences (36 minutes)
from 39 speakers. To evaluate NSSM-based reconstruction in
a realistic noisy-speech recognition task, additional evaluation
sets are constructed from 1118 clean speech sentences (113 min-
utes) from 40 speakers. The utterances are artificially corrupted
with babble noise from NOISEX-92 or with impulsive noise
i.e., hammering recorded with a Sennheiser PC 130 headset 90
cm from the noise source (metal hammer on nail). The impul-
sive-noise data can be seen as a realistic counterpart to the pink

1 Available from www.it.lut.fi/project/gmmbayes
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TABLE 1
RESULTS (LER/RMSE) ON PINK NOISE BURSTS (A) ASSUMING UNRELIABLE
FRAMES AND (B) WHEN ORACLE MASKS ARE USED

T=3 T=230
NSSM 39 / 004 335 / 0.09
@ NSSM bounded 3.8 / 0.04 32.1 / 0.08
CI 82 / 0.10 395 / 0.10
SI 56 / 008 363 / 0.12
T=3 T =230
NSSM 37 / 004 186 / 0.06
(b) NSSM bounded 3.7 / 0.04 11.8 / 0.06
CI 40 / 005 13.0 / 0.05
SI 4.1 / 007 10.1 / 0.06

noise burst data used in this work and the speech pause data
used in [6]. The development data sets used in this work are con-
structed from 350 clean speech sentences (36 minutes) from 39
speakers. The utterances are corrupted with SNR 10 dB babble
noise from NOISEX-92 or SNR 0 dB impulsive noise i.e., ham-
mering recorded 30 cm from the noise source (metal hammer
on wood).

Since words in Finnish are often long and consist of several
morphemes, the speech recognition performance is measured in
letter errors instead of word errors to have finer resolution for
the results.

C. Results

Results from the pink noise burst experiments are presented
in Table I. The missing features are estimated using NSSM,
bounded NSSM, cluster-based imputation (CI), and sparse
imputation (SI). The noise-corrupted frames are either (a)
assumed completely unreliable or (b) oracle masks are calcu-
lated. The oracle masks assume that speech and noise signals
are known a priori and label the spectrotemporal components
reliable if the local SNR exp(X (r,i)/N(r,i)) > 0 dB. The
reconstruction methods are evaluated based on speech recog-
nition performance measured in letter error rate (LER) and
root mean squared error (RMSE) between the reconstructed
and clean-speech features X,, and X, in the log-mel-spectral
domain. Using bounded NSSM or NSSM results in the best
speech recognition performance in most conditions except
when T" = 30 and oracle masks are used. Although bounded
state estimation notably improves NSSM performance in this
condition, the best results are obtained with sparse imputa-
tion. Moreover, in this condition, the lowest reconstruction
error is obtained with cluster-based imputation. Note that as a
frame-based method, it results in the same RMSE for T" = 3
and T' = 30.

Results from the experiments with babble and impulsive
noise data are presented in Table II. The results are reported in
LER and statistical significance in pairwise comparisons tested
using the Wilcoxon signed rank test with each speaker-specific
LER considered an observation. Pairwise comparisons are
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TABLE II
RESULTS (LER) ON (A) BABBLE AND (B) IMPULSIVE NOISE DATA

SNR 15 SNR 10 SNRS5 SNRO
NSSM 10.8 34.8 73.9 854
(@) NSSM bounded 8.2 20.7 54.3 76.9
CI 8.3 21.6 54.9 78.5
SI 71 164 43.3 72.3
SNRS5 SNRO SNR-5 SNR-I5
NSSM 19.2 27.0 37.3 53.1
(b)  NSSM bounded  12.8 17.4 25.0 44.8
CI 25.6 30.1 35.9 46.7
SI 18.7 24.7 329 46.2

conducted on results from each noise condition separately. In
all the experiments, bounded NSSM outperformed the baseline
NSSM method with a statistically significant (p < 0.0001 in all
comparisons) difference. Evaluated on the babble noise data,
the differences between bounded NSSM and cluster-based
imputation were not statistically significant (p = n.s.) at sig-
nificance level @ = 0.05 in all except the SNR 0 dB condition,
and the best results (p < 0.0001 in all pairwise comparisons)
were obtained with sparse imputation. Evaluated on the im-
pulsive-noise data, the best results (p < 0.001 in all pairwise
comparisons) were obtained with bounded NSSM.

IV. DISCUSSION

Using a nonlinear state-space model (NSSM) for missing-
feature reconstruction was proposed in [6]. In this work, we
evaluated NSSM-based reconstruction in noise robust speech
recognition task and proposed an approach for using the ob-
served upper bounds to restrict the NSSM state estimation.
Bounded state estimation significantly improved the NSSM
performance under both babble and impulsive noise. The best
results were obtained with sparse imputation in the babble-
noise condition and with bounded NSSM in the impulsive-
noise condition.

Although using either sparse imputation or bounded NSSM
resulted in the best performance rates, the overall results
suggest it is not temporal modeling that defines a method
performance but differences in performance additionally stem
from the difference between statistical and exemplar-based ap-
proaches. Evaluated on the babble-noise data, bounded NSSM
and cluster-based imputation perform at the same level, but
when the unreliable values are clustered in time, NSSM perfor-
mance improves compared to cluster-based imputation. This
is likely due to temporal modeling. However, although sparse
imputation also employs temporal modeling, the difference in
speech recognition performance between sparse imputation
and cluster-based imputation narrows down in impulsive noise.
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Evaluated on clean-speech data corrupted with pink-noise
bursts, both NSSM methods resulted in speech recognition per-
formance better than the reference methods when burst length
T = 3. In this condition, the dynamic state estimation in NSSM
can benefit from the reliable frames around the impulse-like
noise bursts and the NSSM performance is almost same re-
gardless to whether complete frames are assumed unreliable
[Table I(a)] or oracle masks used [Table I(b)]. Sparse imputa-
tion performance, on the other hand, depends on using the or-
acle mask even in 7' = 3 case although the features are pro-
cessed in multi-frame windows. When tested on babble or im-
pulsive noise, the performance of sparse imputation relative to
other methods improves with decreasing SNR, so the result is
unlikely due to difficulties in dealing with too many missing
values.

While for the most part, the spectrographic masks estimated
for impulsive noise resemble the oracle masks calculated for
T = 30 bursts in the pink noise burst scenario, they also con-
tain one or more frames that are labelled completely unreli-
able. This is because the mask estimation method used in this
work assumes that the impulse peak dominates over all clean
speech information. Other noise types such as babble or pink
noise typically do not mask the speech components with the
highest energies. Since the distribution of high-energy compo-
nents within a speech segment or window is likely a promi-
nent cue for separating between different speech tokens, exem-
plar-based methods like sparse imputation may be sensitive to
missing high-energy values. We believe this explains the differ-
ences between sparse imputation and NSSM that both employ
temporal modeling but represent different modeling paradigms.
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