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Abstract. Traditional hidden Markov models (HMMs) specify prob-
ability distributions over sequences of flat symbols. Recently, logical
hidden Markov models (LOHMMs) have been introduced to deal with
sequences of structured symbols. Within LOHMMSs, logical atoms are
used to represent output and state symbols. Together with unification,
this kind of abstraction can lead to LOHMMs that have a much
smaller number of parameters equivalent HMMs (typically an order
of magnitude). However, the compactness of LOHMMs comes at the
expense of a more complex structure learning problem. Indeed, different
abstraction levels have to be explored. In this paper, we propose for the
first time a method for learning the structure of LOHMMs from data.
The method essentially adapts Friedman’s structural EM (SEM) algo-
rithm. More precisely, it combines generalized ezpectation mazimization
(GEM), which optimizes parameters, with structure search for model
selection using inductive logic programming refinement operators. We
provide convergence and experimental results that show its effectiveness.

Keywords: Multi-Relational Data Mining, Inductive Logic Program-
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1 Introduction

Hidden Markov models [26] (HMMs) are extremely popular for analyzing sequen-
tial data. Areas of application include computational biology, user modelling,
speech recognition, empirical natural language processing, and robotics. Despite
their successes, HMMs have a major weakness: they handle only sequences of
flat, i.e., unstructured symbols. However, in many applications the symbols oc-
curring in sequences are structured, e.g., in computational biology [17], web
mining [1], information extraction from structured doucments, and user mod-
elling. Consider, e.g., the sequence of UNIX commands emacs lohmms.tex, 1s,
latex lohmms.tex, ... Such data has been used to train hidden Markov models
for anomaly detection [19]. Anomaly detection is the task to develop a model
or profile of the normal working state of a computer system user and to de-
tect anomalous conditions as deviations from expected behaviour patterns. The



user’s current behavioral state, i.e., the hidden state, might be “idle”, “writing”,

or “hacking”. However, as the above command sequence shows, UNIX com-
mands may have parameters (such as filenames), may return information (such
as a return code) and may have other properties (such as current working direc-
tory, cost, etc.). Thus, commands are essentially structured symbols. Traditional
HMMSs cannot easily deal with this type of structured sequences. Typically, the
application of HMMs requires either 1) ignoring the structure of the commands
(i-e., the parameters), or 2) taking all possible parameters explicitly into ac-
count. The former approach results in serious information loss; the latter leads
to a combinatorial explosion in the number of parameters and as a consequence
inhibits generalization.

The above sketched problem with HMMs is akin to the problem of deal-
ing with structured examples in traditional machine learning algorithms. This
problem has extensively been studied in the fields of inductive logic program-
ming [23] and multi-relational learning [6]. Recently, Kersting et. al [16] pro-
posed logical hidden Markov models (LOHMMSs) as an inductive logic program-
ming approach to overcome the problem and have proven the usefulness of
LOHMMs on a computational biology application [17]. The key idea under-
lying LOHMMs is to employ logical atoms as structured (output and state)
symbols. Using logical atoms, the above UNIX command sequence can be rep-
resented as emacs(lohmms.tex), 1s, latex(lohmms.tex), ... There are two impor-
tant motivations for using logical atoms at the symbol level. First, variables in
the atoms allow us to make abstraction of specific symbols. E.g., the logical atom
emacs(X, luc) represents all files that user Luc could edit using emacs. Secondly,
unification allows us to share information among hidden states and between
hidden states and observations. E.g., the sequence emacs(X, luc),latex(X, luc)
represents that the same file is used as an argument for both Emacs and BTEX.
Due to the use of abstraction, one can devise LOHMMSs that are an order of
magnitude smaller than equivalent HMMs. For instance, the trained LOHMM
in [17] had only 120 parameters, corresponding to an instantiated traditional
HMM with more than 62000 parameters.

However, the compactness of LOHMMSs comes at the expense of a more com-
plex structure learning, i.e., model selection problem. Indeed, different abstrac-
tion levels have to be explored. So far, no method for solving the problem has
been proposed. This is a significant problem for several reasons. First, eliciting
LOHMDMs from experts can be a laborious and expensive process. Second, tradi-
tional hidden Markov models are commonly learned by estimating the maximum
likelihood parameters of a fixed, fully connected model. Such an approach is not
useful for LOHMMs because different levels of abstraction should be explored.
Finally, logical hidden Markov models naturally contain hidden variables, i.e. no
data case will describe the value of these variables. In such a case, learning is
more difficult than in the complete data case. To evaluate the optimal choice of
parameters for a candidate LOHMM, we must perform nonlinear optimization
using e.g. the EM algorithm. In each iteration, the EM algorithm computes the
probabilities of several events for each data case. Thus, learning parameters with



the EM is significantly more difficult. The contribution of the present paper is a
novel method for learning logical hidden Markov models. We tackle the problems
by adapting Friedman’s structural EM (SEM) algorithm [9, 10]. More precisely,
our approach combines a generalized expectation maximization (GEM) algo-
rithm, which optimizes parameters, with structure search for model selection
using ILP refinement operators. In doing so, we explore different abstraction
levels due to the inductive logic programming (ILP) refinement operators (see
e.g. [23,6]), and due to SEM’s underlying idea, we reduce the learning problem
to one that is similar to learning in the complete data case, which can be solved
more efficiently.

The paper is organized as follows. In Section 2, we briefly review some logical
concepts; in Section 3, we review logical hidden Markov models; in Section 4, we
formalize the learning setting; in Section 5, we present a naive learning algorithm;
in Section 6, we introduce a structural, generalized EM for learning LOHMMs
from data. The procedure is experimentally evaluated in Section 7. Before we
conclude, we discuss related work.

2 Preliminaries

A first-order logic alphabet X is a set of relation symbols r with arity m > 0,
written r/m, and a set of functor symbols f with arity n > 0, written f/n, a.
If n = 0 then £ is called a constant, if m = 0 then r is called a propositional
variable. (We assume that at least one constant is given.) An atomn r(ty,...,ty)
is a relation symbol r followed by a bracketed m-tuple of terms t;. A term is a
variable V or a functor symbol f of arity n immediately followed by a bracketed
n-tuple of terms sj, i.e., £(s41,...,s,). An iterative clause is a formula of the form
A < B where A and the B are logical atoms. In the present paper, a logic program
consists of a set of iterative clauses. A substitution § = {Vi/t4,...,Vx/tk}, .g.
{X/tex}, is an assignment of terms t; to variables V;. Applying a substitution o
to a term, atom or clause e yields the instantiated term, atom, or clause ec where
all occurrences of the variables V; are simultaneously replaced by the term t;,
e.g. 1s(X) « emacs(F,X){X/tez} yields 1s(tex) + emacs(F,tex). A term, atom
or clause e is called ground when it contains no variables, i.e., vars(E) = (). The
Herbrand base of X, denoted as hby, is the set of all ground atoms constructed
with the predicate and functor symbols in X. The set G 5;(A) of an atom A consists
of all ground atoms A6 that belong to hby.

3 Logical Hidden Markov Models

The logical component of a traditional hidden Markov model corresponds to a
Mealy machine [13], i.e., to a finite state machine where the output symbols are
associated with transitions 2. This is essentially a propositional representation

3 Often the output symbols are associated with states within HMMs. In this case, the
logical component actually corresponds to a Moore machine. However, Moore and



because the symbols used to represent states and outputs are flat, i.e. not struc-
tured. The key idea underlying logical hidden Markov models is to replace these
flat symbols by abstract symbols. An abstract symbol A is — by definition — a
logical atom. It is abstract in that it represents the set of ground atoms G5 (A).
We assume that the alphabet is typed which means that constant symbols can
appear as arguments of some particular relation symbols only. Therefore, assume
aset Dy,...,D, of (finite) domains (of constants), and let D(r/m); refer to the
domain associated with the ith argument of a relation r/m. Ground atoms then
play the role of the traditional symbols used in a hidden Markov model.

Example 1 Consider the alphabet Xy which has as constant symbols tex,
prog, hmml, and lohmml, and as relation symbols 1s/0, emacs/1, latex/1,
1s/1, emacs/2, and latex/2. Then the atom emacs(File,tex) represents
the set {emacs(hmml,tex),emacs(lohmml,tex)}. The alphabet is typed such
that the constant symbols hmml and lohmml are used as filenames, i.e.,
D(latex/1); = D(latex/2); = D(emacs/1); = D(emacs/2); = {hmm1, lohmm1}
= D, and tex and prog are used as users, i.e., D(1s/1); = D(latex/2); =
D(emacs/2); = {tex,prg} = D,. We thus avoid useless instantiations such as
emacs(tex, tex). Two different versions of the relation symbol encode that the
user argument is not observed but only represented in the hidden states.

The use of atoms instead of flat symbols allows us to analyze logical and struc-
tured sequences such as emacs(hmm1),1s, latex(hmm1). Thus, the sequences of a
logical hidden Markov model are structured. In addition, atoms are crucial in
defining abstract transitions.

Definition 1 (Abstract Transition) An abstract transition is an ezpression of
the form p : H & B where p €[0,1], and H, B and O are atoms.

In this definition, the atoms H and B represent abstract states and 0 represents

an abstract output symbol. The semantics of an abstract transition p: H &g
is that if one is in one of the states in G5 (B), say Bfs, one will go to one of
the states in G x(Hfg), say Hbsbg, while emitting one of the output symbols in
GE(DHBGH), say 0030}160

Example 2 Consider the abstract transition 0.8 : latex(File, tex) enacs(File)
emacs(File, tex) and assume that we are in state emacs(hmml,tex), i.e., O =
{File/hmm1}. Then the abstract transition specifies that there is a probability of
0.8 that the next state will be in Gy, (latex(hmml,tex)) = {latex(hmmi, tex)}
( i.e., the probability is 0.8 that the next state will be latex(hmml,tex)), and
that one of the output symbols in Gx,(emacs(hmml)) = {emacs(hmml)} ( i.e.,
emacs(hmm1)) will be emitted.

The above example was interesting because it uses unification between
the filename arguments. On the other hand, it is simple because fz and

Mealy machines are interconvertible. We decided to adapt Mealy machines because
they fit our logical setting more intuitively.



0y are both empty. The situation becomes more complicated when these
substitutions are not empty because then the resulting state and out-

put symbol sets are not necessarily singletons. Indeed, for the transi-

tion 0.8 : emacs(File’, tex) Jevex(File) latex(File, tex) the resulting state set

would be Gy, (emacs(File',tex)) = {emacs(hmml,tex), emacs(lohmml, tex)}.
Thus the transition is non-deterministic because there are two possible resulting
states. We therefore need a mechanism to assign probabilities to these possible
states. This is realized using the notion of a selection probability.

Definition 2 (Selection Distribution) The selection distribution p specifies for
each abstract state (respectively observation) A over the alphabet X a distribution
(- | A) over the possible instantiations of A, i.e., over Gx(A).

To continue our example, assume that we are in a state latex(hmm1, tex) and

consider the transition 0.8 : emacs(File’, tex) eexlFile) latex(File, tex). Let

p(emacs(hmml, tex) | emacs(File’,tex)) = 0.4 and p(emacs(lohmmi,tex) |
emacs(File', tex)) = 0.6. Then there would be a probability of 0.4 x 0.8 = 0.32
that the next state would be emacs(hmm1,tex) and of 0.6 x 0.8 = 0.48 that it
would be emacs(lohmmi, tex).

Taking into account the selection distribution p, the meaning of an abstract
transition p:H < B can be summarized as follows. Let Bl € G »(B), HOgly €
Gx(H6g) and 0605648y € G5(06s0g). Then the model makes a transition from
state Bfp to Hfpfy and emits symbol 00z6yfy with probability

p- /J/(HQBGH | HGB) . /,L(OOBHHGU | DQBGH) (1)

To represent u, any probabilistic representation can — in principle — be used,
e.g. a Bayesian network. To reduce the model complexity, we will however use
a naive Bayes approach throughout the remainder of the this paper. In this
approach, we associate to each domain D; used as type a probability distribution
Pp, over D;. Let vars(A) = {V4,...,V1} be the variables occurring in some atom
A over r/m, and let 0 = {s1/V4,...s1/V1} be a substitution grounding A. Each
V; is then considered a random variable over the domain of the first argument
of r/m it appears in, denoted by Dy,. Then, u(Ac | A) = Hé.zl Pp,, (V; = s;). For
instance for Xy, p(emacs(hmml, tex) | emacs(F,E)) is computed as the product
of Pp, (F = hmm1) and Pp, (E = tex).

So far, the semantics of a single abstract transition has been defined. A logical
hidden Markov model will usually consist of multiple abstract transitions and
this creates a further complication.

emacs(File)

Example 3 Consider the abstract transitions 0.8 : latex(File, tex)

emacs(File)

emacs(File,tex) and 0.4 : 1ls(User) emacs(File,User). These
two transitions make conflicting statements about the state resulting from
emacs(hmml, tex). Indeed, according to the first transition, the probability is 0.8
that the resulting state is latex(hmml, tex) and according to the second one it is
0.4 that it is 1s(tex).



This complication can be solved by taking into account the subsumption (or
generality) relation among the B-parts of the two abstract transitions. Indeed,
the B-part of the first transition B; = emacs(File,tex) is more specific than
that of the second transition By = emacs(File, User) because there exists a sub-
stitution # = {User/tex} such that B = By, i.e., By subsumes By. Therefore
Gx(B1) C Gx(By). The first transition can therefore be regarded as more infor-
mative than the second one. It should therefore be preferred over the second one
when starting from emacs(hmm1, tex). We will also say that the first transition is
more specific than the second one. Remark that this generality relation imposes
a partial order on the set of all transitions. These considerations lead to the strat-
egy of only considering the maximally specific transitions that apply to a state
in order to determine the successor states. This implements a kind of exception
handling or default reasoning, e.g., in the above example, the first transition is
an exception to the second one. This conflict resolution strategy will work prop-
erly provided that the bodies of all maximally specific transitions (matching the
starting state) represent the same abstract state. This can be enforced by re-
quiring the set of abstract transitions to be well-founded (for each predicate),
i.e., by requiring that every subset of the set of abstract transitions has a unique
maximally specific abstract body state. E.g., if the body of the second abstract
transition in our example would have been replaced by emacs(hmm1,User) then
the set of abstract transactions would not be well-founded.
By now we are able to formally define logical hidden Markov models.

Definition 3 (Logical Hidden Markov Model) A logical hidden Markov model
is a tuple M = (X, u, A) where X is a logical alphabet, u a selection probability
over X and A is a set of well-founded abstract transitions. Let B be the set of
all atoms that occur as the body part of transitions in A. We require

VBEB:Y .. Pr(d)=10. (2)

body(cl)=8
The semantics of LOHMMs are as follows.

Theorem 1 (Semantics). A logical hidden Markov model over a language ¥
defines a discrete time stochastic process where the domain of the random vari-
ables is hb(X), i.e., the observation and hidden states. The induced probability
measure over hb(X) is unique.

Note that traditional HMMs are a special type of LOHMMs in which X' con-
tains only relation symbols of arity 0 and the selection probability is irrelevant.
Thus, LOHMMs generalize traditional HMMs. However, LOHMMs allow to go
beyond the expressivity of HMMs. Consider again the UNIX command sequence
emacs lohmms.tex,1s,latex lohmms.tex. The filename lohmms.tex might be
meaningless. What more matters is that both, emacs and IATEX get the same
file as input. The filename itself bears no information, i.e. it is an identifier. As-
sume a countably infinite set of constant symbols i1, iz, ... Each time we would
select a specific filename such as lohmms.tex, we select one of the 4; in increas-
ing order if the filename lohmms.tex was not encountered before. Otherwise we
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Fig. 1. A logical hidden Markov model.

select the same iy, k < j, as before. What remains is the selection probability.
Clearly, we do not want to specify a probability for each ¢;. One solution is to use
P(iy Vi V...). This translates to selecting a specific filename with out knowing
which one. Consider e.g. our language ¥;. Using identifiers instead of hmm1 and
lohmml, the selection probability would be 1.0. Treating lohmm1 exceptionally —
e.g. because we would like to track it over time — its selection probability is p
whereas that of hmm1 would be 1 — p. In this way, a countably infinite set of (un-
specific) inputs can be encoded in LOHMMSs. Furthermore, using functors one
can incorporate memory mechanisms into LOHMMSs so that e.g. long distance
correlations can be encoded.

Finally, let us note that logical hidden Markov models can be represented
graphically. Figure 1 contains an example for analyzing Unix sequence com-
mands. The underlying language X5 consists of X; together with the con-
stant symbols other denoting a not IXTEX user. In this graphical notation, ab-
stract states are represented by vertices, abstract transitions by solid edges,
and dashed edges represent the generality or subsumption ordering between
abstract states. Furthermore, dotted edges connect identical abstract states.
If we follow a transition to an abstract state with an outgoing dotted edge
then the dotted edge will always be followed. Dotted edges are needed because

the same abstract state can occur under different circumstances. Indeed, con-

sider the transition p : latex(File’, User’) JeexlFile) latex(File,User). Even

though the atoms in the head and body of the transition are syntactically
different they represent the same abstract state. Furthermore, to accurately
represent the meaning of this transition we cannot use a solid edge from

latex(File, User) to itself, because this would actually represent the abstract

L. . latex(File) . .
transition p : latex(File,User) «———— latex(File, User), whose semantics

is is different. Indeed, the second transition only allows for transitions between
identical states whereas the first abstract transition also allows for transitions
between equivalent states.

The graphical representation and the conflict resolution technique realize one
of our design principles: locally interpretable transitions.



4 The Learning Setting

So far, we assumed that the LOHMM is given. Learning LOHMMs from data will
often be easier than constructing them by hand. In this section, we investigate
and formally define the problem of learning logical hidden Markov models.

Definition 4 (Learning Problem) Given a set O = {O1,...,0On} of data cases,
a set M of LOHMMs, and a scoring function scoreo : M — R, find a hypothesis
M* € M that mazimizes scoreo.

Each data case O; = 0;1055...051 consists of a sequence o;; of obser-
vations, i.e. of ground atoms. We write each observation in lower case to
stress that they are ground atoms. For instance in the user modelling do-
main an example data case is emacs(lohmms), 1s, emacs(lohmms). By analogy
with the traditional hidden Markov model learning setting, a single data case
O; € O only describes the observations evolving over time. The correspond-
ing sequence H; = hjoh; 1...hi 1,41 describing the evolution of the system’s
state over time is hidden, i.e., not specified in O;. For instance, we do not
know whether emacs(lohmms) has been generated by emacs(lohmms,prog) or
emacs(lohmms, tex) (cf. Example 3).

The hypothesis space M consists of all candidate LOHMMs to be considered
during search. We assume X' to be given. Consequently, the domain declarations,
i.e. the possible constants which can be selected by p are apriori known. Further-
more, each model M € M can be considered to be parameterized by a vector
A such that each (legal) choice of values Ay defines according to Theorem 1
a probability distribution P(- | M, Apr) over hb(X). For the sake of simplicity,
we will denote the underlying logic program (i.e., the set of abstract transitions
without associated probability values) by M and abbreviate Ay by A as long as
the model M is clear from the context. Furthermore, we also impose certain syn-
tactic restrictions, i.e., a syntactic bias on the transitions to be induced. At this
point, we wish to stress that the particular syntactic bias selected is a parameter
of our framework, see e.g. [24]

To evaluate different candidates M, we assume a scoring function
scoreo : M — R which evaluates how well a given candidate M fits a given
set O of data cases. The data cases are assumed to be independently sampled
from identical distributions. A commonly employed scoring function is

scoreo (M, ) =log P(O | M,\) — Pen(M, X, O). (3)

The scoring function can be derived from Bayesian analysis assuming MAP-
estimates, a uniform prior over the parameters and a prior over model struc-
tures that prefers simpler ones. The term log P(O | M, A) is the log-likelihood of
the data O given the current choice of model (M, A). The log-likelihood has a
statistical interpretation: the higher the log-likelihood, the closer (M, A) models
the probability distribution induced by the data. The second term Pen(M, X, O)
is a penalty function that biases the scoring function to prefer simpler models.
Motivated by the minimum description length score for Bayesian networks [18],



we use the simple penalty Pen(M, X, O) = log(m)/2-|A| in the present paper.
The penalty is independent of the model parameters and therefore can neglect
it during parameter estimation.

5 A Naive Learning Algorithm

For traditional HMMs, the learning problem collapses to parameter estimation
(i-e., estimating the transition probabilities) because HMMs are usually fully
connected. For LOHMMSs, however, we have to account for different abstraction
levels. Therefore, we split the learning problem into

1. searching for a model structure, i.e., the underlying logic program, and
2. parameter estimating where the transition and selection probabilities consi-
tute the parameters of a LOHMM,

and apply the following informed, greedy search algorithm. It is a direct solution
to the learning problem described in Definition 4. It takes as input an initial
model M° and the data O, and performs:

Let A\° = argmax, scoreo (MO, \)

Loop for k£ =0,1,2,...
Find model M*+! € p(M*)} that maximizes scoreq(M*+1 )
Let AF*1 = argmax, scoreq(M*+1,X)

Until convergence, i.e., no improvement in score

That is, at each stage k we choose a model structure and parameters among the
currently best model and its neighbours (see below) that have the highest score.
It stops, when there is no improvement in score. Note that in practice, we have to
initialize the parameters of each model scored in lines 1 and 3 (e.g. randomly).
To apply this algorithm to learning LOHMMSs, we have to make line 3 more
concrete. In the following two subsections, we will show (1) how to traverse the
hypotheses space and (2) how to score hypotheses.

5.1 Traversing the Hypotheses Space

Let us start with the selection of the initial hypothesis M°. It is governed by
the idea that M° should in principle cover all possible observations and hidden
state sequences (over the given language X'). Therefore, an obvious candidate
for MO (which we also used in our experiments) is the fully connected LOHMM
built over all maximally general atoms over X. The maximally general atoms
are expressions of the form r(Xy, ..., Xy), where the X; are different variables.
Now, to traverse the hypothesis space M, we have to compute all neigh-
bours of the currently best hypothesis M*. To do so, we employ refinement
operators traditionally used in inductive logic programming. More precisely, for
the language bias considered and the experiments conducted in present paper,
we used the refinement operator p : M ~ 2M which selects a single clause



cl=p:H & B e M and adds a minimal specialization cl' = p : H' (i B’ of cl to
M (w.r.t. to §-subsumption). Specializing a single abstract transition amounts
to instantiating and to unifying variables, i.e., cI' = cl8 for some substitution
6. When adding cl’' to M*, we have to ensure that (1) all possible observations
and hidden state sequences are covered and (2) the list of bodies B’ after ap-
plying p(M) should remain well-founded. Condition (1) can only be violated if
B’ ¢ B. In this case, we add transitions with maximally general heads and obser-
vations. Condition (2) is established analogously. We complete the body lattice
by adding new bodies (and therefore abstract transitions) in a similar way as
described above. Both conditions together guarantee that the most specific body
corresponding to a state is always unique.

5.2 Scoring Hypotheses

In principle, any maximum log-likelihood (ML) parameter estimation algorithm
can be used to score hypotheses. However, in the presence of hidden variables ML
estimation is a numerical optimization problem, and all known algorithms involve
nonlinear, iterative optimization and multiple calls to an inference algorithm as
subroutines. The most common ML parameter estimation technique for hidden
Markov models is the Baum-Welch algorithm (see Appendix B for an adaptation)
which is an instance of the Expectation-Maximization (EM) algorithm.

The EM algorithm [5] is a classical approach to maximum likelihood estima-
tion in the presence of missing values. The basic observation underlying the EM
algorithm is: we can easily find the ML parameters of a fixed model structure M*
if the data is complete, i.e., if we know the values for all the random variables.
Therefore, it performs in each iteration [ + 1 two steps:

(E-Step) Based on the current parameters (M*, A¥!) and the observed data
O, the algorithm computes a distribution over all possible completions of
each partially observed data case.

(M-Step) Each completion is then treated as a fully observed data case
weighted by its probability. New parameters AP are computed.

More formally, the E-step consists of computing the expectation of the log-
likelihood given the old model (M*, A*!) and the observed data O, i.e.,

QM* A | M* b = B [logP(O,H | M*, ) | M’“,)\k’l] . (4)

Here, O,H denotes the completion of the data cases O. The current model
(M*, A ’l) and the observed data O give us the conditional distribution governing
the unobserved states H. The expression E[-|-] denotes the expectation over this
conditional distribution. The function @ is called the expected score. In the M-
step, the expected score Q(M*, X | M* A*!) is maximized w.r.t. A, i.e.,

AL = argmaxy Q(M*, A|ME, AM (5)

In fact, it is not necessary to maximize the expected score in
each iteration. Tt is sufficient to choose (MF* AF!*1)  such that



Q(M¥*, NP |k AR > Q(ME, ARY | Mk AR, Such  an  algorithm s
called generalized EM. As Dempster et al. [5] have shown, the (generalized) EM
algorithm improves the objective score in each iteration.

Theorem 2. If Q(M* XF!F1 | Mk AR > Mk, AF!
scoreq (M*, NPY > scoreg (M*, XF) holds.

B holds, then

Thus, if we choose in each iteration (M*, )\k’l+1) that has a higher expected score
than (M*, )\k’l), we are bound to improve the objective score, see also [20]. The
above naive greedy algorithm can easily be instantiated to use the EM algorithm
to estimate the ML parameters.

The problem with the naive learning algorithm are its huge compu-
tational costs. In each structural iteration k, we evaluate all neighbours
M* . For each neighbour, we need to run the EM algorithm for a rea-
sonable number of iterations in order to get a reliable ML estimate of
the parameters A¥. Each EM iteration requires a full LOHMM inference
on all given data cases. In total, the run time complexity per structural
iteration is at least O(m - EM iterations - costs of LOHMM inference) where
costs of LOHMM inference depends on the length of data sequences, too. Fried-
man proposed the structural EM (SEM) to reduce the computational complex-
ity [9,10]. In the next section, we will show how to adapt the ideas underlying
SEM to learning LOHMMs. We will follow the notation used in [9].

6 Structural Generalized EM

The idea underlying SEM is as follows. We take our current model (M* )\k) and
run the EM algorithm for a while to get reasonably completed data. We then
fix the completed data cases and use them to compute the ML parameters A*
of each neighbour M k¥ We choose the neighbour with the best improvement of
the score as (M*+1, /\k+1) and iterate. More formally, we have

1: Initialize A% randomly

2: Loopfor k=0,1,2,...

3 Loop for 1 =0,1,2,...

4 Let AM1 = argmax, Q(M*, X | M* AP

5: Until convergence or | = I

6 Find model M*+! ¢ p(M*) that maximizes Q(- | M*, AF)
7 Let AFT10 = argmax, Q(M*+1, X | Mk AR

8:  Until convergence

The hypotheses space is traversed as described in Section 5.1, and again we
stop if there is no improvement in score. The following theorem shows that even
when the structure changes in between, improving the expected score ) always
improves the log-likelihood as well.

Theorem 3. If Q(M,X | Mk X"hy > Q(M* A¥ | MF XF') holds, then
log P(O | M, X\) > log P(O | M* X**) holds.



The proof is a simple extension of the argumentation by [20, Section 3.2 fL.].
However, to apply this algorithm to learning LOHMMSs, we still need to show
how to choose the best neighbour, cf. line 6.

Let us first simplify the expected score in line 6. To do so, let ¢(b, h, o) denote
the counts, i.e., the number of times the systems proceeds from ground state b
to ground state h emitting ground observation o. Now, it holds that

Q(M, A\|M* Aoy = E [1ogP(o,H|M, ,\)‘M’“, ,\’“”]

=F

log H P(hgy1,0041|he, M, A) ‘Mk, Al
t

= E |log [[ P(r, ofp, M, X))

b,h,0

=FE [th oc(b,h, o) -log P(h,o|b, M, )\)‘Mk7 }‘k,z]

= Zb’h’o E [c(b,h, o)

~
=:ec(b,h,0)

Mk Ak’l]

M’“,)\’“*’] ‘log P(h,olb, M, )) .  (6)

v

The term ec(b,h,0) in (6) denotes the expected counts of making a transition
from ground state b to ground state h emitting ground observation o. The expec-
tation is taken according to (M*, A¥!). Of course, it is sufficient to consider the
expected counts of only those tuples (b,h, o) which are possible given the data.
All other tuples have some default expected counts, e.g. 0. The expected counts
can be computed using the adapted Baum-Welch algorithm, see Appendix B.

In order to improve the parameters given the expected counts, we apply a
gradient-based optimization technique to account for the subliminal nondeter-
minism LOHMMSs possesses. Multiple abstract transitions with the same body
can match a given tuple (b,h,0) so that an analytical solution of the M-step
seems to be difficult. In principle, a gradient-based optimization technique itera-
tively performs the following two steps. First, it computes the gradient vector V,
of partial derivatives of the scoring function w.r.t. the parameters of a LOHMM
at a given point. Then, it takes a step in the direction of the gradient to the
point A + 6V, where § is the step-size. Thus, we have to compute the gradient
vector. For LOHMMSs, the gradient vector consists of partial derivatives w.r.t.
abstract transition probabilities and to selection probabilities.

Assume that A is the transition probability associated with some abstract
transition cl. Now, the partial derivative of (6) w.r.t. some parameter A is

OQ(M X | ME AP dlog P(h,o0 | b, M, \)
o\ = Zb,h’o ec(b,h,0) - X

_ ec(b,h,0)  OP(h,0|b,M,A) )
N Zb,h,o P(h,o0 | b, M, ) (D)




The partial derivative of P(h,o | b, M, ) w.r.t. A can be computed as follows *

P(,o|b,M,A) _
AN B
=5 Z (cl | M, ) - p(h | head(cl)on, M) - p(o | obs(cl)ono,, M)
= u(h | head(cl)on, M) - u(o | obs(cl)onoo, M) (8)

Substituting (8) back into (7) yields

dQ(M, X | M*, A"
oA

—Z(% (h|head(c1)ah,M)-u(o|0bs(cl)ahao,M)) )

The selection probability follows a naive Bayes approach. Therefore, one can
show in a similar way as for transition probabilities that
OQ(M, A | M*, A
o\
ec(b,h,0)
= _ A cl,b,h,0) - P(cl | M, \)- 1
=Y (P o7 PMELASLRCIES (10)

b,h,0

wu(h | head(cl)ow, M) - u(o | obs(cl)ono,, M)) (11)

where ¢(A, cl, b, h,0) is the number of times that the domain element associated
with A is selected to ground cl w.r.t. h and o.

Note that in the problem at hand, the described method has to be modified
to take into account that the parameter vector A consists of probability values,
i.e. A € [0,1] and that corresponding parameters sum to 1.0. There are two
ways to enforce this: (1) projecting the gradient onto the constraint surface, and
(2) reparameterizing the problem so that the new parameters automatically
respect the constraints on A no matter what their values are. We choose the
latter approach as the reparameterized problem is fully unconstrained. More
precisely, we define the parameters 8;; € R for a set of corresponding A’s such
that A; = (83;)/(X_; Bik) - This enforces the constraints given above, and a
local maximum w.r.t. @ is also a local maximum w.r.t. A, and vice versa. The
gradient w.r.t the $;;’s can be found by computing the gradient w.r.t the A;;’s
and then deriving the gradient w.r.t. 8 using the chain rule, see e.g. [2,15].

What do we gain from the structural GEM over the original naive learning
algorithm? We save many runs of the EM algorithm because we use the same
ground counts for scoring all neighbouring hypotheses. Each iteration of the

4 For the sake of simplicity, we will not check in the following equations that a transi-
tion is mazimally specific for some ground states as done in the algorithms presented
in the appendix.
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Fig. 2. The initial logical hidden Markov model (A) and the learned one (B).

“.obs(Cy,Fy) : 0.26

gradient algorithm is computationally less expensive than one EM iteration.
Essentially, considering the evaluation of the neighbours, we have made the run
time complexity independent of the number and length of the data cases — a
feature which is important for scaling up. However, maximizing the expected
score (6) based on a different model structure does not only maximize likelihood
but also tries to minimize the difference in the distribution of the hidden states
sequences between the old and the new hypothesis. The SEM and SGEM learning
schemes thus prefer changes in the model structure that do not change the role
of the hidden states to those that do. Nevertheless, we believe that the expected
score is a good heuristic in learning.

7 Experimental Prospects

The proposed method is intended as a generic framework for learning logical
hidden Markov models. As such, it leaves several issues open. These include: the
actual language bias (and corresponding refinement operator), the scoring func-
tion, possible pruning methods, etc. Nevertheless, in order to show the validity of
our framework, we report on some experiments that proves that the underlying
principles work. To this aim, we made a simple implementation in Sicstus Pro-
log 3.9.0. The implementation features a beam-search using the simple penalized
log-likelihood (see Section 4) of the data as score. The chosen syntactic language
bias did not allow for functors to be used. To perform the maximum likelihood
estimation, we implemented the Baum-Welch algorithm as described in Ap-
pendix B (but scaled to avoid numerical imprecision). For the improvement of ex-
pected score, we adapted the scaled conjugate gradient (SCG) as implemented in
Bishop and Nabney’s Netlab library (http://www.ncrg.aston.ac.uk/netlab/,
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Fig. 3. Iteration (x axis) versus the penalized log-likelihood (y axis) achieved.

see also [3]). SCGs are well-known from the field of learning neural networks and
avoid the time consuming line search of more traditional gradient-based meth-
ods by employing an approximation of the Hessian of the scoring function to
quadratically extrapolate the minimum instead of doing a line search. The num-
ber of expected score evaluations is at most twice per iteration. We set [ ;nax = 10.
Within the gradient-based optimization, we stopped when a limit of 10 iterations
was exceeded or a change in penalized log-likelihood (reps. expected score) was
less than 10~2 from one iteration to the next.

Data were generated from a LOHMM inspired by the user-modelling
LOHMM, cf. Figure 1. Instead of modelling each command by its own pred-
icate, we used the predicates cmd(Command, User, Filename) (to model internal
states) and obs(Command, Filename) (to model the observations). There were 2
filenames, 2 users types, and 3 commands. From this model, we sampled 100 se-
quences of length 20. We selected the LOHMM shown in Figure 2 (A) as initial
hypothesis. The learned model is shown in Figure 2. The learning curve in Fig-
ure 3 clearly proves the principle: the objective score increases in each iteration.
The learned model is interesting for three reasons. First, it has less parameters
than a a fully connected HMM modelling this domain. The latter consists of
156 parameters whereas the learned LOHMM consists of 20 parameters only.
Second, the algorithm managed to adjust the starting probability distribution
(start node). Third and more importantly, it unifies variables to model the
distribution more accurately. For example, sequences of commands (even more
than two) using the same filename are ran. Such knowledge cannot easily be
read off from traditional hidden Markov models.

8 Related Work

LOHMDMs can be analyzed from two different directions. On the one hand, they
are related to several extensions of HMMs that have been investigated, such
as hierarchical HMMs [7], factorial HMMs [12], and HMMs based on tree au-
tomata [8]. On the other hand, they are also related to the recent interest in
combining inductive logic programming [23] principles with probability theory,
see [4] for an overview.



In the first type of approach, the underlying idea is to decompose the state
variables into smaller units, i.e. to upgrade HMMSs to represent more structured
state spaces. In hierarchical HMMs states themselves can be HMMs, in factorial
HMMs they can be factored into k state variables which depend on one another
only through the observation®, and in tree based HMMs the represented prob-
ability distributions are defined over tree structures. The key difference with
LOHMDMs is that these approaches do not employ the logical concept of unifica-
tion. Unification is essential because it allows us to introduce abstract transitions,
which do not consist of more detailed states. Thus, structure learning algorithm
devised for these approaches cannot directly applied to LOHMMs.

In the second type of approach, most attention has been devoted to develop-
ing highly expressive formalisms, such as e.g. stochastic logic programs [22],
PRISM [27], probabilisitic relational models [11], and Bayesian logic pro-
grams [14]. LOHMMs can be seen as an attempt towards downgrading such
highly expressive frameworks. As a consequence, LOHMMSs represent an inter-
esting position on the expressiveness scale. Whereas they retain most of the
essential logical features of the more expressive formalisms, they seem easier to
understand, adapt and learn. This is akin to many contemporary considerations
in inductive logic programming [23] and multi-relational data mining [6]. In any
case, to the best of our knowledge no structure learning algorithm based on the
structural EM as been proposed.

LOHMMs are most closely related to the recently introduced relational
Markov models (RMMs) [1]. Here, states can be of different types, with each
type described by a different set of variables. The domain of each variable can
be hierarchically structured. The main differences are that RMMs do not fa-
cilitate variable binding and unification nor hidden states. Therefore, they are
more a first type than a second type approach. Furthermore, they do not select
the most-specific transition to resolve conflicting transitions. Instead, they in-
terpolate between conflicting ones. This is an interesting option for LOHMMs
because it makes parameter estimation more robust. On the other hand, it also
seems to make it more difficult to adhere one of our design princples: locally in-
terpretable transitions. Structure learning has been addressed for RMMs based
on probability estimation trees [25], a kind of decision trees.

Finally, our learning approach is to some extend contrary to some more
advanced technique for learning the structure of hidden Markov models, namely
model merging, see e.g. [28]. Here, the induction process starts with the most
specific model consistent with the training data and generalizes by successively
merging states. However, abstract transitions aim at good generalization, and
the most general clauses can be considered to be the most informative ones.

% Factorial HMMs could be viewed as a special type of LOHMMSs, where the hidden
state is summarized by a 2 - k-ary abstract state. The first £ arguments encode the
k state variables, and the last k arguments serve as a memory of the previous joint
state. The selection distribution of the i-th argument is conditioned on the 7 + k-th
argument.



9 Conclusions

A method for learning logical hidden Markov models has been presented. The
method essentially adapts Friedman’s structural EM algorithm. More precisely, it
combines standard generalized EM, which optimizes parameters, with structure
search for model selection using refinement operators from the field of induc-
tive logic programming. Experiments have been presented that show that the
presented techniques work in principle.

As future work, we plan to conduct a more thorough experimental evaluation.
The experiments were realized by relying on a simple and basic instantiation of
our framework. Future work will be concerned with making more refined and
state-of-the-art choices for many parameters. These include: the investigation of
other objective scores, other refinement operators e.g. handling functors, deleting
transitions, and generalizing hypotheses, logical pruning criteria for hypotheses,
the incorporation of syntactic bias mechanisms, efficient storing of ground counts
(e.g. using AD-trees [21]) etc. Nevertheless, the authors hope that the presented
framework will inspire further research at the intersection of inductive logic
programming and hidden Markov models.
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A Evaluation of LOHMMs

Consider the probability of the partial observation sequence
O =040y...0r and (ground) state h at time ¢, given the model M, i.e.
at(h) := P(0103...0¢,q¢ = h | M) where ¢; = h denotes that the system is
in state h at time t. Clearly, P(O | M) =} ,cg, ., ar41(h) where S; denotes
the set of reachable states at time ¢. As for traditional HMMs, a;(h) can be
computed using a dynamic programming approach. The only difference is that
in LOHMMs the substitutions have to be taken into account.

1:  Sp:= {start} /* initialize the set of reachable states*/
2:  ap(start) :=1.0 /¥ initialize the a value for start*/
3: fort=1,2,...,T+1do
4: Sy =10 /¥ initialize the set of reachable states at clock t*/
5: foreach b € S;_1 do
6: foreach maximally specific p : H & B e Asuch

that o» = mgu(b,B) exists do
T: foreach h = Hoywo, € Gx(How) such

that o¢_1 unifies with Oo,on do

8: ifh ¢ S; then
9: St = St U {h}
10: at(h) :=0.0
11: ay(h) := ag(h) + az—1(b) -p-‘ u(h | Hop) - p(og—1 | Oonon) ‘

12: return P(O | M) = EseST+1 aryi1(s)

The boxed terms constitute the main difference to the corresponding HMM
formula. The computational complexity is O((T + 1) - s - (|4]| + 0 - g)) where
§ = maxy=1,2,.. 7+1 |St|, | 4] is the number of abstract transitions, o is the max-
imal number of outgoing abstract transitions with regard to an abstract state,
and g is the maximal number of ground instances of an abstract state. In a
completely analogous manner, one can devise a backward procedure to compute
Be(h) = P(0t4+10t42-..01 | ¢¢ =h, M). Based on ay(h) and 5;(h), we can devise
an adaption of the Baum-Welch algorithm.

B The Baum-Welch Algorithm for LOHMMs

We have to estimate the maximum likelihood transition probabilities and se-
lection distributions. To estimate the former ones, we upgrade the Baum- Welsh
approach for HMMs. There, an improved estimate p of the transition probability
of some (ground) transition cl = p : H LBis computed by taking the ratio be-
tween the expected number £(cl) of making the transitions cl at any time given
the model M and an observation sequence O, and the total number of transitions
starting from B at any time given the model M and an observation sequence O.
Basically the same applies when cl is an abstract transition, however we have to
be a little bit more careful because we have no direct access to £(cl). To compute



& (cl) in case that cl is abstract, let & (gcl, cl) be the probability of following the
abstract transition cl via its ground instance gl = p:h & b, i.e.

& (gel,cl) = at(bf),&g | ﬁ;r)l () -‘p(h | Hop) - p(os_1 | Oopom) ‘ (12)

where oy, oy, and o, are defined as before, and P(O | M) is the probability
that the model generated the sequence O. Again, the boxed terms constitute
the main difference to the corresponding HMM formula. Now, it holds that
&(cl) = >, &e(gcl, cl) where the sum runs over all ground instances of cl. This
leads to the following reestimation formula where we assume that the sets Sy of
reachable states are reused from the computations of the a- and g-values:

/* initialization of expected counts */
foreach cl € A do
&(el):=1 /* or 0 if not using simple pseudocounts */
/* compute expected counts */
foreach ¢t =0,1,...,T do
foreach b € S; do

foreach maximally specific cl =p: H & Be Asuch

that o, = mgu(b,B) exists do
6: foreach h = Hoywoy € Gx(How) such

that h c St+1 and Ot—1 unifies with UUbUh do
7 &(cl) := &(cl) + (ae(d) - p- Bi41 (1) /P(O | M))
|-(h | Hoy) - p(ox 1 | Dowon) |

11: /* estimate of new transition probabilities */
11: foreachclEp:H(ﬂBGAdo
12:  ~(B):=0
13: foreachcl' =p' : H <i Be Ado
14 (B) = (B) +&(cl)
12: p=£(cl)/1(B)
where equation (12) can be found in line 7. To estimate the selection probabili-
ties, recall that we used a naive Bayes scheme to define the selection probability
implicitly. Therefore, the estimated probability for a domain element d € D
for some domain D is the ratio between the number of times d is selected and
the number of times any d' € D is selected. The procedure for computing the
&-values can mainly be reused.

Altogether, our EM scheme is: While not converged, (1) estimate the abstract
transition probabilities and (2) the selection probabilities. Since our algorithm
is an instance of the EM algorithm, it increases the likelihood of the data with
every update, and according to [20], it is guaranteed to reach a stationary point.
All standard techniques to overcome limitations of EM algorithms are applicable.
The computational complexity of parameter reestimation (per iteration) is O(4-
k-a+d) where k is the number of sequences, « is the complexity of computing the
a-values (see above), and d is the sum over the sizes of the domains associated
to the predicates.




