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ABSTRACT

In vibration-based structural health monitoring damage in

structure is tried to detect from damage-sensitive features.

Because neither prior information nor data about expected

damage are normally available, damage detection problem

must be solved by using a novelty detection approach. Fea-

tures, which are sensitive to damage, are often sensitive to

environmental and operational variations. Therefore elim-

ination of these variations is essential for reliable damage

detection. At present many of the damage detection meth-

ods are linear, though it has been shown that many of the vi-

bration changes in structures are bilinear or nonlinear. This

paper proposes to use nonlinear factor analysis to detect

damage via elimination of external effects from damage fea-

tures. The effectiveness of the proposed method is demon-

strated by analyzing the experimental Z24 Bridge data with

a comparison to a linear method. It is shown that elimina-

tion of adverse effects and damage detection are feasible.

1. INTRODUCTION

The main premise in vibration-based structural health mon-

itoring (SHM) is that damage in structure can be identified

from damage-sensitive features, such as natural frequencies,

mode shapes or frequency transmissibilities. Damage detec-

tion problem must be solved by using a novelty detection

approach applied to damage features, because data from the

damaged structure is not usually available. In general, only

existence and sometimes location of a damage can be iden-

tified in an unsupervised learning mode. On the other hand,

identification of the type and the severity of the damage can

be done only in a supervised learning mode, where known

and identified reference data from a different damage levels

and scenarios are available.
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To detect novel events, like damages and deflections, the

machine learning system is first trained with the features

extracted in normal conditions. Anyhow, it is commonly

known that changing environmental and operational condi-

tions can affect vibration measurements, which makes nov-

elty detection approach substantially more difficult. Sohn

[1] has listed some of the most common ambient vibration

causes. Adverse variations in vibration measurements can

be for example due to temperature, humidity, boundary con-

ditions, mass loading or wind induced variation. Because

these ambient variations can have similar effects on the vi-

bration response as the damage itself, it is essential to sepa-

rate structural changes from environmental and operational

variation.

In recent years researchers have tried to tackle this prob-

lem in many ways. The ideal situation in SHM is to use

damage features, which are sensitive to damage and insen-

sitive to environmental and operational variations. For in-

stance, Manson et al. [2] used genetic algorithm to select the

best damage features in supervised fashion. Recently also

Toivola et al. [3] proposed a method to select the best dam-

age features by estimating probabilistic classifiers and their

detection performance in supervised fashion with promising

results.

In situations, where some of the underlying quantities

can be measured, it is possible to model their relationship

to the damage features. Peeters [4] studied autoregressive

models to compensate environmental changes by using par-

tially measured environmental variables. Ruotolo et al. [5]

and Vanlanduit et al. [6] used singular value decomposi-

tion, in which measurements from the different working

conditions were known. Basseville et al. [7] have stud-

ied parametric temperature-adjusted null space approach for

this problem. A different approach was taken by Worden et

al. [8]. They used outlier analysis as the novelty detector

with Mahalanobis distance as the novelty index.

The natural extension to the preceding approach is to

model the relationships of different factors behind the ob-



servations withoutmeasuring the underlying quantities. The

basic idea is that a chosen model can explain the observa-

tions in normal conditions, while damage and unseen data

from other environmental conditions are seen as outliers or

damage. Even simple linear models have shown to be able

to reduce the effects of environmental and operational vari-

ations. For example Kullaa [9, 10] studied factor analysis

and missing data analysis with successful results. Yan et

al. [11] used principal component analysis (PCA) for lin-

ear or weakly nonlinear cases. However, it has been shown

that many of the vibration changes in structures are bilinear

or nonlinear, especially in structures with moving parts and

joints. To take into account also the nonlinear behaviour of

the extracted damage features, nonlinear and piecewise lin-

ear latent variable models have been proposed with encour-

aging results. Sohn et al. [12] have proposed a nonlinear

autoassociative neural network based method, which relies

on autoregressive models. Kullaa [13] used piecewise linear

mixture of factor analyzers model, while Lämsä et al. [14]

studied nonlinear factor analysis (NFA) [15, 16] to elimi-

nate environmental and operational variation from vibration

measurements. Recently also Eciolaza et al. [17] have pro-

posed Gaussian process latent variable model (GPLVM) for

fault detection in a case of predefined steady-state stages

over different operating conditionswith encouraging results.

In the present work we demonstrate how NFA as a neu-

ral network based method can be used for separating struc-

tural changes from environmental and operational variation,

and thereafter also for damage detection. In Section 2 NFA

model is given and explained. The main idea is to learn the

latent structure of the given observation vectors by using

variational Bayesian (VB) learning methods [18] in unsu-

pervised learning mode. Section 3 introduces the damage

detection scheme and details to produce the damage indi-

cator. In Section 4 NFA method and the damage indicator

are applied for experimental data set. Feasibility and ef-

fectiveness are evaluated by comparing NFA to variational

Bayesian principal component analysis (VBPCA), which

can be seen as a linear version of NFA. Finally Section 5

concludes the paper.

2. NONLINEAR FACTOR ANALYSIS

In NFA [15, 16] the relationship among the observations

(e.g. natural frequencies) is described in terms of a few un-

derlying but unobservable factors. The main objective is

to eliminate the adverse effects of these underlying factors

from the observations resulting in new variables that can be

used in damage detection. Primarily NFA is based on an

assumption that the underlying factors are independent and

normally distributed. It is easy to see that in SHM the inde-

pendency assumption is not necessarily true for all factors,

e.g. temperature and humidity are correlated. Furthermore,

it is assumed that the damage features are generated through

nonlinear mapping according to

x (t) = f (s (t)) + n (t)

= B tanh (As (t) + a) + b + n (t) . (1)

Equation (1) defines the observations x(t) which are as-

sumed to be generated from hidden factors s(t) at time t.

The nonlinear mapping f from hidden factors to observa-

tions is modelled by a multi-layer perceptron (MLP) net-

work having two layers. The matrices A and B are the

weights of the first and second layer of the MLP network

and, a and b are the corresponding bias vectors. The noise

n(t) is assumed to be independent and normally distributed.

The nonlinear activation function in f is chosen to be hy-

perbolic tangent and it is applied to each component of the

input vector separately.

The observation vector x(t) contains both the damage

features y(t) and the measured environmental and opera-

tional variables z(t), that is, vector x(t) = [y(t)T z(t)T ]T .
This can be interpreted as some of the originally explana-

tory factors have become dependent variables. The main

premise is that once all the accessible data is used, the model

has eventually ability to explain normal variation of y(t) in
conditions given in vector z(t).

As a comparison method, VBPCA [19] is used. This

can be seen as a linear version of NFA, where Equation (1)

is replaced with x (t) = As(t) + a + n(t).

2.1. Variational Bayesian learning

Basically there are several possible factors and infinitely

many models which can explain the measurement data in

matrix X = [x(1) x(2) . . .x(T )]. Moreover, too complex

models results in overfitting, while simple models (e.g. a

linear model) results in underfitting. In either case some

characteristics of data are lost. The Bayesian solution to the

problem is that instead of choosing a single model, all mod-

els should be used and weighted according to how probable

they seem in light of measurement data. This information is

coded into posterior probabilities.

Since exact treatment of the posterior probability den-

sity function (pdf) of the unknown variables is impossible,

approximative methods have to be used. Basic idea in VB

learning [18] is that posterior pdf is approximated and thus it

is an approximative inference method. The approximation

is found by iteratively minimizing the misfit between the

true posterior pdf and its approximation. Denote the exact

posterior pdf by p (S, θ | X) and its parametric approxima-

tion by q (S, θ), where S are the hidden factors, X are the

observations (e.g. natural frequencies and temperature rat-

ings) and θ includes all the unknown parameters such as A,

B, a and b. Then the misfit can be measured by Kullback-

Leibler (KL) divergence [20] used as a cost function CKL.



It can be written

CKL =

∫

S

∫

θ

q (S, θ) log
q (S, θ)

p (S, θ | X)
dθdS. (2)

Because the KL divergence is sensitive to probability

mass rather than to probability density, overfitting can be

largely avoided. According to the Bayes rule, the posterior

pdf of the unknown variables S and θ is

p (S, θ | X) =
p (X | S, θ) p (S | θ) p (θ)

p (X)
. (3)

The factor p (X | S, θ) can be obtained directly from Equa-

tion (1), namely the distribution of the observed data vec-

tor x (t) is the same as the distribution of the noise vector

n (t), but with the mean vector f (s (t)). If the variance of
the ith component of n (t) is denoted by σ2

i , the distribu-

tion p (xi (t) | s (t) , θ) is normally distributed with mean

bT
i f (As(t) + a)+bi and variance σ2

i . Here xi (t) is the ith
component of x (t), bT

i denotes the ith row vector ofB, and

bi is the ith component of the bias vector b. Furthermore,

the noise components ni (t) are assumed to be independent,

and therefore

p (X | S, θ) =
∏

t,i

p (xi (t) | s (t) , θ) . (4)

The factors p (S | θ) and p (θ) are products of simple

normal distributions and they are obtained directly from the

prior. The normalizing constant p (X) in Equation (3) does

not depend on the unknown parameters θ or the hidden fac-

tors S and can be neglected.

It is also assumed that the hidden factors S are indepen-

dent of the other unknown parameters θ, so that the approx-

imation q (S, θ) can be decomposed into two parts as

q (S, θ) = q (S) q (θ) . (5)

A normally distributed density with a diagonal covariance

matrix is used for the parameters θ. The term q (θ) is a

product of independent distributions:

q (θ) =
∏

i

qi (θi) =
∏

i

N
(

θi; θ̄i, θ̃i

)

. (6)

The parameters of each normally distributed density compo-

nent qi (θi) are its mean θ̄i and variance θ̃i. The definition

of the pdf q (S) is similar. Because the approximate poste-

rior pdf q (S, θ) is a product of simple normally distributed

terms, the cost function can be simplified to expectations of

many simple terms.

Learning is done by finding θ̄i, θ̃i, s̄i(t), and s̃i(t) that
minimize the cost for the training data (see [15], [16], [18]

for details). After the model has been learned, it can be ap-

plied to new data by using fixed θ̄i and θ̃i, and infering s̄i(t)
and s̃i(t) that minimize the cost for the test data. Because

in many SHM applications computations needs to be done

preferably online, we try to keep NFA model computation-

ally simple and use early stopping of the learning.

3. DAMAGE DETECTION

Damage detection is based on reconstructing the observa-

tions by first infering the latent factors s(t) from observa-

tions x(t) (as explained above) and then reconstructing the

observations from the latent factors. The residual error is

the difference between the reconstructed observation vector

x̂(t) = Eq {f(s(t))} and the original observation x(t).

Since we are not interested in modelling the already

measured environmental and operational variables z(t), but
only in their influence to damage features y(t) through the
latent factors, only the residual errors of the damage fea-

ture vectors are used as the novelty indicators (recall that

x(t) = [y(t)T z(t)T ]T ). The remaining residual error vec-

tor is denoted by u(t) = ŷ(t) − y(t). The influence of

damage or unseen data from other environmental conditions

can be seen in a residual term. Anyhow, it is not possible to

distinguish if damage has actually occured or if unseen en-

vironmental conditions have arisen after the learning phase.

If statistical process control charts are used for damage

detection, usually the average residual error from subgroups

of size four to six data points are charted [21]. Reason for

this is to make observations within each group more sim-

ilar than observations between groups [22]. For the same

purpose we will use moving average. The n point moving

average for the residual error vectors is defined as ū(t) =
1

n

∑n

j=1
u (t − j + 1). The final damage indicator d(t) to

be used for damage detection is the squared norm of the

vector ū(t), that is, d(t) =
∑

i ūi(t)
2. A pleasant advan-

tage is that the resulting damage indicator d(t) is already

one-dimensional so dimensionality reduction is not needed

like in [9, 10, 13, 14].

4. EXPERIMENTS

The main objectives of the experiments were to show the

effectiveness of the NFA method in special case of novelty

detection, namely damage detection, with a real-world data

and compare it to the linear VBPCA method. Additional

objective was to show that the NFA method partially elimi-

nates the adverse effects of the environmental variability by

learning the latent structure of the damage features.

The Z24 Bridge was demolished at the end of 1998. Be-

fore complete demolition the bridge was subjected to moni-

toring and progressive damage tests betweenNovember 11th

1997 and September 11th 1998. The accelerations of the

bridge were measured and the environmental monitoring

system was used to capture environmental parameters such

as deck temperatures in different positions and humidity. In

the end of the monitoring period several damage scenarios

were applied to the bridge. These original raw data mea-

surements were used in further analyses, where the natu-

ral frequencies from the healthy and the damaged bridge
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Fig. 1. The identified damage features and mean of the

standardized bridge deck temperature measurements (low-

est curve) for the Z24 Bridge.

were extracted and identified by using the stochastic sub-

space identification method [4].

Altogether the feature datasetX contained the four low-

est identified natural frequencies as y(t) and mean of the

standardized bridge deck temperature measurements from

21 different points as a one-dimensional vector z(t). The

dimensions of the feature dataset were 5×3932. The whole

feature dataset are presented in Figure 1, where the gray line

indicates the time instant after installation of the settlement

system used for damaging the bridge. Because the bridge

was monitored for quite a long time, some variation of the

identified natural frequencies can be seen. For example the

bridge deck stiffening resulting the natural frequencies to

increase during the cold periods is obvious. Moreover, the

temperature effect results in quite high variation to the nat-

ural frequencies in comparison to the damage in the final

stage of the monitoring period. Because the bridge was

damaged gradually, there are no clear boundaries between

damaged and undamaged cases.

The NFA and the VBPCA models were trained by us-

ing measurements from day 58 to 230 as training data, i.e.

5×2000 data points. Note that all the training data were

from the undamaged bridge. To preserve simplicity, one

factor models were used. For same reason the number of

neurons for the NFA model was assumed to be equal to

the dimensionality of the measurement matrix X, i.e. five.

For the training phase of the NFA only 500 iterations were

taken. Note that the learning did not converged within the

taken iterations. Number of iterations for the learning phase

of the VBPCA was 100.

The test data were all the available data, i.e. 5×3932

data points, since we want to generate the damage indicator

for each data point. An additional 100 iterations were taken

for the testing phase for the NFA, whereas for the VBPCA

additional iterations are not needed.

Original standardized natural frequencies y(t) and their
reconstructions ŷ(t) are presented in Figure 2. It can be

seen that the reconstructions fit quite well with the training

data, and even with the unseen data from the undamaged
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Fig. 4. The ROC curve for the NFA and the VBPCA as a

function of the threshold.

bridge. It is clearly visible that the reconstructions differ

from the originals with the data from the damaged bridge.

Although accuracy of the VBPCA reconstructions seem to

be quite good, some clear reconstruction errors are visible.

The VBPCA reconstructions havemuchmore variation than

the NFA reconstructions. One can assume that this is be-

cause of the linear behaviour of the VBPCA method.

Thereafter the damage indicators for all the data points

for the NFA and the VBPCA models were formed by first

averaging the reconstructions ŷ(t) over five samples and

then taking the squared norm. The damage indicators are

presented in Figure 3. To illustrate the effect of taking mov-

ing average, also the squared norm for the original residual

error vectors (without averaging) are presented. Again, gray

lines indicate the instant from which onward the bridge is

damaged. It is clear that moving avarage tries to smooth the

peaks of the damage indicator. It can be seen that with the

NFA model damage can be almost correctly detected when

the averaged damage indicator is used. There are only few

false alerts even in the part of the data that was not used for

training. Moreover, the average level of the indicator value

for the VBPCA model is lower than with the NFA model,

but damage detection is still difficult or impossible. It is

very likely that the results for the VBPCA model would be

better, if more factors were used.

The results of the damage detection are summarized in

Figure 4 as receiver operating characteristic (ROC) curves.

The ROC curves were calculated as a function of the thresh-

old limit taken from the training data. Obviously the maxi-

mum and the minimum of the threshold interval are simply

the maximum and the minimum of the damaged indicator

value from the training data. The whole interval was de-

vided into 1000 segments. From the Figure 4 it is clearly

visible that the NFA outperforms the VBPCA in damage

detection.

5. CONCLUSIONS

The NFA method was first recapitulated and thereafter ap-

plied to the experimental vibration data of the Z24 Bridge.
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Fig. 2. Original standardized natural frequencies (black) and left: their NFA reconstructions (gray), right: their VBPCA

reconstructions (gray).

It was shown that damage detection via elimination of envi-

ronmental and operational effects from the damage features

is feasible. Comparison to the VBPCA method addresses

the usability of the NFA method in SHM applications, since

it can take nonlinearities into account. The NFA model

overcomes many of the problems related to overfitting, and

with the early stopping of the learning computational bur-

den is tolerable providing still good results.

Future research encompass utilization of VB learning

methods more efficiently in different SHM applications.
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Güemes, Ed. 2006, pp. 683–690, Onera DEStech Pub-

lications.

[3] Janne Toivola and Jaakko Hollmén, “Feature extrac-

tion and selection from vibration measurements for

structural health monitoring,” in Advances in Intel-

ligent Data Analysis VIII, Niall Adams, Ed. 2009, pp.

213–224, Springer-Verlag.

[4] Bart Peeters, System identification and damage detec-

tion in civil engineering, Ph.D. thesis, Department of

Civil Engineering, K.U. Leuven, Belgium, 2000.

[5] Romualdo Ruotolo and Cecilia Surace, “Damage de-

tection using singular value decomposition,” in Proc.

of DAMAS 97: Structural Damage Assessment Using

Advanced Signal Processing, J.M. Dulieu-Smith, Ed.

1997, pp. 87–96, Sheffield Academic Press.

[6] Steve Vanlanduit, Eli Parloo, Bart Cauberghe, Patrick

Guillaume, and Peter Verboven, “A robust singu-

lar value decomposition for damage detection under

changing operating conditions and structural uncer-

tainties,” Journal of Sound and Vibration, vol. 284,

pp. 1033–1050, 2005.
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Fig. 3. Left: the damage indicator d(t) by NFA, right: the damage indicator d(t) by VBPCA. Above: the damage indicator
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