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Abstract: This paper studies the identification and model predictive control in nonlin-
ear state-space models. Nonlinearities are modelled with neural networks and system
identification is done with variational Bayesian learning.In addition to the robustness
of control, the stochastic approach allows for a novel control scheme called optimistic
inference control. We study the speed and accuracy of the twocontrol schemes as well
as the effect of changing horizon lengths and initialisation methods using a simulated
cart-pole system.Copyright c© 2006 IFAC
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1. INTRODUCTION

Learning is extremely important for control of com-
plex systems (̊Aström et al., 2001). Nonlinear control
is difficult even in the case that the system dynamics
are known. If the dynamics are not known, the tra-
ditional approach is to make a model of the dynam-
ics (system identification) and then try to control the
simulated model (nonlinear model predictive control).
The model learned from data is of course not perfect,
but these imperfections are often ignored. The modern
view of control sees feedback as a tool for uncertainty
management (Murray et al., 2003), but managing it
already in the modelling might have advantages. For
instance, the controller can avoid regions where the
confidence in model is not high enough (Kocijan et al.,
2003).

The idea of learning probabilistic nonlinear state-
space models for control is not new. The theory and
different phenomena are already well covered in (Bar-
Shalom, 1981). What has changed, though, is the
range of models that can be used in practice, due to
developments in Bayesian learning theory and com-
puter performance. The issue remains challenging, i.e.

investigation in (Bemporad et al., 2000) tells that ob-
servability and controllability properties of these sys-
tems cannot be easily deduced.

Recently, Rosenqvist and Karlström (2005) presented
a method for system identification and control in
nonlinear state-space models. The nonlinearities are
modelled as piecewise linear (or affine). The system
identification is based on the prediction error method.
In probability theory, this corresponds to a maxi-
mum likelihood estimate assuming a Gaussian process
noise. Our method continues this work by applying
more sophisticated methods from the machine learn-
ing community.

Our method of choice, nonlinear dynamical factor
analysis (NDFA) by Valpola and Karhunen (2002)
is a state-of-the-art tool for finding nonlinear state-
space models with variational Bayesian learning. In
NDFA, the parameters, the states, and the observa-
tions are real-valued vectors that are modelled with
parametrised probability distributions. Uncertainties
from noisy observations and model imperfections are
thus taken explicitly into account. Variational learning
has many benefits compared to the maximum likeli-



hood method. It is less prone to overfitting and can be
used for selecting the model structure, e.g. the dimen-
sionality of the state space.

An earlier version of our method is described in
(Raiko and Tornio, 2005) from the neural-networks
point of view. At the time we could not reasonable
study the efficiency of the methods due to problems
with the available inference algorithms. In this paper,
we use a novel algorithm (Raiko et al., 2006) tailored
for our purposes.

The rest of the paper is structured as follows: In Sec-
tion 2, the nonlinear state-space estimator is reviewed
and in Section 3 its use as a controller is presented.
After experiments in Section 4 matters are discussed
and concluded.

2. NONLINEAR STATE-SPACE MODELS

Selecting actions based on a state-space model instead
of the observation directly has many benefits: Firstly,
it is more resistant to noise (Raiko and Tornio, 2005)
because it implicitly involves filtering. Secondly, the
observations (without history) do not always carry
enough information about the system state. Thirdly,
when nonlinear dynamics are modelled by a function
approximator such as an multilayer perceptron (MLP)
network, a state-space model can find such a repre-
sentation of the state that it is more suitable for the
approximation and thus more predictable.

Nonlinear dynamical factor analysis (NDFA) (Valpola
and Karhunen, 2002) is a powerful tool for sys-
tem identification. It is based on a nonlinear state-
space model learned in a variational Bayesian setting.
NDFA scales only quadratically with the dimension-
ality of the observation space, so it is also suitable
for modelling systems with fairly high dimensionality
(Valpola and Karhunen, 2002).

In our model, the observation (or measurement) vector
y(t) is assumed to have been generated from the
hidden state vectorx(t) driven by the controlu(t) by
the following generative model:

[

u(t)
x(t)

]

= g

([

u(t − 1)
x(t − 1)

]

,θg

)

+ v(t), (1)

y(t) = f(x(t),θf ) + w(t) (2)

whereθ is a vector containing the model parameters
and time t is discrete. The process noisev(t) and
the measurement noisew(t) are assumed to be inde-
pendent, Gaussian, and white. Only the observations
y are known beforehand, and both the statesx and
the mappingsf andg are learned from the data. In
the context of system identification this model can
be considered task-oriented identification because of
its internal forward model to predictu(t) (Raiko and
Tornio, 2005). Note that the uncertainty of the process
noisev(t) leaves the exact selection of the control
signalu(t) open.

Multilayer perceptron (MLP) networks (Haykin, 1999)
suit well to modelling both strong and mild nonlinear-
ities. The MLP network models forf andg are

g(x(t),θg) = x(t) + B tanh [Ax(t) + a] + b (3)

f(x(t),θf ) = D tanh [Cx(t) + c] + d, (4)

where the sigmoidal tanh nonlinearity is applied
component-wise to its argument vector. The param-
etersθ include: (1) the weight matricesA . . .D, the
bias vectorsa . . .d; (2) the parameters of the distri-
butions of the noise signalsw(t) and v(t) and the
column vectors of the weight matrices; (3) the hyper-
parameters describing the distributions of biases and
the parameters in group (2).

There are infinitely many models that can explain any
given data. In Bayesian learning, all the possible ex-
planations are averaged weighting by their posterior
probability. The posterior probabilityp(x,θ | y) of
the states and the parameters after observing the data,
contains all the relevant information about them. Vari-
ational Bayesian learning is a way to approximate the
posterior density by a parametric distributionq(x,θ).
The misfit is measured by the Kullback-Leibler diver-
gence:

CKL =

∫

q(x,θ) log
q(x,θ)

p(x,θ | y)
dθdx, (5)

that is, the closerq is to the true Bayesian posterior,
the smaller the cost function.

The approximationq needs to be simple for mathe-
matical tractability and computational efficiency. Vari-
ables are assumed to depend of each other in the fol-
lowing way:

q(x,θ) =

T
∏

t=1

m
∏

i=1

q(xi(t) | xi(t − 1))
∏

j

q(θj), (6)

wherem is the dimensionality of the state spacex.
Furthermore,q is assumed to be Gaussian. To sum-
marise, the distributionq is parametrised by the means
and the variances of the unknown states and model
parameters, and covariances of consecutive state com-
ponents. The mean of a variable, sayx(t), over the
distributionq is marked withEq {x(t)}.

Inference (or state estimation) happens by adjusting
the values corresponding to hidden states inq such
that the cost functionCKL is minimised. Learning (or
system identification) happens by adjusting both the
hidden states and the model parameters inq minimis-
ing CKL. The same cost function can also be used for
determining the model structure, e.g. the dimension-
ality of the state space. The NDFA package contains
an iterative minimisation algorithm for that. A good
initialisation and other measures are essential to avoid
getting stuck into a bad local minimum of the cost
function. The standard initialisation for the learning
is based on principal component analysis of the data
augmented with embedding. Details can be found in
(Valpola and Karhunen, 2002).



3. CONTROL SCHEMES

In this section, two different control schemes are pre-
sented. First we describe nonlinear predictive control
(NMPC) in variational Bayesian setting, and then the
optimistic inference control (OIC) scheme. Different
strategies for generating control initialisations are also
explored.

3.1 Nonlinear Model Predictive Control (NMPC)

Nonlinear model predictive control (NMPC) (Mayne
et al., 2000) is based on minimising a cost function
J defined over a future window of fixed lengthTc.
For example, the quadratic difference between the
predicted future observationsy and a reference signal
r can be used:

J(y(t0),u(t0), . . . ,u(t0 + Tc − 1)) = (7)
Tc
∑

τ=1

|y(t0 + τ) − r|
2
.

ThenJ is minimised w.r.t. the control signalsu and
the first oneu(t0) is executed. Direct analogy to
decision theory is revealed when the control costJ
is interpreted as negative utility.

Here, the states and observations (but not control sig-
nals) are modelled probabilistically so we minimise
the expected costEq{J} (Bar-Shalom, 1981). The
current guessu(t0), . . . ,u(t0+Tc−1) defines a prob-
ability distribution over future states and observations.
This inference can be done with a single forward pass,
when ignoring the internal forward model, that is, the
dependency of the state on future control signals. In
this case, it makes sense to ignore the forward model
anyway, since the future control signals do not have to
follow the learned policy.

Minimisation ofEq{J} is done with a quasi-Newton
algorithm (Nocedal and Wright, 1999). For that, the
partial derivativesY t2 = ∂y(t2)/∂u(t1) for all t0 ≤
t1 < t2 ≤ t0 + Tc must be computed. For a single
input system we can simply apply the chain rule to
arrive at the Jacobian

Y t2 = F t2Gt2−1 · · ·Gt1+1Gt1 , (8)

whereF t andGt are the Jacobians of the mappingsf
andg at the the time instant t. Dynamic programming
can be used to efficiently compute these partial deriva-
tives for multiple values oft1 andt2 in linear time. The
extension of this result to multi-input systems is also
relatively straightforward.

The use of a cost function makes NMPC very ver-
satile. Costs for control signals and observations
can be set for instance to restrict values within
bounds etc. Expectations over a quadratic cost (Eq.

7) are easy to evaluate because:Eq

{

|y(t) − r|
2
}

=

|Eq {y(t)} − r|
2

+
∑n

i=1
Varq {yi(t)}, where n is

the dimensionality of the observation spacey and

Var {·} is the variance over the distributionq. The two
terms are the nominal and stochastic part of the cost
function. There is a direct analogy with dual control
(Åström and Wittenmark, 1995) which means balanc-
ing between good control and small estimation errors.
The usefulness of the decomposition is discussed in
(Bar-Shalom, 1981).

3.2 Optimistic Inference Control

Optimistic inference control (OIC) as described by
(Raiko and Tornio, 2005) and by (Attias, 2003) in-
dependently, works as follows. Assume that after a
fixed delayTc, the desired goal is reached. That is,
(some components of) the observationsx are at the
desired levelr. Given this optimistic assumption and
the observations and control signals so far, infer what
happens in between. Then choose the expectation of
q(u(t0)). It should be noted that whereas NMPC can
be used with a wide variety of different models, OIC
requires a probabilistic internal forward model.

OIC propagates the evidence in two directions, for-
wards from the current state and, additionally, the ev-
idence backwards from the desired future. The infer-
ence is conceptually simple, but algorithmically dif-
ficult. The information from the future needs to flow
through tens of nonlinear mappingsg before it affects
u(t0). The OIC algorithm as presented in (Raiko and
Tornio, 2005) only propagates information one step
forward and backward in time for each iteration. To
speed up this process, total derivatives described in
(Raiko et al., 2006) are used to replace the partial
derivatives, which leads to much faster propagation
of information. Another alternative for fast inference
is the Extended Kalman Smoother (Anderson and
Moore, 1979), which unfortunately suffers from sta-
bility issues and it is therefore only used to initialise
the OIC algorithm.

OIC in a nutshell:
Given observations. . . ,y(t0 − 2),y(t0 − 1) and
control signals. . . ,u(t0 − 2),u(t0 − 1)
1: Fix futurey(t0 + Tc) = y(t0 + Tc + 1) =

= · · · = r

2: Infer the distributionq(u(t),x(t),y(t)) for all t
3: Select the mean ofq(u(t0)) as the control signal
4: Observey(t0) and releasey(t0 + Tc)
5: Increaset0 and loop from1

In case there are constraints for control signals or
observations, they are forced after every inference it-
eration. If the horizon is set too short or the goal is
otherwise overoptimistic, the method becomes unre-
liable. Even with a realistic goal, it is not in general
guaranteed that the iteration will converge to the op-
timal control signal, as the iteration may get stuck in
a local minimum. The inferred control signals can be
validated by releasing the optimistic future and re-



inferring. If the future changes a lot, the control is
unreliable.

3.3 Initialisation for Control

For nonlinear control tasks it is important that the
initial estimate for control is good, otherwise the opti-
misation algorithm may get stuck in a local minimum
or fail to converge in reasonable time. In many cases,
the control signal from the previous time step can be
used with quite good results. However, when a new
control task starts or the goal is changed, or there are
unexcepted changes in the system state, the previous
control signal is often a poor choice.

A second option is to use random initialisations. If
multiple different initialisations are used, this can be
more robust than the first option. Unfortunately this
is also much more time consuming because multiple
control strategies must be computed for a single time
step. If an internal forward model is available, a third
option is also possible. The current system state can
be propagated forward in time and the control signal
from these predictions can be used as an initialisation.

4. EXPERIMENTS

Mechanical dynamical systems are easily understand-
able by people and thus illustrative as examples. We
chose a simulated system to ease experimentation. To
make the setting more difficult, the controllers do not
have access to the simulation equations but have to
identify an unknown system instead.

4.1 Cart-Pole Swing-Up Task

The Cart-Pole system (Kimura and Kobayashi) is a
classic benchmark for nonlinear control. The system
consist of a pole (which acts as an inverted pendulum)
attached to a cart (Figure 1). The force applied to the
cart can be controlled, and the goal is to swing the pole
to an upward position and stabilise it. This must be
accomplished without the cart crashing into the walls
of the track.

The observed variables of the system are the position
of the carts, angle of the pole measured from the
upward positionφ, and their first derivativess′ and
φ′. Control input is the forceF applied to the cart.
The detailed dynamics and constraints for the simu-
lated cart-pole system can be found in (Kimura and
Kobayashi).

A discrete system was simulated with a time step
of ∆t = 0.05s. The possible force was constrained
between−10N and 10N, and the position between
−3m and3m. The system was initialised to a random
state taken from the uniform distributionss = [−1, 1],
s′ = [−2, 2], φ = [π − 1, π + 1], φ′ = [−3, 3].

F

s

φ

Fig. 1. The cart-pole system

4.2 Simulation

For all the simulations and the training data set addi-
tive Gaussian observation noise withσ = 0.001 and
Gaussian process noise withσ = 0.001 were used.
For the performance comparison between NMPC and
OIC, the length of the control horizon was set to 40
time steps corresponding to 2 seconds of system’s
time. The simulations were run for 70 time steps cor-
responding to 3.5 seconds of system’s time to ensure
that the controller was able to stabilise the pole.

4.3 Implementation

The NDFA package (Valpola and Karhunen, 2002)
version 1.0.0, the scripts for running the experiments,
and the used training data are publicly available1 .

During the training phase, data with 2500 samples
was used. Most of the training data consisted of a
sequence generated with semi-random control where
the only goal was to ensure that the cart does not crash
into the boundaries. Training data also contained some
examples of hand-generated sections to better model
the whole range of the observation and the dynamic
mapping. The model was trained for 10000 iterations,
which translates to several hours of computation time.
Six-dimensional state spacex(t) was used because
it resulted in a model with the lowest cost function
(Eq. 5).

The statex(t) was estimated using the iterated ex-
tended Kalman smoother (Anderson and Moore, 1979).
A history of five observations and control signals
seemed to suffice to give a reliable estimate. The ref-
erence signalr wasφ = 0 andφ′ = 0 at the end of the
horizon and for five observations beyond that.

To take care of the constraints in the system with
NMPC, a slightly modified version of the cost function
(7) was used. Out-of-bounds values of the location of
the cart and the force incurred a quadratic penalty, and
the full cost function is

J1(t0,u) =J(t0,u)+ (9)
Tc
∑

τ=1

(max(10, |u(t0 + τ)|) − 10)2+

Tc
∑

τ=1

(max(3, |ys(t0 + τ)|) − 3)2,

1 http://www.cis.hut.fi/projects/bayes/software/
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Fig. 2. Example of a successful swing-up with NMPC.
Upper figure: visual representation of the swing-
up. Lower figure: time series of the swing-up.
Solid line is applied force, line with crosses is
position of the cart and line with dots is the angle.
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Fig. 3. Performance of the algorithms versus total
computation time (in seconds). Dotted line is
NMPC, dashed line is OIC. Numbers next to data
points indicate number of iterations used. Control
horizon length was 40 for all experiments.

whereys(t) refers to the location components of the
observation vectory(t).

4.4 Simulation Results

For all the control schemes, the cart-pole simula-
tion was run for 100 times and the number of suc-
cessful swing-ups was collected. As in (Kimura and
Kobayashi), a swing-up is considered successful if
the final angle is between−0.133π and0.133π, final
angular velocity between−2rad/s and2rad/s, and the
cart has not crashed into the boundaries of the area
during swing-up.

Comparison of the performance of NMPC and OIC
can be seen in Figure 3. With enough iterations, both
methods reached a very high success rate. The few
failed swing-ups were typically caused by difficult
initial state of the cart-pole system resulting in an
unfeasiable control strategy caused by limited hori-
zon length. Example of a successful swing-up can be
found in Figure 2.

On average, the traditional NMPC method was about
10 to 20 times slower than real-time on modern
hardware (2.2 GHz AMD Opteron). The computation
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Fig. 4. The percentage of successful swing-ups as a
function of the horizon lengthTc in NMPC. Solid
line is using old predictions as initialisation, dot-
ted line is using initialisations based on the inter-
nal forward model and dashed line is using the
best out of ten random initialisations. 50 NMPC
iterations were used for all experiments.

times for OIC were more varied, but in most cases
the performance was inferior to NMPC. It should be
noted, however, that the current implementation of
OIC is quite heavily penalised by the presence of
constraints, as the optimisation algorithm used cannot
properly take their effects into account. In general, it
is clear that further optimisations to the algorithms or
improvements in hardware are required, before com-
plex systems with fast dynamics can be controlled.

The importance of the horizon length to the perfor-
mance of the NMPC can be seen in Figure 4. All hori-
zon lengths between 30 and 45 time steps had similar
performance. Horizon lengths between 25 and 30 had
problems with the cart crashing to the walls. Horizons
shorter than 25 time steps could not reliably perform
the swing-up task because the reference signal became
too unrealistic.

Very long horizons are also problematic. First of all,
they increase the computational burden of the algo-
rithm. The increase in the number of the parameters
often also leads into increase in the number of local
minima, which makes the optimisation problem more
involved. In addition, because only an approximative
model of the system is available, predictions far to
the future become more unreliable. This can lead the
algorithm to choose an optimisation strategy which is
not feasible in practice.

Different initialisations for the NMPC control signal
show that local minima are the chief problem with
long horizons (Figure 4). It was observed that in most
failed swing-ups the controller made a large prediction
error, and in the following time instant was unable
to recover from the local minimum where both the
force penalty and the reference signal tracking penalty
both suddenly became large. A more reasonable way
to generate new initialisations in such situations is to
either use random initialisations or to use the internal
forward model to generate a new control signal.



5. DISCUSSION AND CONCLUSION

Two different control schemes were studied in the
framework of variational Bayesian learning of non-
linear state-space models. The first control scheme is
stochastic nonlinear model predictive control, which
is based on optimising control signals based on a cost
function. The second scheme is optimistic inference
control, which is based on fixing the desired observa-
tions at some point in the future and inferring the state
and control signals between the future and the current
state.

A controller might be able to carry out active in-
formation gathering or probing (Bar-Shalom, 1981).
It means that in an unknown state, one should first
decrease the uncertainty and then take action based
on what has been revealed. Probing requires the con-
troller to be able to plan to react to future observations.
Optimistic inference control does this automatically in
theory, but in practice it would require an even more
sophisticated model for the posterior distribution than
Equation 6. On a larger scale, to reduce the uncertainty
of the model parameters, the controller should balance
exploration and exploitation. A good starting point for
taking exploration into account is in (Thrun, 1992).

Both control schemes presented here are computa-
tionally demanding. One possible way to speed up
the NMPC algorithm would be to parallelise it. The
MLP networks used in this work are not particularly
well-suited for parallel computation, but many parts
of the computation can still be divided to parts. The
novel control scheme, OIC, provides a link between
Bayesian inference and model-predictive control, but
does not currently compete in efficiency.

Learning nonlinear state-space models seems promis-
ing for complex control tasks, where the observations
about the system state are incomplete or the dynamics
of the system is not well known. The experiments with
a simple control task indicated the benefits of the pro-
posed approach. There is still work left in combating
high computational complexity and in giving some
guarantees on performance especially in unexpected
situations or near boundaries.
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Heikki Hyötyniemi, Kai Zenger, Sampsa Laine, Harri
Valpola, and Markus Harva for fruitful discussions.
This work was supported in part by the Finnish Cen-
tre of Excellence Programme (2000-2005) under the
project New Information Processing Principles and
by the IST Programme of the European Community
under the PASCAL Network of Excellence, IST-2002-
506778. This publication only reflects the authors’
views.

REFERENCES

B. Anderson and J. Moore. Optimal Filtering.
Prentice-Hall, Englewood Cliffs, NJ, 1979.
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