Neurocomputing 72 (2009) 3704-3712

journal homepage: www.elsevier.com/locate/neucom

Contents lists available at ScienceDirect

Neurocomputing

Variational Bayesian learning of nonlinear hidden state-space models for

model predictive control

Tapani Raiko *, Matti Tornio

Adaptive Informatics Research Centre, Department of Information and Computer Science, Helsinki University of Technology, Finland

ARTICLE INFO ABSTRACT

Article history:

Received 26 October 2007
Received in revised form

15 May 2009

Accepted 19 June 2009
Communicated by D. Barber
Available online 3 August 2009

Keywords:

Nonlinear system

State-space method

Stochastic optimal control

Neural network

Variational methods

Partially observable Markov decision
process

Model predictive control

This paper studies the identification and model predictive control in nonlinear hidden state-space
models. Nonlinearities are modelled with neural networks and system identification is done with
variational Bayesian learning. In addition to the robustness of control, the stochastic approach allows for
various control schemes, including combinations of direct and indirect controls, as well as using
probabilistic inference for control. We study the noise-robustness, speed, and accuracy of three different
control schemes as well as the effect of changing horizon lengths and initialisation methods using a
simulated cart-pole system. The simulations indicate that the proposed method is able to find a
representation of the system state that makes control easier especially under high noise.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Learning is extremely important for control of complex
systems [2] ranging from anthropomorphic robots [23] over
military aircrafts in hazardous environments [10] to road traffic
optimisation [28]. Nonlinear control is difficult even in the case
that the system dynamics are known. If the dynamics are not
known, the traditional approach is to make a model of the
dynamics (system identification) and then try to control the
simulated model (nonlinear model predictive control). The model
learned from data is of course not perfect, but these imperfections
are often ignored. The modern view of control sees feedback as a
tool for uncertainty management [20], but managing it already in
the modelling might have advantages. For instance, the controller
can avoid regions where the confidence in model is not high
enough [17].

The idea of learning probabilistic nonlinear state-space models
for control is not new. The theory and different phenomena are
already well covered in [7]. What has changed, though, is the
range of models that can be used in practice, due to developments
in Bayesian learning theory and computer performance. The issue
remains challenging, i.e. investigation in [8] tells that observa-

* Corresponding author. Tel.: +358 505225750; fax: +358 94513277.
E-mail address: tapani.raiko@tkk.fi (T. Raiko).
URL: http://www.cis.hut.fi/projects/bayes/ (T. Raiko).

0925-2312/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.neucom.2009.06.009

bility and controllability properties of these systems cannot be
easily deduced.

Recently, Rosenqvist and Karlstrom [29] presented a method
for system identification and control in nonlinear hidden state-
space models. This is the same as partially observable Markov
decision process (POMDP) with continuous-valued states and
observations. The nonlinearities are modelled as piecewise linear
(or affine). The system identification is based on the prediction
error method. In probability theory, this corresponds to a
maximum likelihood estimate assuming a Gaussian process noise.
This is the most closely related work to ours that basically applies
only more sophisticated methods from the machine learning
community to the control problem.

Our method of choice, nonlinear dynamical factor analysis
(NDFA) [35] is a state-of-the-art tool for finding nonlinear state-
space models with variational Bayesian learning. The state vector
is completely hidden just like in hidden Markov models, and the
relationship between the state and the observation must be
learned from data. In NDFA, the parameters, the hidden states, and
the observations are real-valued vectors that are modelled with
parametrised probability distributions. Uncertainties from noisy
observations and model imperfections are thus taken explicitly
into account. Nonlinearities are modelled with multilayer percep-
tron (MLP) networks. Variational learning has many benefits
compared to the maximum likelihood method. It is less prone to
overfitting and can be used for selecting the model structure, e.g.
the dimensionality of the state space.

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2009.06.009
mailto:tapani.raiko@tkk.fi
mailto:http://www.cis.hut.fi/projects/bayes/a4.3d

T. Raiko, M. Tornio / Neurocomputing 72 (2009) 3704-3712 3705

One of the oldest nonlinear system identification by machine
learning methods is [19] where predictions of future observations
are done by fitting a mapping (a function approximator) to triplets
of observations, control signals, and future observations. Then
actions can be selected based on predictions of future observa-
tions. Similar model based predictive control has been done with
Gaussian processes in [16] where the inputs of the mapping
include the previous observations and control signals up to a
given lag. In [36,30], a mapping is learned from observations and
the goal to desired control signals directly. In [12], learning is done
in a stochastic setting. In all of these methods, the mapping is
learned between fully observed entities, while our approach
estimates a hidden state and thus a richer model for the dynamics
of the system.

Dynamic programming can be used to solve complex control
problems in two different ways: Atkeson et al. [4,5] used dynamic
programming in the state space by discretising the state space
into cells and solving locally optimal trajectories for each cell.
Local trajectories are combined into the globally optimal trajec-
tory by dynamic programming, that is, propagating information
between neighbouring cells in the state space. This is a good
approach for systems with few dimensions but does not scale up
since the number of cells grows exponentially with the number of
dimensions. For this reason, this approach is not used in this work.

The other approach is to do the dynamic programming in
system time, leading to model predictive control. Future observa-
tions are predicted up to some horizon in the future by
propagating predictions through time, compare them to the
reference signal, and update the future control signals by
minimising an objective function by propagating the error
backwards through time. Kocijan et al. [16] use Gaussian
processes for model predictive control. Their model of system
dynamics is linear and the state is fully observed. Kappen [14]
considers a problem where one of the goal states must be reached
at a certain time. The solution is worked out backwards in time
from the goal state and by solving the optimal control signal for
each possible state at each time.

The rest of the paper is structured as follows: In Section 2, the
nonlinear state-space estimator is reviewed and in Section 3 its
use as a controller is presented. After experiments in Section 4
matters are discussed and concluded.

2. Variational Bayesian learning of nonlinear hidden state-
space models

Selecting actions based on a state-space model instead of the
observation directly has many benefits: firstly, it is more resistant
to noise because it implicitly involves filtering. Secondly, the
observations (without history) do not always carry enough
information about the system state. Thirdly, when nonlinear
dynamics are modelled by a function approximator such as an
multilayer perceptron (MLP) network, a state-space model can
find a representation of the state that is more suitable for the
approximation and thus more predictable.

Nonlinear dynamical factor analysis (NDFA) [35] is a powerful
tool for system identification. It is based on a nonlinear hidden
state-space model learned in a variational Bayesian setting. The
computational complexity of NDFA scales only quadratically with
the dimensionality of the observation space, so it is also suitable
for modelling systems with fairly high dimensionality [35]. MLP
networks are a good choice of function approximation when no
prior information about the system is available. The structure or
model equation of MLP networks contains very little information,
instead, by adjusting the parameters of the network, the produced
function may take practically any shape.

In our model, the observation (or measurement) vector y(t) is
assumed to have been generated from the hidden state vector X(t)
driven by the control u(t) by the following generative model:

u(t) ut-1)
2]-((23]) e
y(©) = £(x(t), O¢) + W(t),)

where 0 is a vector containing the model parameters and time ¢ is
discrete. The process noise v(t) and the measurement noise w(t) are
assumed to be independent, Gaussian, and white. During learning,
only the observations y and the control signals u are known
beforehand, whereas both the states x and the mappings f and g
are learned from the data. In the context of system identification this
model can be considered task-oriented identification because of its
internal forward model to predict u(t) (see Fig. 1). Note that the
uncertainty of the process noise v(t) leaves the exact selection of the
control signal u(t) open.

Multilayer perceptron (MLP) networks [11] are well suited to
modelling both strong and mild nonlinearities. The MLP network
models for f and g are

g(X(t), 0g) = X(t) + Btanh[AX(t) + a] + b, 3)

f(x(t),) = Dtanh[CX(t) + €] + d,)

where the sigmoidal tanh nonlinearity is applied component-wise to
its argument vector. The parameters 6 include: (1) the weight
matrices A, ..., D, the bias vectors a,...,d; (2) the parameters of the
distributions of the noise signals w(t) and v(t) and the column vectors
of the weight matrices; (3) the hyperparameters describing
the distributions of biases and the parameters in group (2). The
priors for these parameters are Gaussian (see [35,
Egs. (16)-(28)]).

In Bayesian learning of generative models, the model is presented
such that one could generate observations from it by first drawing
parameters from their prior distributions, and then drawing hidden
states and observations from the model equations given the
parameters. There are infinitely many values for the parameters and
hidden states that can explain any given data. Bayesian treatment
uses all the possible explanations weighted by their posterior
probability. The posterior probability p(x,0]y,u) of the states and
the parameters after observing the data, contains all the relevant
information about them. Variational Bayesian learning is a way to
approximate the intractable posterior density by a tractable para-
metric distribution q(x, #). The misfit is measured by a cost function
based on Kullback-Leibler divergence:

Ca = / q(x, 0)log

q(x, 0)
p(y. u,X,0)

de dx. 5)

Fig. 1. Traditional model (left) and task-oriented identification (right). Tradition-
ally, the control signals u(t) are coming from outside the model, but in task-
oriented identification they are within the model.

3706 T. Raiko, M. Tornio / Neurocomputing 72 (2009) 3704-3712

The closer q is to the true Bayesian posterior, the smaller the cost
function.

The joint probability density defined by the model can be
factorised to a product

p(y,u,X,0) = p(ylu, X, 0)p(u, x|0)p(0), (6)

T
p(,x|0) = p(u(1),x(1)|0) [[pu(), x(®)lu(t — 1),x(t — 1),0),)

t=2

T
pylu,x,0) = [[py®)luce), x(),0), ®)
t=1

where individual factors come directly from the model equations
(3) and (4), and the priors).

The approximation q needs to be simple for mathematical
tractability and computational efficiency. Variables are assumed
to depend on each other in the following way:

T m
ax,0) = [[T et — 1))] a0, 9)

t=1i=1 j

where m is the dimensionality of the state space x. Furthermore, q
is assumed to be Gaussian. To summarise, the distribution q is
parametrised by the means and the variances of the unknown
states and model parameters, and covariances of consecutive state
components. They are called variational parameters. Now that both
p and q are written in a factorised form, the cost function (5)
becomes a sum of relatively simple terms, which can be
computed. The same applies to the derivatives of the cost function
w.I.t. variational parameters.

The only difficult part of evaluating the cost function is about
handling the terms p(u(t),x(®)ut —1),x(t —1),0) and
py(H)|u(t),x(t),0). They require the propagation of Gaussian
distributions through the nonlinear mappings g and f, which
cannot be done analytically. We used the approximation [13]
where the linear parts of the MLP networks are treated accurately,
and an unscented transformation is used for the tanh nonlinearity.

Inference (or state estimation) happens by adjusting varia-
tional parameters of the hidden states in g such that the cost
function Cg_ is minimised. Learning (or system identification)
happens by adjusting the variational parameters of both the
hidden states and the model parameters in ¢ minimising Cg;. The
NDFA package contains an algorithm based on conjugate gradient
descent for that.

A proper initialisation of the states is important for the model
to learn the dynamic mapping of the system and minimises the
risk that the model gets stuck in a local minimum during early
training. In the early phase of learning, the data vectors are
embedded with delayed versions of itself using time delays of 1, 2,
4, 8, and 16. This promotes the state vector and mapping f finding
a representation of the dynamics even when the dynamic
mapping g has not been learned. The states are initialised to the
principal components of the embedded data.

The cost function Cg can also be used for model comparison,
for instance to choose among models learned from different
initialisations or with different dimensionalities of the state space.

3. Control schemes

In this section, three different control schemes are presented.
First we describe direct control (DC), then nonlinear model-
predictive control (NMPC) in variational Bayesian setting, and
finally the optimistic inference control (OIC) scheme. A summary

Table 1
Control scheme summary.

Scheme Based on Data Com-
plexity
DC Internal MLP Task-oriented Low
OIC Probabilistic inference General High
NMPC Cost minimisation General High
is given in Table 1. Different strategies for generating

initialisations for model-predictive control are also explored.

3.1. Direct control (DC)

In direct control schemes, the neural network itself acts as the
controller. Many such schemes exists, including direct inverse
control, optimal control, and feedforward control [22]. Direct
control can only mimic the control done in the data that has been
used for learning. It therefore requires examples of correct control
aiming at the same goal. Direct control works by fitting a function
approximator to estimate the mapping from the state to control. It
has been used successfully for very complex systems [30].

Eq. (1) provides a prediction of the control signal u(ty) based on
the previous control signal u(ty — 1) and the previous estimate of
the hidden state x(tp — 1). The prediction mapping is called the
policy in Fig. 1. A control method that we simply call direct control
(DC), chooses the control signal by collapsing the inferred
probability distribution q(u(tp)) to its expected value. When the
control signal u(ty) is selected and the observation y(t) is made,
the two probability distributions collapse and these changes affect
the estimates of the states x(t) that are then re-inferred. This
works as the error feedback mechanism.

DC in a nutshell:

Given observations ...,y(to — 2),y(to — 1) and
control signals ..., u(ty — 2),u(ty — 1)

1: Infer x(to — 1)

2: Compute [3(°)] from Eq. (1)

3: Use the mean of u(ty) as the control signal.
4: Observe y(tp) and infer x(tp)

5: Increase ty by 1 and loop from 2

This approach is very similar to the one used in [30], where a
system was learning the control tasks of devil-sticking, pole
balancing, and inverse dynamics of humanoid robots. Instead of
MLP-networks, locally linear function approximators were used,
and instead of variational Bayes, the learning was based on cross-
validation. They used a number of different versions for function
approximation, starting from nearest neighbour methods evolving
towards a more neural network type approximator. Their
implementation has some nice properties that are still missing
here, like automatically increasing the model complexity during
learning and efficient search of the state-action space for good
new commands. Application of [30] to robotics is given in [24].
These approaches assume that the state vector is observed (or
X(t) =y(t) in our notation), and it is discussed that a better
representations of the state would be valuable.

3.2. Nonlinear model predictive control (NMPC)

Nonlinear model predictive control (NMPC) [18] is based on
choosing control signal u(tp),...,u(to + T, — 1) such that they
minimise a cost function J defined over a future window of fixed

T. Raiko, M. Tornio / Neurocomputing 72 (2009) 3704-3712 3707

length T.. For example, the quadratic difference between the
predicted future observations y and a known reference signal r(t)
can be used

Te
Jy(to), u(to), ..., u(to + Te — 1)) = Y _ ly(to +) — 1) (10

=1

Then J is minimised w.r.t. the control signals u and the first one
u(tp) is executed. Direct analogy to decision theory is revealed
when the control cost J is interpreted as negative utility.

Here, the states and observations (but not control signals) are
modelled probabilistically so we minimise the expected cost E4{J}
[7]. The current guess u(ty), ..., u(ty + Tc — 1) defines a probability
distribution over future states and observations. This inference
can be done with a single forward pass, when ignoring the
internal forward model, that is, the dependency of the state on
future control signals. In this case, it makes sense to ignore the
forward model anyway, since the future control signals do not
have to follow the learned policy.

Minimisation of E4{J} is done here with a quasi-Newton
algorithm [21]. For that, the partial derivatives
Y2 = gy(ty)/ou(ty) for all to<t; <t <ty + T. must be computed.
For a single input system we can simply apply the chain rule to
arrive at the Jacobian

Ytz — thctg—l . Gt1+1 G[1, (11)

where F* and G' are the Jacobians of the mappings f and g at the
the time instant t. Dynamic programming can be used to
efficiently compute these partial derivatives for multiple values
of t; and t; in linear time using a backward pass. The extension of
this result to multi-input systems is also relatively straightfor-
ward.

NMPC in a nutshell:

Given observations ...,y(tp — 2),y(to — 1) and
control signals ..., u(ty — 2),u(to — 1)

1: Fix the control signals {u(t)}i"jtorc’1

2: Infer the distribution g(x(t),y(t)) for all t (forward pass)
3: Update {u(t)}i";;oT“’1 such that the cost J decreases
(backward pass)

Loop from 2 a few times

Use u(tp) as the control signal

Observe y(tp)

Increase ty by 1 and loop from 1

5 WS

The use of a cost function] makes NMPC very versatile. Costs
for control signals and observations can be set for instance to
restrict values within bounds. The reference signal r(t) can either
simply be a constant at the desired goal, or depend on time, that
is, to follow a given trajectory. There can be a cost for the control
signal u as well, perhaps to minimise the use of energy.

Expectations over a quadratic cost (Eq. (10)) are easy to
evaluate because

n

Eq{ly(t) — 1(®)1*} = |Eg{y(D)} — r(O)* + > Varg{yi(t)},

i=1

where n is the dimensionality of the observation space y and
Vary{-} is the variance over the distribution q. The two terms are
called the nominal and stochastic part of the cost function. There
is a direct analogy with dual control [3] which means balancing
between good control and small estimation errors. The usefulness
of the decomposition is discussed in [7].

3.3. Optimistic inference control

Optimistic inference control (OIC) as described by us in [25,6]
independently, works as follows. Assume that after a fixed delay
Tc, the desired goal is reached. That is, (some components of) the
observations X are at the desired level r. Given this optimistic
assumption and the observations and control signals so far, infer
what happens in between. Then choose the expectation of g(u(ty)).
An example situation is illustrated in Fig. 2.

OIC propagates information in two directions, forwards from
the current state and, additionally, the evidence backwards from
the desired future. The inference is conceptually simple, but
algorithmically difficult. The information from the future needs to
flow through tens of nonlinear mappings g before it affects u(tp).
The OIC algorithm as presented in [25] only propagates informa-
tion one step forward and backward in time for each iteration. To
speed up this process, total derivatives described in [26] are used
to replace the partial derivatives, which leads to much faster
propagation of information based on a forward and a backward
pass. Another alternative for fast inference is the extended Kalman
smoother [1], which corresponds to belief propagation or the
E-step of the EM algorithm applied to the linearised model. The
linearisation is done locally around the current state estimate for
each time point t and it is iteratively updated after each
forward-backward update. Extended Kalman smoother unfortu-
nately suffers from stability issues and it is therefore only used to
initialise the OIC algorithm.

OIC in a nutshell:
Given observations ...,y(to — 2),y(tp — 1) and
control signals ..., u(tp — 2),u(tg — 1)
1: Fix future y(to + Tc) = r(to + Tc),
Vo +Tc+ 1) =r(to+Tc+ 1), ...
2: Infer the distribution q(u(t), x(t), y(t)) for all t (a few forward
and backward passes)
Select the mean of g(u(tp)) as the control signal
Observe y(tp) and release y(ty + T¢)
Increase tp and loop from 1

e &

4 I I
= [[
| |
: 2 | |
-‘.g | |
g | |
o O ! [
1] i |
Q
[e) | |
-2 I . . . I ,
-10 0 10 20 30 40 50
time t
— I I
= 10 | |
> [[
© | |
c
o I |
‘» | |
o) I I
% -5 I I
8 -10 [. . [.
-10 0 10 20 30 40 50
time t

Fig. 2. Optimistic inference control (see Section 3.3). The inferred observations
and control signals are plotted with confidence intervals. The current time is tp = 0
and after time ty + T, = 40, the observation x(t) is assumed to be at the desired
level r(t).

3708 T. Raiko, M. Tornio / Neurocomputing 72 (2009) 3704-3712

The differences between NMPC and OIC are as follows. In
NMPC, the forward pass is based on the probabilistic inference,
and the backward pass propagates the control cost J. OIC does not
have a separate control cost, but the control objective is included
as evidence (virtual future observations) to the probabilistic
inference method.

In case there are constraints for control signals or observations
in OIC, they are forced after every inference iteration. If the
horizon is set too short or the goal is otherwise overoptimistic,
the method becomes unreliable. Even with a realistic goal, it is not
in general guaranteed that the iteration will converge to the
optimal control signal, as the iteration may get stuck in an
undesired local minimum of the cost function (5). The inferred
control signals could be validated by releasing the optimistic
future and re-inferring. If the future changes a lot, the control is
unreliable.

The idea of using probabilistic inference for choosing actions
originates from [9], where the likelihood function in probabilistic
inference is replaced by the reward. (Perhaps it would be better to
use exp(reward) which makes the approach invariant to adding a
constant to all rewards.) With binary likelihood functions, this
approach is equivalent to optimistic inference control. The first
application to sequential decision problems [6] emphasised the
fact that this methodology links inference and decision making
such that algorithmic improvements in one can be used for the
other.

Toussaint et al. [34,33] also use Bayesian inference for control
such that motions with high control loss is treated as small
posterior probability. The dynamics of the system are assumed to
be known and belief propagation in factor graphs is used for the
inference. Hoffman et al. [12] used OIC with MCMC for learning
the policy.

3.4. Initialisation for control

The minimisation problems involved in our model are
typically not convex. For nonlinear control tasks it is important
that the initial estimate for the control signals {u(t)}?jton’l is good,
otherwise the optimisation algorithm may get stuck in a local
minimum or fail to converge in reasonable time. In many
cases, the control signal from the previous time step can be used
with quite good results. However, when a new control task
starts or the goal is changed, or there are unexpected changes
in the system state, the previous control signal is often a poor
choice.

A second option is to use random initialisations. If multiple
different initialisations are used, this can be more robust than the
first option. Unfortunately this is also much more time consuming
because multiple control strategies must be computed for a single
time step. If an internal forward model is available, a third option
is also possible. The current system state can be propagated
forward in time and the control signal from these predictions can
be used as an initialisation.

4. Experiments

Mechanical dynamical systems are easily understandable by
people and thus illustrative as examples. We chose a simulated
system to ease experimentation. To make the setting more
challenging, the controllers do not have access to the simulation
equations but have to identify an unknown system instead. Our
aim is not to find a solution to the cart-pole system, but to
demonstrate our general algorithm for learning to control a
system with unknown, complex, and nonlinear dynamics.

4.1. Cart-pole swing-up task

The cart-pole system [15] is a classic benchmark for nonlinear
control. The system consist of a pole (which acts as an inverted
pendulum) attached to a cart (Fig. 3). The force applied to the cart
can be controlled, and the goal is to swing the pole to an upward
position and stabilise it. This must be accomplished without the
cart crashing into the walls of the track. It should be noted that
this problem cannot be solved with a linear controller, and that
the dynamics of the system are nonlinear, since for instance, the
force with which the cart supports the pole is a nonlinear function
of the system state.

The observed variables of the system are the position of the
cart s, angle of the pole measured from the upward position ¢, and
their time derivatives s’ and ¢’. Control input is the force F applied
to the cart. The detailed dynamics and constraints for the
simulated cart-pole system can be found in [15]. [= 0.5 m is half
the length of the pole, g = 9.8 m/s? is the acceleration of gravity,
and g, = 0.05 and p, = 0.01 are the coefficients of the friction of
the pole and the cart respectively.

A discrete system was simulated with a time step of
At = 0.05s. The possible force was constrained between —10
and 10N, and the position between —3 and 3 m. The system was
initialised to a random state taken from the uniform distributions
s=[-1,1],s =[-2,2, ¢ =[n—1,t+ 1], ¢' =[-3,3].

The state of the art [27] is that performing the swing-up can be
learned efficiently even when assuming the system dynamics
unknown, but under a very modest amount of observation noise.

4.2. Simulation

For all the simulations and the training data set, additive
Gaussian observation noise with ¢ = 0.001 and Gaussian process
noise with ¢ = 0.001 were used. For the performance comparison
between NMPC and OIC, the length of the control horizon was set
to 40 time steps corresponding to 2s of system’s time. The
simulations were run for 70 time steps corresponding to 3.5s of
system’s time to ensure that the controller was able to stabilise
the pole.

NMPC was also tested with two variations. In the first
variation, only the location of the cart s and the angle of the pole
¢ are observed. Even though this is a somewhat artificial
modification to the problem, it highlights the benefits of hidden
state-space model over directly learning the dynamics of the
system based on observations. The second way of varying the
problem setting is used to study the benefits of using a hidden
state space in modelling the dynamics of an unknown system. A
comparison model was built which used identity mapping I
instead of an MLP f for the observation mapping. In practice this
means replacing Eq. (2) with

y(©) = x(8) + w(D). (12)

This resembles a more traditional approach to NMPC and is thus a
good comparison.

Fig. 3. The cart-pole system.

T. Raiko, M. Tornio / Neurocomputing 72 (2009) 3704-3712 3709

4.3. Implementation

The NDFA package [35] version 1.0.0, the scripts for running
the experiments, and the used training data are publicly
available.!

The model for NMPC and OIC control was identified in a
separate training phase with 2500 samples. This can be compared
to experiments in [37], where different reinforcement learning
algorithms require from 9000 up to 2 500 000 samples to learn to
control the cart. Most of the training data consisted of a sequence
generated with semi-random control where the only goal was to
ensure that the cart does not crash into the boundaries. Training
data also contained some examples of hand-generated sections to
better model the whole range of the observation and the dynamic
mapping. The model was trained for 10000 iterations, which
translates to several hours of computation time. Six-dimensional
(m = 6) state space X(t) was used because it resulted in a model
with the lowest cost function (Eq. (5)).

The direct control method requires a separate data set
where the system is controlled successfully. This data consisted
of 30 examples of successful swing-ups with 100 samples each.
They were generated using the NMPC method with a horizon
length of 40 time steps. Four-dimensional (m = 4) state space
proved to be the best here, and the model was trained for 100 000
iterations.

The state x(t) was estimated using the iterated extended
Kalman smoother [1]. A history of five observations and control
signals seemed to suffice to give a reliable estimate. The reference
signal r(t) was ¢ = 0 and ¢’ = 0 at the end of the horizon and for
five observations beyond that.

To take care of the constraints in the system with NMPC, a
slightly modified version of the cost function (10) was used. Out-
of-bounds values of the location of the cart and the force incurred
a quadratic penalty, and the full cost function is

Tc
Ji(to, w) = J(to, w) Y _(max(10, [u(to + 7)])

=1

Tc
—10)* + > “(max(3, ys(to + 7)) — 3)?, (13)

=1

where y,(t) refers to the location component s of the observation
vector y(t).

Alternatively, a constrained optimisation algorithm could have
been used. The performance of the non-constrained optimisation
was found to be satisfactory, however, so this increase in
complexity was deemed unnecessary. It is worth noting as well,
that for any approximative model the actual plant is not
guaranteed to satisfy the constraints even if predictions made
by the optimisation algorithm indicate so. As there is typically no
training data beyond the region within constraints, the predic-
tions can become quite unreliable near the boundaries, so this is a
real problem.

For OIC, the same reference signal was used as in NMPC. Means
of the states were approximated with an extended Kalman
smoother and these were then used to initialise the NDFA
alongside with variances from the previous iteration. The
performance was quite similar to the NMPC scheme. Position of
the cart and the force were in no way constrained, however, which
lead to some collisions with the track boundaries and unsuccess-
ful swing-ups.

1 http://www.cis.hut.fi/projects/bayes/software/

4.4. Simulation results

For all the control schemes, the cart-pole simulation was run
for 100 times and the number of successful swing-ups was
collected. As in [15], a swing-up is considered successful if the
final angle is between —0.1337 and 0.1337, final angular velocity
between —2 and 2rad/s, and the cart has not crashed into the
boundaries of the area during swing-up.

The results of all the simulations are collected in Table 2. For
each simulation type, the number of successful swing-ups and the
number of partial successes are listed. The partial successes
include all the simulation runs that at some point reached the
desired state, but possibly still failed either because the pole was
not stabilised or the cart crashed into a wall.

The direct control could perform the swing-up part of the task
quite well, but there were problems with stabilising the pole.
Further testing is still needed to verify if the performance of the
method can be improved by extra training with pole stabilising
data.

Even though there was some modelling error left in the model
used with indirect control schemes, both methods performed
extremely well under low noise conditions. Even with added
noise, the performance was pretty satisfactory. Examples of
successful swing-ups can be found in Fig. 4. With high noise,
some of the smoothness of the signal was lost. This is likely to be
caused by the much larger error in the state estimates, which
leads to varying control as well.

To measure the usefulness of the hidden state space, we
compared the approach where the state space was the observa-
tion space, more accurately by restriction f = I. Working in the
observation space directly, the performance was still perfect when
the noise level was low. However, with a high noise level, the
original model performed clearly better than the modified model.
This result shows that the proposed method was able to find a
state representation that made the system easier to control.

Even though most of the information on the speed y’ and the
angular velocity ¢’ can still be inferred taking into account past
observations, in practice the problem of learning the dynamics of
the system becomes harder and relying on past observations
increases the reaction time. The model with hidden state could
still perform the swing-up with some success, but a model based
directly on observations could not handle the swing-up at all. This
result was to be expected, as the dynamic mapping (1) alone
cannot adequately describe the modified system.

On average, the traditional NMPC method was about 10-20
times slower than real-time on modern hardware (2.2 GHz AMD
Opteron). The computation times for OIC were more varied, but in
most cases the performance was inferior to NMPC. It should be
noted, however, that the current implementation of OIC is quite
heavily penalised by the presence of constraints, as the optimisa-

Table 2
Results: number of successful and semi-successful (in brackets) swing-ups with
low and high noise level o.

Setting o =0.001 =01

Direct control 14 (48) 4 (31)
Optimistic 97 (100) 94 (98)
inference

control

NMPC 100 (100) 94 (95)
NMPC (only y 14 (66) 1 (21)
and ¢ observed)

NMPC (f =1) 100 (100) 70 (70)
NMPC (f =1, 0 (0) 0 (0)
only y and ¢)

http://www.cis.hut.fi/projects/bayes/software/

3710 T. Raiko, M. Tornio / Neurocomputing 72 (2009) 3704-3712

10 20

40 50 60

time t

Fig. 4. Example of a successful swing-up with NMPC and low noise. The cart starts from the middle with the pole hanging down, and goes left to swing the pole up.

tion algorithm used cannot properly take their effects into
account. In general, it is clear that further optimisations to the
algorithms or improvements in hardware are required, before
complex systems with fast dynamics can be controlled.

Comparison of the performance of NMPC and OIC can be seen in
Fig. 5. With enough iterations, both methods reached a very high
success rate. The few failed swing-ups were typically caused by
difficult initial state of the cart-pole system resulting in an infeasible
control strategy caused by limited horizon length. Example of a
successful swing-up can be found in Fig. 4.

The importance of the horizon length to the performance of the
NMPC can be seen in Fig. 6. All horizon lengths between 30 and 45
time steps had similar performance. Horizon lengths between 25 and
30 had problems with the cart crashing to the walls. Horizons shorter
than 25 time steps could not reliably perform the swing-up task
because the reference signal became too unrealistic.

Very long horizons are also problematic. First of all, they
increase the computational burden of the algorithm. The increase
in the number of the parameters often also leads into increase in
the number of local minima, which makes the optimisation
problem more involved. In addition, because only an approxima-
tive model of the system is available, longer predictions to the
future are also more unreliable. This can lead the algorithm to
choose an optimisation strategy which is not feasible in practice.

Different initialisations for the NMPC control signal show that
local minima are the chief problem with long horizons (Fig. 6). It
was observed that in most failed swing-ups the controller made a
large prediction error, and in the following time instant was
unable to recover from the local minimum where both the force
penalty and the reference signal tracking penalty both suddenly
became large. A more reasonable way to generate new initialisa-
tions in such situations is to either use random initialisations or to
use the internal forward model to generate a new control signal.

5. Discussion and conclusion

While linear state-space models have long been used in system
identification, the use of nonlinear hidden state-space models for

2]
Ig- 100 - 200 300 40O 50O 45 o ~606
o) (2
g 80 : /
= 60| _ /
% 104 4
@ 40| © 30,
) d
(8]
2 20t
5 5¢
2
0 50 100 150 200 250 300
time s

Fig. 5. Performance of the algorithms versus total computation time (in seconds).
Dotted line is NMPC, dashed line is OIC. Numbers next to data points indicate
number of iterations used. Control horizon length was 40 for all experiments.

100

80 t
60 |
40 |
20 |

0 v I L I . L AN
20 30 40 50 60 70

Horizon length T,

% of successful swing-ups

Fig. 6. The percentage of successful swing-ups as a function of the horizon length
T. in NMPC. Solid line is using old predictions as initialisation, dotted line is using
initialisations based on the internal forward model and dashed line is using the
best out of 10 random initialisations. Fifty NMPC iterations were used for all
experiments.

control is a promising new direction [29]. In this paper, a state-of-
the-art probabilistic method for identification of nonlinear hidden
state-space models [35] is extended to controlled systems. The
benefits of the model in [35] include the explicit modelling of both
the uncertainty in the current state and in the modelled dynamics.

T. Raiko, M. Tornio / Neurocomputing 72 (2009) 3704-3712 3711

Three different control schemes were studied in the framework
of variational Bayesian learning of nonlinear hidden state-space
models. Fairly little data are required for learning a model useful for
control. Direct control is fast to use, but requires the learning of a
policy mapping, which is hard to do well. The second control scheme
is stochastic nonlinear model predictive control, which is based on
optimising control signals based on a cost function. The third
scheme is optimistic inference control, which is based on fixing the
desired observations at some point in the future and inferring the
state and control signals between the future and the current state.

The nonlinear hidden state-space model and the variational
Bayesian framework underlying it, are both rather complex. It will
therefore require open-mindedness for people to actually take it
into use. Also, it is very hard to guarantee that they work in all
cases. Especially, it will not work well in situations that are
completely different from the training data.

Variational Bayesian EM-algorithm cannot be easily used in
this problem because neither the E-step (inference) nor the M-
step (parameter update) can be solved analytically. Learning,
inference, and NMPC use iterative algorithms based on gradient
minimisation of the cost function instead. The indirect control
schemes are computationally heavy which might restrict their use
in time-critical applications.

Very recently, Rasmussen and Deisenroth [27] proposed a
framework somewhat similar to ours. The common points are that
they also were looking for a general algorithm for effective
learning instead of a solution to a particular problem (they also
used the cart-pole as an example), and that they also modelled
the uncertainty of both the state and the model dynamics. Both
approaches used a Gaussian approximation for the states. They
only use direct control, but teach it not by example, but by policy
optimisation. Instead of a hidden state, they used observations as
the state directly, and instead of modelling dynamics and policy
with MLPs, they used Gaussian processes. They only consider the
case of modest amount of observation noise. It would be an
interesting future direction to combine our best properties with
theirs, that is, perhaps our hidden state representation and their
policy optimisation.

5.1. Future work

A controller might be able to carry out active information
gathering or probing [7]. It means that in an unknown state, one
should first decrease the uncertainty and then take action based
on what has been revealed. Probing requires the controller to be
able to plan to react to future observations. Optimistic inference
control does this automatically in theory, but in practice it would
require an even more sophisticated model for the posterior
distribution than Eq. (9). An interesting continuation is to use
Monte Carlo methods, where one could also plan to give the
control to the direct controller after a short horizon.

On a larger scale, to reduce the uncertainty of the model
parameters, the controller should balance exploration and
exploitation. In practice, this requires such long horizons that
some heuristics need to be used. A good starting point for taking
exploration into account is in [32].

For direct control, the model was learned using examples of
control with a single goal in mind. It is straightforward to generalise
this into a situation with a selection of different goals. The
dynamics of the system stays the same regardless of the goal and
only the policy mapping (see Fig. 1) needs to be goal-dependent.

Model-predictive control schemes are computationally very
demanding. One possible way to speed up the NMPC algorithm
would be to parallelise it. The MLP networks used in this work are
not particularly well suited for parallel computation, but many parts

of the computation can still be divided to parts. The novel control
scheme, OIC, provides a link between Bayesian inference and model-
predictive control, but does not currently compete in efficiency.

The direct and indirect control methods can be used together.
Direct control can be used for initialising the control signals. The
data produced by indirect control can be used for learning the
direct controller. This can be done even offline, that is, simulating
the estimated model and sampling observations from their
predicted distributions. The enhancement of the task-oriented
identification (policy mapping) in turn should help the indirect
control, too. This idea is comparable to temporal difference learning
[31] where the difference of temporally successive predictions is
used for adjusting the earlier one. One should be careful, though. If
the examples given for learning are fluent all the time, the
robustness of the model might start to decrease.

Applications in which the proposed methodology would be useful
could have unknown nonlinear dynamics and fairly high dimensional
measurements, for instance in controlling a large process as a whole.
Another example is robotics. In [24], a robot arm control is studied.
The starting point is operational space control, where given the
measurements, a reference trajectory, and the dynamics of the
system, the control signal with minimum cost is solved. However,
the mechanical parts have nonlinear effects that cannot be modelled
in practice. Instead, they propose to learn a mapping from the state
and the reference signal to the control signal from sampled data using
a function approximator. This function approximator has the same
role as the policy mapping in Fig. 1 in our approach.

5.2. Conclusions

Selecting actions based on a hidden state-space model instead
of based on the observation directly has many benefits: firstly, it is
more resistant to noise because it implicitly involves filtering.
Secondly, the observations (without history) do not always carry
enough information about the system state. Adding observation
history explicitly increases the number of parameters in the
model a lot. Thirdly, when nonlinear dynamics are modelled by a
function approximator such as a multilayer perceptron network, a
hidden state-space model can find such a representation of the
state that it is more suitable for the approximation and thus more
predictable. The benefit was empirically shown to be significant in
the case of high noise.

When task-oriented identification is used, the state representa-
tion becomes such that also the control signals become easier to
predict, that is, control becomes easier. The learned policy mapping
can also be straightforwardly used for direct control. We think that
task-oriented identification should also help indirect control
methods but this is yet to be experimentally confirmed.

Nonlinear state-space models seem promising for complex control
tasks, where the observations about the system state are incomplete
or the dynamics of the system is not well known. The experiments
with a simple control task indicated the benefits of the proposed
approach. There is still work left in combating high computational
complexity and in giving some guarantees or proofs on performance
especially in unexpected situations or near boundaries.

Acknowledgements

We would like to thank Janne Paanajdrvi, Heikki Hyotyniemi,
Kai Zenger, Sampsa Laine, Harri Valpola, and Antti Honkela for
fruitful discussions. This work was funded in part by the Academy
of Finland project ‘Unsupervised machine learning in latent
variable models’, and the IST Program of the European Commu-
nity, under the PASCAL2 Network of Excellence. This publication
only reflects the authors’ views.

3712 T. Raiko, M. Tornio / Neurocomputing 72 (2009) 3704-3712

References

[1] B. Anderson, J. Moore, Optimal Filtering, Prentice-Hall, Englewood Cliffs, NJ, 1979.

[2] K. Astrom, P. Albertos, M. Blamke, A. Isidori, W. Schaufelberger, R. Sanz,
Control of complex systems, Springer, Berlin, 2001.

[3] K. Astrém, B. Wittenmark, Adaptive Control, second ed., Addison-Wesley,
Reading, MA, 1995.

[4] C.G. Atkeson, Using local trajectory optimizers to speed up global optimiza-
tion in dynamic programming, in: J.D. Cowan, G. Tesauro, J. Alspector (Eds.),
Advances in Neural Information Processing Systems, vol. 6, Morgan Kaufmann
Publishers Inc., Los Altos, CA, 1994.

[5] C.G. Atkeson, A.W. Moore, S. Schaal, Locally weighted learning for control,
Artificial Intelligence Review 11 (1-5) (1997) 75-113.

[6] H. Attias, Planning by probabilistic inference, in: Proceedings of the Al-Stats
2003, 2003.

[7] Y. Bar-Shalom, Stochastic dynamic programming: caution and probing, IEEE
Transactions on Automatic Control 26 (5) (1981) 1184-1195.

[8] A. Bemporad, G. Ferrari-Trecate, M. Morari, Observability and controllability
of piecewise affine and hybrid systems, IEEE Transactions on Automatic
Control 45 (10) (2000) 1864-1876.

[9] P. Dayan, G.E. Hinton, Using expectation-maximization for reinforcement
learning, Neural Computation 9 (2) (1997) 271-278.

[10] J.A. Farrell, M.M. Polycarpou, Adaptive Approximation Based Control: Unifying
Neural, Fuzzy and Traditional Adaptive Approximation Approaches, Wiley,
New York, 2006.

[11] S. Haykin, Neural Networks—A Comprehensive Foundation, second ed.,
Prentice-Hall, Englewood Cliffs, NJ, 1999.

[12] M. Hoffman, A. Doucet, N. de Freitas, A. Jasra, Bayesian policy learning with
trans-dimensional MCMC, in: Advances in Neural Information Processing
Systems (NIPS), 2008.

[13] A. Honkela, H. Valpola, Unsupervised variational Bayesian learning of nonlinear
models, in: L. Saul, Y. Weiss, L. Bottou (Eds.), Advances in Neural Information
Processing Systems 17, MIT Press, Cambridge, MA, USA, 2005, pp. 593-600.

[14] H. Kappen, A linear theory for control of non-linear stochastic systems,
Physical Review Letters 95 (20) (2005).

[15] H.Kimura, S. Kobayashi, Efficient non-linear control by combining Q-learning
with local linear controllers, in: Proceedings of the ICML, 1999.

[16] J. Kocijan, R. Murray-Smith, C. Rasmussen, A. Girard, Gaussian process model
based predictive control, in: American Control Conference, Boston, MA, 2004.

[17]]. Kocijan, R. Murray-Smith, C.E. Rasmussen, B. Likar, Predictive control with
Gaussian process models, in: Proceedings of IEEE Region 8 Eurocon 2003:
Computer as a Tool, 2003.

[18] D. Mayne,]J. Rawlings, C. Rao, P. Scokaert, Constrained model predictive
control: stability and optimality, Automatica 36 (2000) 789-814.

[19] A. Moore, Acquisition of dynamic control knowledge for a robotic manip-
ulator, in: M.B. Morgan (Ed.), Proceedings of the 7th International Conference
on Machine Learning, Morgan Kaufmann, San Francisco, CA 94104, 1990.

[20] R. Murray, KJ. Astrom, S.P. Boyd, R.W. Brockett, G. Stein, Future directions in
control in an information-rich world, IEEE Control Systems Magazine 23 (2)
(2003) 20-33.

[21] J. Nocedal, S.J. Wright, Numerical Optimization, Springer-Verlag, New York,
1999.

[22] M. Nergaard, O. Ravn, N.K. Poulsen, LK. Hansen, Neural Networks for
Modelling and Control of Dynamic Systems, Springer-Verlag London Limited,
2001.

[23] J. Peters, S. Schaal, Policy learning for motor skills, in: Proceedings of 14th
International Conference on Neural Information Processing (ICONIP 2007),
Springer, Berlin, 2007.

[24]]. Peters, S. Schaal, Learning to control in operational space, The International
Journal of Robotics Research 27 (2) (2008) 197-212.

[25] T. Raiko, M. Tornio, Learning nonlinear state-space models for control, in:
Proceedings of the I[JCNN’05, Montreal, Canada, 2005.

[26] T. Raiko, M. Tornio, A. Honkela, J. Karhunen, State inference in variational
Bayesian nonlinear state-space models, in: Proceedings of the ICA 2006,
Charleston, South Carolina, USA, 2006.

[27] C.E. Rasmussen, M.P. Deisenroth, Probabilistic inference for fast learning in
control, in: Recent Advances in Reinforcement Learning, Lecture Notes in
Computer Science, vol. 5323, Springer, Berlin, 2008, pp. 229-242.

[28] S. Richter, D. Aberdeen, J. Yu, Natural actor-critic for road traffic optimisation,
in: Advances in Neural Information Processing Systems, MIT Press, Cam-
bridge, MA, 2007.

[29] E. Rosenqvist, A. Karlstrom, Realisation and estimation of piecewise-linear
output-error models, Automatica 41 (3) (2005) 545-551.

[30] S. Schaal, C.G. Atkeson, S. Vijayakumar, Scalable techniques from nonpar-
ameteric statistics for real-time robot learning, Applied Intelligence 1 (2002)
49-60.

[31] R. Sutton, Learning to predict by the methods of temporal differences,
Machine Learning 3 (1988) 9-44.

[32] S.B. Thrun, The role of exploration in learning control, in: Handbook of
Intelligent Control: Neural, Fuzzy and Adaptive Approaches, Van Nostrand
Reinhold, New York, 1992, pp. 527-559.

[33] M. Toussaint, Bayesian inference for motion control and planning, Technical
Report 22, Technische Universitdt Berlin, 2007.

[34] M. Toussaint, A. Storkey, Probabilistic inference for solving discrete and
continuous state Markov decision processes, in: ICML '06: Proceedings of the
23rd International Conference on Machine Learning, ACM, New York, NY, USA,
2006.

[35] H. Valpola,]J. Karhunen, An unsupervised ensemble learning method for
nonlinear dynamic state-space models, Neural Computation 14 (11) (2002)
2647-2692.

[36] S. Vijayakumar, A. D'Souza, T. Shibata, . Conradet, S. Schaal, statistical learning
for humanoid robots, Autonomous Robots 1 (2002) 59-72.

[37] P. Wawrzynski, A. Pacut, Model-free off-policy reinforcement learning in
continuous environment, in: Proceedings of the International Joint Con-
ference on Neural Networks, Budapest, Hungary, 2004.

Tapani Raiko received his DSc degree in Computer
Science in 2006 from Helsinki University of Technology
(TKK). He works as a post-doc researcher in the
Adaptive Informatics Research Centre (AIRC) in TKK.

Matti Tornio worked as a research assistant in AIRC
from 2004 to 2007

	Variational Bayesian learning of nonlinear hidden state-space models for model predictive control
	Introduction
	Variational Bayesian learning of nonlinear hidden state-space models
	Control schemes
	Direct control (DC)
	Nonlinear model predictive control (NMPC)
	Optimistic inference control
	Initialisation for control

	Experiments
	Cart-pole swing-up task
	Simulation
	Implementation
	Simulation results

	Discussion and conclusion
	Future work
	Conclusions

	Acknowledgements
	References

