Logical Hidden Markov Models
(Extended Abstract)

K. Kersting! and T. Raikol? and L. De Raedt!

nstitute for Computer Science
Machine Learning Lab
Albert-Ludwigs University of Freiburg
Georges-Koehler-Allee, Building 079
79112 Freiburg, Germany

2Helsinki University of Technology
Laboratory of Computer and
Information Science,
P.O. Box 5400,
02015 HUT, Finland

Abstract

Logical hidden Markov models (LOHMMs) are a generalization of hidden Markov models
(HMMs) to analyze sequences of logical atoms. In LOHMMs, abstract states summarize
sets of states and are represented by logical atoms. Transitions are defined between ab-
stract states to summarize sets of transitions between states. Unification is used to share
information among states, and between states and observations. A LOHMM can be de-
signed to be smaller than an equivalent HMM by an order of magnitude in the number of
parameters. We devised adaptations of the classical HMM procedures such as the forward
and backward procedures. Our experiments show that LOHMMs have a good generaliza-
tion performance, and that it is easy to extract characteristic patterns from the trained

LOHMM.
1 Introduction

Hidden Markov models (Rabiner and Juang,
1986) (HMMs) are among the most widely and
successfully used tools for the analysis of se-
quential data. Areas of application include com-
putational biology, user modeling, speech recog-
nition, (stochastic) natural language process-
ing, and robotics. HMMs are Markov chains,
where each state generates an observation. They
encompass as special cases time-independent
multinomial models, fully observable Markov
chains and edit distance-based models. Despite
their successes, however, it is well-known that
HMMs have a number of weaknesses. One of the
major weaknesses is that HMMs handle only se-
quences of unstructured symbols, i.e. they lack
the structure that exists in most real-world do-
mains.

Consider e.g. UNIX command pre-
diction (Davison and Hirsh, 1998), i.e.
predicting the mnext element in a se-
quence of wuser commands such as

emacs lohmms.tex, s, latex lohmms.tex, . ..

Commands can take parameters (such as the
filename on which the command needs to be
performed), can return information (such as
a return code) or can have other properties
(such as current working directory, cost, etc.).
These features can be very important. Ig-
noring e.g. the filename, we lose information
as emacs,ls, later equally likely represents
emacs lohmms.tex, ls, latex hmms.tex. Taking
all possible filenames into account yields an
unreasonably large number of parameters and,
more over, inhibits generalization (cf. (Davison
and Hirsh, 1998; Korvemaker and Greiner,
2000; Jacobs and Blockeel, 2001)). Another ex-
ample comes from computational biology. With
the number of determined protein structures
and the availability of classification schemes,
it becomes increasingly important to develop
computer methods that automatically extract
structural signatures for classes of proteins.
Protein secondary structures can naturally be
encoded as structured sequences of strands and
helices having certain orientations, types, and
lengths. To summarize, HMMs cumbersomely

handle sequences where the symbols of the
output alphabet are structured.

In this paper, we will overcome this weak-
ness by introducing logical hidden Markov
models (LOHMMs). LOHMMSs process se-
quences of logical atoms (hence the term
"logical”) which are the primary syntac-
tic component of the predicate calculus .
E.g. the atom heliz(h(left, alpha),9) denotes
a left-handed alpha helix of length 9, and
emacs(lohmms.tez, luc) denotes that the user
Luc edits the file lohmms.tex using Emacs. In
our framework, such logical atoms are used as
symbols in the alphabet of a LOHMM and also
to denote the states. Thus, LOHMMSs are ca-
pable of handling structured sequences repre-
sented as sequences of logical atoms such as
emacs(lohmms.tex), s, latex(lohmms.tez), . . .

We chose the logical approach for two rea-
sons. Firstly, variables in the atoms allow us
to abstract from specific symbols. E.g. the logi-
cal atom emacs(X, luc) would represent all files
that the user Luc could edit using Emacs. Sec-
ondly, unification allows us to share informa-
tion among hidden states and between hid-
den states and observations. E.g. the sequence
emacs(X, luc), latex(X, luc) represents that the
same file is used as an argument for both Emacs
and BTEX.

This paper is organized as follows. In the next
section, we briefly introduce basic logical con-
cepts and notations. In Section 3, we introduce
logical hidden Markov models. Section 4 de-
scribes our empirical evaluation of logical hid-
den Markov models. In Section 5 we discuss re-
lated work. Subsequently, we conclude and dis-
cuss future work.

2 Logical Preliminaries

A first-order alphabet % is a set of relation sym-
bols r with arity m > 0, and a set of func-
tor symbols f with arity n > 0. If n = 0
then f is called a constant, if m = 0 then p
is called a propositional variable. (We assume
that at least one constant is given.) An atom

'See (Lloyd, 1989) for a general introduction to logic
programming.

r(t1,...,t,) is a relation symbol r followed by
a bracketed m-tuple of terms ¢;. A term T is
a variable V' or a functor symbol f(t1,...,%k)
immediately followed by a bracketed n-tuple of
terms t;. An iterative clause is a formula of
the form A < B where the head A and the
the body B are logical atoms. A substitution
0 ={Vi/t1,...,Vo/tn}, e.g. {X/tez}, is an as-
signment of terms ¢; to variables V;. Applying
a substitution o to a term, atom or clause e
yields the instantiated term, atom, or clause
eoc where all occurrences of the variables V;
are simultaneously replaced by the term %;. e.g.
[s(X) < emacs(F, X){X/tez} yields Is(tex) <
emacs(F, tex). A substitution o is called a uni-
fier for a finite set S of atoms if So is single-
ton. A unifier ¢ for S is called a most general
unifier (MGU) for S if, for each unifier o of S,
there exists a substitution v such that o = 6~.
A term, atom or clause E is called ground when
it contains no variables, i.e., vars(E) = (. The
Herbrand base HBy, of ¥, is the set of all ground
atoms constructed with the predicate and func-
tor symbols in ¥. The set Gx(A) of an atom A
consists of all ground atoms A@ that belong to
HBs.

3 Logical Hidden Markov Models

In LOHMMs, we summarize sets of states by
abstract states, which are represented by log-
ical atoms. An abstract state then represents
all states that can be obtained by instantiat-
ing the atom (i.e. replacing the variables by
terms). E.g. the abstract state emacs(X), where
X is a variable, could represent the set of
states {emacs(lohmms.tezx), emacs(.cshre)} de-
pending on the terms (lohmms.tex and .cshre
in this case) in the LOHMM. If the ab-
stract state does not contain any variables, e.g.
emacs(lohmms.tezx), it is an ordinary state rep-
resenting a singleton set. In analogy to Ra-
biner’s interpretation, abstract states corre-
spond to “urns of urns”. In a first step, a state is
sampled from the encompassing abstract state.
Subsequently, a symbol is generated from the
state. This also works for ordinary states where
the encompassing abstract state contains ex-

ls: 0.4 0

0.5% 0.45
emacs(F) : 0.7

I
i .
emacs(F) : 0.3 : 47
I
I
| .
latex(F) : 0.2 emacs(F) : 0-1
CEUED S—" CILEY

emacs(F') : 0.6

latez(F) : 0.2

latez(F') : 0.6

Figure 1: A first-order logical hidden Markov
model.

actly one state, which is always selected.

Abstract states are connected by abstract
transitions, which summarize sets of transitions
between states. Together, the abstract states
and abstract transitions of a logical (hidden)
Markov model provide a compact representa-
tion of an equivalent HMM. We will explain
these concepts on an example for UNIX com-
mand line prediction. For more technical details
and for an application within computational bi-
ology we refer to (Kersting et al., 2002).

3.1 An Example of a LOHMM

Figure 1 shows a graphically represented exam-
ple of a LOHMM for user modeling. Assume
that there are two classes of users namely tez
and others. A tex user will call W TEXwith a high
probability after editing a file F' using emacs,
whereas other users are more likely to call Is.
However, the class of a user is hidden. For now,
we assume there are two filenames. The vertices
in the model represent abstract states, and we
find three different types of edges:

e Solid edges between abstract states
specify the abstract transitions. Tran-
sition probabilities and emission sym-
bols are associated to them. An ex-
ample transition from Figure 1 is
Is(U") LMAcsFX0T emacs(F,U). Such
a solid edge expresses that if one is in one

of the states represented by emacs(F,U),
one will go to one of the states in Is(U")

with probability 0.7 while emitting the
(abstract) symbol emacs(F).

Dotted edges indicate that two abstract
states behave in exactly the same way.
If we follow a transition to an abstract
state with an outgoing dotted edge, we
will automatically follow that edge. An
example dotted edge in Figure 1 goes from
emacs(F',U) to emacs(F,U). It represents
the fact that the two abstract states are
identical. The dotted edge is needed in this
case because the variables appearing in
the abstract states are different. We could
not have written this using solid edges
alone as the meaning of the solid edge

emacs(F,U) Lmacs ey emacs(F,U)

is different from that of
emacs(F',U) Lmacsv) 05 emacs(F,U).
Whereas the first transition only allows
a transition between the same state
say emacs(lohmms.tex, others) (because
the F is identical), the second one al-
lows transition between different states
such as emacs(lohmms.tex, others) and
emacs(.cshre, others). In a logical sense,
dotted edges correspond to some form of
recursion.

Dashed edges represent the more general
relation, which is used for a kind of default
reasoning. We follow those rules that are
most specific for the current state. Con-
sider the dashed edge in Figure 1 connect-
ing emacs(F,U) and emacs(F,tex). This
dashed edge denotes that emacs(F, tex) is a
more specific state than emacs(F, U). This
implies that the set of states represented
by the more specific (abstract) state is a
subset of that represented by the more gen-
eral one. Logically speaking, the more spe-
cific state emacs(F,tex) can be obtained
by substituting U by tex in the more gen-
eral state emacs(F,U). Dashed edges and
default reasoning are useful because they
represent exceptions. Indeed, in our cur-
rent example, the outgoing edges and prob-
ability labels associated to emacs(F,tex)

0.6

0.45 17 em(f1)
start —» em(F,U) ——= em(f1,t) --» em(F,t)
abstract state state abstract state
0.6
u la(f1) 10

em(F,U) =---em(F',U) =<— la(f1,t) <— [4(F,¢)

abstract state abstract state state abstract state

0.7 0.4
em(f2) = Is
em(fa,0) — Is(U') —o ls(t) —»

state abstract state state

Figure 2: Generating the observation se-
quence emacs(lohmms.tex), latez(lohmms.tez),
emacs(hmm.tzt), ls by the LOHMM in Figure 1.
The command emacs is abbreviated by em, fi
denotes the filename lohmms.tex, and fo repre-
sents hmm.tzt. White filled arrows indicate se-
lections.

are different from those for emacs(F,U).
This actually implies that emacs(F,tex)
acts as an exception to the states repre-
sented by emacs(F,U). So for U = tex we
employ the transitions from emacs(F, tex)
and for U # tex we follow those indicated
by emacs(F,U).

3.2 Generating Observations

LOHMMs are generative models. Let us explain
how the model in Figure 1 generates the se-
quence of observations

emacs(lohmms.tex), latex(lohmms.tex),

emacs(hmm.tzt), ls

(cf. Figure 2). It chooses an initial abstract
state, say emacs(F,U). In each abstract state,
the model samples values for all variables that
are not instantiated yet according to a selection
distribution p.

The function p specifies for each abstract
state a distribution over the possible instanti-
ations of the abstract state. E.g.

u(emacs(lohmms.tez, tex) |

emacs(lohmms.tex,U)) = 0.5

says that the model samples
emacs(lohmms.tez, tex) with probability
0.5 from emacs(lohmms.tex,U) whereas

u(emacs(hmm.tzt, tex) | emacs(F,U)) = 0.05

specifies that emacs(hmm.tzt, tex) is sampled
with probability 0.05 from emacs(F,U). In gen-
eral, any probabilistic representation such as
Bayesian networks might be used to represent u.
In our experiments, we followed the naive Bayes
approach to reduce the model complexity. Each
argument of a predicate is assumed to be inde-
pendent of the other arguments. E.g., to com-
pute p(emacs(hmm.tzt, tex)), we compute the
product of Pr(hmm.tzt) and Py (tez).

To go on in the example, since both variables
F and U are uninstantiated, the model samples
the state emacs(lohmms.tez, tex). Forced to fol-
low the dotted edge, it enters the abstract state
emacs(F, tex) which represents an exception to
emacs(F,U). Since the value of F' was already
instantiated in the previous abstract states,
the model samples with probability 1.0 the
state emacs(lohmms.tez, tex). Now, the model
goes over to the abstract state latex(F,tez),
emitting emacs(lohmms.tex) because the ab-
stract observation emacs(F') is already fully in-
stantiated. Again, since the value of F was
already instantiated in the previous abstract
state the model samples with probability 1.0
the state latex(lohmms.tez, tex). Next, we move
on to abstract state emacs(F',tez), emitting
latex(lohmms.tex). Variable F' in emacs(F’, tex)
is not yet bound; so, a value, say hmm.tzt, is
sampled from p. The dotted edge brings us
back to emacs(F,U) and automatically uni-
fies F' with F’, which is bound to hmm.tzt.
The variable U is already instantiated. Emit-
ting emacs(hmm.tzt), the model makes a tran-
sition to abstract state Is(U’). Assume that it
samples others for variable U’. Then, it remains
in the abstract state Is(U’) with probability
0.4. Considering all possible samples, this pro-
cess is similar to unrolling recurrent neural net-
works (Dean and Kanazawa, 1988) or dynamic
Bayesian networks (Williams and Zipser, 1995),
or to grounding clause programs (Lloyd, 1989).

To summarize, an abstract transition is an

expression of the from p : H £ B where pE
[0,1], and H, B and O are logical atoms. The
semantics of an abstract transition is as follows.
Let h (resp. b, 0) be a ground atom over H (resp.
B, 0). Let o be the most general unifier of b and
B, and oy, be the most general unifier of Hoy
and O. Then, the model makes a transition from
state b to h emitting o with probability

p-u(h| Hop) - (o | Oopoy).

A logical hidden Markov model over a first-order
language ¥ is a tuple (L, u) where L is a set of
abstract transitions and u specifies the selection
probability for all abstract states over 3. The
subsumption lattice among the bodies B’s of all
abstract transitions in L is assumed to be well-
founded. An atom B subsumes an atom B’ if the
set of all ground instances of B’ is a subset of the
corresponding set of B, i.e. Gx(B') C Gx(B).
A partial-order < among a set S is well-founded
if each non-empty subset of S has a minimal
element w.r.t. <.

So far, we left out one important type of do-
mains. Usually, identifiers such as arbitrary file-
names are only needed for references. It does not
make sense to select a specific identifier. There-
fore, we select an unspecified one with the joint
probability of all of them. However, unspecified
identifiers are still subject to unification. For
more details, we refer to (Kersting et al., 2002)
and to the (forthcoming) long paper.

3.3 Semantics and Evaluation

There are two primary differences to HMMs:

1. Transition probabilities are defined by a
product of the abstract transition proba-
bility and the selection probability (see also
Figure 3).

2. The set of states represented by an abstract
state and therefore the set of transitions
can vary according to the domains associ-
ated to predicates.

Therefore, having the described ground-
ing/unrolling process in mind, it is clear that

abstract selection
transition

abstract selection abstract selection
transition transition

| |
oSO %)

Is(o
Is(U’< 'S(t>>< Is(t)
/ Is(t

Is(t
Is(U’)/VS(

Is(U’)
star
/em(fl' em(F',u?yZem(fz’o em(F ,U)
em(F,U
k“em(fl,t em(F.0) Nemeraf | em(F.0)

latex(f1,t)y= latex(f1t) latex(f2,t)

Figure 3: Illustration of the trellis induced by
the LOHMM in Figure 1. In contrast with
HMMs, there is an additional layer where the
states are sampled from abstract states.

a LOHMM defines a random process with a
unique probability distribution assuming that
there is a finite set of abstract transitions and
each domain associated to an argument of a
predicate is finite. Thus, the set of concrete
transitions is finite.

Having the analogy to HMMs in mind, there
are three key problems of interest to be solved
for LOHMMSs. Let be O = 01,09, - .., o7 a finite
sequence of ground observations:

Evaluation: Given a LOHMM, its parameter
set A, and a set u of selection distributions,
what is the probability P(O | i, A) that the
sequence O was generated by the model?

Most likely state sequence: Given a
LOHMM, its parameter set A, a set u of
selection distributions, and an observation
sequence O, find a state sequence S* that
is most likely to produce the observation
sequence, i.e. S* = arg maxg P(S | O, i, A).

Parameter estimation: Given the structure
of an LOHMM, a set u of selection dis-
tributions, and a set of observation se-
quences {O;}, what is the most likely pa-
rameter set A* of the model, ie. A* =
argmaxy P(A | 4, {O¢}).

Efficient ways to evaluate LOHMMs are
adaptations of the forward and backward pro-

cedures. The main difference to the HMM case
is that a transition is specified in two phases, as
shown in Figure 3. After selecting an abstract
transition, u generates the relevant states from
the head of the abstract transition.

Building the trellis in this way, it is easy
to adapt the forward- backward, the Viterbi
and the Baum-Welch algorithms for HMMs to
LOHMMs. E.g. in the forward procedure, the «
probabilities and are computed for each reach-
able state (sets S;) at time t recursively. The
ay(s) is the probability of the partial observa-
tion sequence o1,...,0;_1 and state s at time ¢
given the LOHMM. The inductive definition of
ay(s) is as follows: Setting ap(start) = 1.0 the
inductive formulae are ag(start) = 1.0 and

ar(h) =" > ay 1(b)PaP,é(cl,b, h,0)

cl beES;_1

where h € S}, cl is an abstract transition in
the LOHMM, P, is the transition probabil-
ity of cl, and P, is the corresponding selection
probability given by u. The indicator function
d(cl, b, h,0;) = 1 whenever transition ¢l can take
from state b to h observing o; and the transi-
tion ¢l has the most specific body for b. The
other algorithms can be adapted analogously.
E.g. to upgrade the Baum- Welch algorithm, the
expected counts of an abstract transition are
basically the sum of the expected counts of its
ground instances on the data — a situation simi-
lar to (Koller and Pfeffer, 1997; Kersting and De
Raedt, 2001a). However, due to space restric-
tions, we will not explain here how to adapt the
procedures.

To estimate the probabilities over the do-
mains associated to predicates, i.e. to estimate
the selection probabilities implicitly, we adapt
the usual parameter learning of naive Bayes
models. The probabilities are the fraction of
times the domain element was observed to oc-
cur over the total number of opportunities. This
leads to the following overall EM scheme: In
each iteration, estimate first the abstract tran-
sition probabilities and then the probabilities
over the domains associated to each predicate.

Since our algorithm is an instance of the EM
algorithm, it increases the likelihood of the data

with every update, and according to (McLach-
lan and Krishnan, 1997), it is guaranteed to
reach a stationary point. All standard tech-
niques to overcome limitations of EM algo-
rithms are applicable. We used e.g. pseudo-
counts to ensure that no probabilities are es-
timated as zero. The computational complex-
ity of parameter reestimation is O(k -l - g + d)
where k£ is the number of sequences, [is the
maximal length of a sequence, g is the number
of (ground) transitions and d is the sum over
the sizes of the domains.

4 Empirical Evaluation

Our objectives were to empirically show that (1)
the basic algorithms work, (2) sampling is possi-
ble, (3) the parameter estimation is consistent,
(4) LOHMMs easily scale up, and (5) LOHMMs
are applicable to real world data.

Basic Algorithms We implemented 2 the
forward and backward procedures, the Viterbi
algorithm and the EM algorithm using the Pro-
log system Sicstus-3.8.6. Consider again the
LOHMM in Figure 1. The observation sequence
emacs(lohmms.tex), latex(lohmms.tex) has a
probability 0.108, whereas emacs(lohmms.tez),
emacs(lohmms.tex) has the probability 0.0576.
The Viterbi path of the former observation was
emacs(lohmms.tez, tex), latex(lohmms.tex, tex),
emacs(lohmms.tez, tex), i.e. it is most likely
that a I#TEXuser typed in the commands. In
contrast, it is more likely that some other
user typed in the latter command sequence.
Its Viterbi path was emacs(lohmms.tez, others),
emacs(lohmms.tez, others), ls(others).

Sampling We implemented forward sam-
pling. The following two sequences were among
a sample of 100 sequences of length 10 from our
example LOHMM (where filenames were mod-
eled using identifiers):

{ls, s, ls, emacs(f1), s, Is, emacs(fa),

latex(f2), emacs(f3), latez(f3)},
{ls, emacs(f1), latex(f1), emacs(f1), latez(f1),
emacs(f1), latex(f1), ls, emacs(fz2), Is}.

2The software is available upon request from
kersting@informatik.uni-freiburg.de.

-518

=) T T
1 goal standard —+—
5 MM-2 ---x---
2
s s20f T Tt R — —
s .
o S/
(%] 4
§ 5221 g
5] Ko
3 /
o /
o 524 / R
[=} /
) /
T 526 x E
= /
2 /
s 528 | E
- /
=}
[=} /
S 530 [/ R
3 /
S 532 X 1 1 1 1 1

0 20 40 60 80 100

Number of training sequences of length 10

Figure 4: Learning curve of the example
LOHMM assuming two filename and averaged
over five restarts.

-500

T T
goal standard —+—

-600 -
=700 -

-800

-900 |- .

-1000 L g

log-likelihood on test set (50 sequences of length 10)

-1100 | | | | T
2 4 6 8 10

Number of different filenames in the domain

Figure 5: The performance of LOHMMs com-
pared with HMMs with a varying number of
filenames.

Parameter Estimation We did the follow-
ing experiment on synthetical data. From the
LOHMM in Figure 1 and a domain of 2 equally
likely filenames, we sampled a test set of 50 se-
quences of length 10, and training sets of 10,
20, 30, 40, 50, 75 and 100 sequences of length
10. We ran both algorithms on each data set
starting from 5 random initial set of parame-
ters. We stopped when a limit of 30 iteration
was exceeded or a change in log-likelihood was
less than 10! from one iteration to the next.
All learned models were evaluated on the test
set. The learning curve in Figure 4 shows the ex-
pected result: the more training data, the better
the learned model performed.

Scaling Up Figure 5 shows the results of
another experiment. The parameters of both
our LOHMM and its corresponding HMM
for 2,4,6,8, and 10 different (uniformly dis-
tributed) filenames were estimated from a sam-
pled training set of 20 sequences of length 10
and evaluated as before. The number of HMM
parameters grows quadratically with the num-
ber of filenames (56, 156, 304, 500, 744), whereas
the number of LOHMM parameters grows lin-
early (1442, 14+4,14+6,14+8, 14410) because
we only had to change the domain representing
the list of filenames. The performance of the es-
timated HMMs decreased with the number of
filenames. More over, the HMMs had different
transitions, whereas all LOHMMs had the same
set of abstract transitions, and the transition
probabilities of all of them (including the one
using identifiers) were quite close to each other.
Thus, the LOHMM structure represents a gen-
eral rule holding in the data.

Real World Data Finally, we applied
LOHMDMs to real world data (for details, we re-
fer to (Kersting et al., 2002)). We extracted a
new dataset from the Protein Data Bank (PDB)
and the SCOP (Structural Classification of Pro-
teins) database. The resulting dataset contained
the secondary structure of domains (of pro-
teins) for five large fold classes (in total 2187
sequences). The goal was to discover structural
characteristics of these selected folds. Our re-
sults indicate that LOHMMSs are in fact applica-
ble to the task: The number of parameters of our
LOHMM is by an order of magnitude smaller
than the number of an equivalent HMM (120 vs.
approx. 62000), and the generalization perfor-
mance, a 74% accuracy, is comparable to (Tur-
cotte et al., 2001), a 75% accuracy, although the
datasets were slightly different. Furthermore, we
showed that it is easy to extract characteris-
tic patterns from the trained LOHMMs. More
precisely, we plotted the (selection) distribution
associated to each argument. By visual inspec-
tion we were able to show differences among
the folds. This is a feature of LOHMMs which
HMMs do not have. But above all, the learn-
ing was quite fast. Our implementation took at

most 5 iterations and approx. 5 minutes per fold
on a Pentium-IT1-600 MHz Linux machine.

5 Related Work

Hidden Markov models have been extended in
a number of different ways. For example, in hi-
erarchical HMMs (see e.g. (Fine et al., 1998)),
states themselves may be composed of HMMs
on a smaller scale. The difference is that the
abstract states and transitions in our approach
do not consist of more detailed states and tran-
sitions, but summarize states and transitions.

Factorial HMMs (Ghahramani and Jordan,
1997) are HMMs in which the hidden state
variable is factored into k many state variables
which depend on each other only through the
observation. This can be seen as a LOHMM
where the hidden state is summarized by a 2- k-
ary abstract state. The first k¥ arguments encode
the k state variables, and the last k& arguments
serve as a memory of the previous joint state.
The selection distribution of the i-th argument
is conditioned on the 7 + k-th argument.

Furthermore, LOHMMs are closely related to
HMMs based on tree automata (see e.g. (Fras-
coni et al., 2002)). These approaches do not cen-
ter logical concepts such as atoms and unifica-
tion, and their graphical representation is not
as close to HMMs as the one for LOHMMs.

Recently, Anderson et. al (Anderson et al.,
2002) introduced Relational Markov Models
(RMMs). Here, states can be of different types,
with each type described by a different set of
variables. The domain of each variable can be
hierarchically structured. The main differences
are that they do not facilitate variable binding
and unification nor hidden states.

Finally, in recent years there has been an in-
creasing interest in integrating probability the-
ory with first order logic (Muggleton, 1996; Ngo
and Haddawy, 1997; Jaeger, 1997; Friedman et
al., 1999; Kersting and De Raedt, 2001b; Sato
and Kameya, 2001). LOHMMSs can be seen as
an initial approach towards downgrading such
highly expressive frameworks. This is impor-
tant since such fragment are much easier to un-
derstand, adapt and refine, and are likely to

lead towards eflicient learning techniques. This
is akin to contemporary considerations in in-
ductive logic programming (Muggleton and De
Raedt, 1994).

6 Conclusion and Future Work

In this paper, we have introduced logical Hid-
den Markov models (LOHMMs), a new Ma-
chine Learning technique combining probabil-
ity theory and logic to probabilistically model
sequences of logical atoms. LOHMMs offer the
possibility to specify states and transitions in an
abstract fashion, and thereby offer a significant
reduction in the model size compared to regular
HMMs. Our experiments have shown that the
generalization performance is satisfactory, and
that it is easy to extract characteristic patterns
from the trained models. The abstraction en-
ables us to learn even when the data is scarce,
but abundant for conceptually similar states.
Shrinkage is carried out over the abstract states.

In future research, we plan to apply
LOHMMSs on real world user modeling, and
to explore additional applications. We are
currently extending inductive logic program-
ming (Muggleton and De Raedt, 1994) tech-
niques to learn the (logical) structure of
LOHMMs. Traditional HMM structure learn-
ing techniques seem not to be promising as
they would not take advantage of the structured
search space. So far, we adapted the traditional
HMM problems ounly. It is interesting to com-
pute the probability of non-ground observations
and the most likely most abstract hidden state
sequence given an observation sequence. The
domains associated to arguments could be hier-
archically structured. Furthermore, other rep-
resentations of the selection distribution then
naive Bayes can be explored. E.g. Bayesian net-
works can express dependencies among argu-
ments of abstract states.

Acknowledgments The authors would like
to thank Stefan Kramer for his contributions
to the biological experiments and Nico Jacobs
for fruitful discussion on user modeling. This
research was partly supported by the European
Union IST programme under contract number

IST-2001-33053 (APRIL). T. Raiko was sup-
ported by a Marie Curie fellowship at DAISY,
HPMT-CT-2001-00251.

References

C. R. Anderson, P. Domingos, and D. S. Weld. 2002.
Relational Markov Models and their Application
to Adaptive Web Navigation. In Proceedings of
the FEighth International Conference on Knowl-
edge Discovery and Data Mining (KDD-2002),
pages 143-152, Edmonton, Canada. ACM Press.

B. D. Davison and H. Hirsh. 1998. Predicting Se-
quences of User Actions. In Predicting the Future:

AT Approaches to Time-Series Analysis, pages 5—
12. AAAT Press.

T. Dean and K. Kanazawa. 1988. Probabilis-
tic temporal reasoning. In Proceedings of the
Seventh National Conference on Artificial Intel-
ligence (AAAI-1988), pages 524-528.

S. Fine, Y. Singer, and N. Tishby. 1998. The hierar-
chical hidden markov model: analysis and appli-
cations. Machine Learning, 32:41-62.

P. Frasconi, G. Soda, and A. Vullo. 2002. Hidden
markov models for text categorization in multi-
page documents. Journal of Intelligent Informa-
tion Systems, 18:195-217.

N. Friedman, L. Getoor, D. Koller, and A. Pfeffer.
1999. Learning probabilistic relational models. In
Proceedings of Sixteenth International Joint Con-
ference on Artificial Intelligence (IJCAI-1999),
pages 1300-1307. Morgan Kaufmann.

Z. Ghahramani and M. Jordan. 1997. Factorial hid-
den Markov models. Machine Learning, 29:245—
273.

N. Jacobs and H. Blockeel. 2001. The Learning
Shell: Automated Macro Construction. In User
Modeling 2001, pages 34-43.

M. Jaeger. 1997. Relational Bayesian networks. In
Proceedings of the Thirteenth Conference on Un-
certainty in Artificial Intelligence (UAI), pages
266—273. Morgan Kaufmann.

K. Kersting and L. De Raedt. 200la. Adaptive
Bayesian Logic Programs. In Proceedings of the
11th International Conference on Inductive Logic
Programming, volume 2157 of LNAI, pages 118
131. Springer.

K. Kersting and L. De Raedt. 2001b. Towards
Combining Inductive Logic Programming with

Bayesian Networks. In Proceedings of the 11th
International Conference on Inductive Logic Pro-
gramming, volume 2157 of LNAI pages 118-131.
Springer.

K. Kersting, T. Raiko, S. Kramer, and L. De Raedt.
2002. Towards discovering structural signatures
of protein folds based on logical hidden markov
models. Technical Report 175, University of
Freiburg, Germany, June. (Short version to ap-
pear in the Proceedings of the Pacific Symposium
on Biocomputing 2003).

D. Koller and A. Pfeffer. 1997. Learning probabil-
ities for noisy first-order rules. In Proceedings of
the Fifteenth International Joint Conference on
Artificial Intelligence (IJCAI-1997), pages 1316—
1321.

B. Korvemaker and R. Greiner. 2000. Predict-
ing UNIX command files: Addjusting to user pat-
terns. In Adaptive User Interfaces: Papers from
the 2000 AAAI Spring Symposium, pages 59-64.

J. W. Lloyd. 1989. Foundations of Logic Program-
ming. Springer, Berlin, 2. edition.

G. McLachlan and T. Krishnan. 1997. The EM
Algorithm and Extensions. Wiley, New York.

S. Muggleton and L. De Raedt. 1994. Inductive
logic programming: Theory and methods. Journal
of Logic Programming, 19(20):629-679.

S. Muggleton. 1996. Stochastic logic programs. In
L. De Raedt, editor, Advances in Inductive Logic
Programming, pages 254-264. 10S Press.

L. Ngo and P. Haddawy. 1997. Answering queries
from context-sensitive probabilistic knowledge
bases. Theoretical Computer Science, 171:147—
177.

L. R. Rabiner and B. H. Juang. 1986. An Intro-
duction to Hidden Markov Models. IFEE ASSP
Magazine, 3(1):4-16.

T. Sato and Y. Kameya. 2001. Parameter learn-
ing of logic programs for symbolic-statistical mod-
eling. Journal of Artificial Intelligence Research
(JAIR), 15:391-454.

M. Turcotte, S. Muggleton, and M. J. E. Sternberg.
2001. The effect of relational background knowl-
edge on learning of protein three-dimensional fold
signatures. Machine Learning, 43(1/2):81-95.

R. J. Williams and D. Zipser. 1995. Gradient-
Based Learning Algorithms for Recurrent Net-
works and Their Computational Complexity. In
Back-propagation: Theory, Architectures and Ap-
plications, pages 433—486. Hillsdale, NJ: Erlbaum.

