
Higher Order Statistics in Play-out Analysis

Tapani Raiko
⋆Adaptive Informatics Research Centre

Helsinki University of Technology
tapani.raiko@tkk.fi

Abstract

Playing out the game from the current state to the end many times randomly, provides statistics that
can be used for selecting the best move. This play-out analysis has proved to work well in games
such as Backgammon, Bridge, and Go. This paper introduces a method that selects relevant patterns
of moves to collect higher order statistics. This can be usedto improve the quality of the play outs.
Play-out analysis avoids the horizon effect of regular game-tree search. The proposed method should
be especially effective when the game can be decomposed intoa number of subgames. Game of Y is a
two-player board game played on a graph with a task of connecting three edges of the graph together.
Preliminary experiments on Y did not yet show significant improvement over the first-order approach,
but a door has been opened for further improvement. The game of Y might prove to be a good testbed
for machine learning.

1 Introduction

Historically, chess has been thought to be a good test-
bed for artificial intelligence. In the last 10 years,
though, computers have risen above human level.
This is largely due to fast computers being able to
evaluate a huge number of possibilities. One can ar-
gue, whether these programs show much intelligence
after all.

There are still games that are similar to chess in
some sence but have proved to be difficult for com-
puter players. These games include Go, Hex, Y, and
Havannah. The games have some common factors:
First, the number of available moves at a time is large,
which prevents the use of brute-force search to ex-
plore all the possibilities as the search tree grows ex-
ponentially with respect to depth. Second, there are
lots of forcing moves which boost the so called hori-
zon effect. If the program sees a limited number of
moves ahead (search depth), there is often a way to
postpone the interesting events beyound that horizon.

This paper1 describes a method that avoids these
two pitfalls. The search is performed by playing out
games from the current situation to the end several
times randomly. This is known as play-out analysis.
The number of explored possibilities is constant with
respect to search depth. Also, as the games are played
out all the way to the end, there is no need to eval-
uate a game in progress, thus avoiding the horizon
effect. Recently, Gelly et al. (2006) made a noticable

1A longer version of this paper is also available (Raiko, 2006).

improvement in computer Go based on play-out anal-
ysis, being the best program on 9 by 9 and 13 by 13
miniature boards.

1.1 Game of Y

The game of Y is a two-player boardgame with no
chance and a relative to the more popular Hex. Y
is played on a triangular graph in Figure 1. Start-
ing from an empty board, two players alternately fill
empty nodes with pieces of their own colour. The
player who creates an unbroken chain of pieces that
connect all three edges, wins. Corners belong to both
edges. The board is slightly bent to balance the game
by reducing the importance of the center.

The fact that Y cannot end in a draw on a straight
board can be proven using so called micro reductions
described by van Rijswijck (2002). Sizen board is
reduced to a sizen− 1 board where each node on the
reduced board gets the majority colour of the three
nearest nodes on the original board. An example is
given in Figure 2. It turns out that if a chain touches
a side of the board, it does so also on the reduced
board. A winning chain will thus be a winning chain
on all the smaller boards including the trivial board of
size1. The proof for the bent board is given by Raiko
(2006).

1.2 Earlier Work

Abramson (1990) proposed the expected-outcome



Figure 1: The game of Y is usually played on the bent
board. Two players alternately fill empty nodes with
pieces of their own colour. The player who creates an
unbroken chain of pieces that connect all three edges,
wins.

Figure 2: A small filled Y board is shown to be won
by black by micro reductions.

heuristic for game state evaluation. The value of a
game state is the expected outcome of the game given
random play from that on. The value can be used to
evaluate leaf nodes in a game-tree that has the cur-
rent state as the root node and possible moves as chil-
dren of the node. The expected-outcome heuristic ap-
plies to a large number of games with or without ran-
domness or hidden information and with one or more
players. It is best applicable to games that always
end after a reasonable number of moves, such as the
games of Hex and Y. Expected outcome heuristic is
also known as roll-out analysis or play-out analysis.

In many planning problems and games, the order
of moves or actions is not always important. This
applies especially in games of Hex and Y where the
order does not have any role as long as the same
moves are made. In play-out analysis, unimportance
of the order means that the all-moves-as-first heuristic

(Brügmann, 1993) works well: After a game has been
played out, not only the evaluation of the first move is
changed, but all the subsequent moves are handled as
they were the first move. Thus, in the games of Hex
and Y, instead of playing the game out, one can just
fill the empty nodes by pieces of random colour.

In Hex and Y, all-moves-as-first heuristic can be
done by filling each node randomly. The random fill-
ing heuristic has a direct analogy to communication
reliability in graph theory. Two-terminal network re-
liablity (Brecht and Colbourn, 1988), or probabilistic
connectedness, is the probability that two nodes in
a network can communicate. Edges are assumed to
have statistically independent probabilities of failing
but nodes are assumed reliable.

All-moves-as-first heuristic is very good in reduc-
ing the number of random samples compared to ba-
sic expected outcome, but unfortunately it limits the
lookahead into just one move in some sense. Bouzy
(2004) proposed a hybrid between expected-outcome
and all-moves-as-first heuristics. A shallow game tree
is made where each leaf is evaluated using the all-
moves-as-first heuristic. Gelly et al. (2006) used a
tree which grows by one node with every play-out.
Leaves are evaluated by a single semi-random play-
out.

Müller (1999) proposed decomposition search with
an application to Go endgames. The idea is that the
game can be decomposed into a sum of subgames
which are somewhat independent of each other. Be-
cause the subgames are small, the full game tree can
be constructed for each of them, including local pass
moves. Then, many of the moves can be pruned for
instance because they are dominated by other moves
in the same subgame. The global search is thus sped
up a lot, allowing perfect solution of end-games of
dozens of moves. A similar approach is suggested to
be used heuristically for middle-game where the divi-
sion into subgames is not yet strict.

Already Brügmann (1993) suggested an extension
of the all-moves-as-first heuristic into an higher order
heuristic, where not just the value of each move is
evaluated but the value of making a move after some
otherN moves have been made. Time was not ripe
for higher order considerations for computational re-
sources. If there areM moves available, one would
have to collect enough statistics forMN combina-
tions of moves. Now, fourteen years later, it would
still be a waste of resources to try to uniformly esti-
mate all combinations.

Inductive logic programming (ILP) (Muggleton
and De Raedt, 1994) involves finding patterns of in-
creasing size in data. A pattern in this case is a set of



moves and the data are the random games. One can
estimate the value of a move given a pattern. New
patterns are created by refinement operators, in this
case by adding a move to an existing pattern. By us-
ing ILP, we can make the higher-order heuristic se-
lective, that is, we do not have to estimate allMN

combinations of moves but onlyMP whereP is the
number of patterns.

2 Higher order statistics in play-
out analysis

Black and white player are playing a game with alter-
nate moves. At some states of the game, a play-out
analysis means thatk hypothetical continuationsc of
the game are played out to the end and statistics from
these play outs are used to determine the next move.
The play outs might be sampled by drawing moves
from a uniform distribution over all legal moves, or
by other means. To sample a semi-random move, one
can add noise from a random number generator to a
heuristic evaluation of each move and select the best
one.

The expected-outcome heuristiche evaluates the
movem0 as

he(m0) =

∑k

i=1
χ(ci is a win)χ(m0 first move ofci)
∑k

i=1
χ(m0 first move ofci)

,

whereχ is the indicator function (χ(true) = 1 and
χ(false) = 0). The best move is thus the one that
lead to most wins in the play outsc.

If the order of moves does not matter too much,
one can adjust the opinion of all moves made in the
play-out, not just the first one. This leads to the all-
moves-as-first heuristicha:

ha(m0) =

∑k

i=1
χ(ci is a win)χ(m0 is made inci)
∑k

i=1
χ(m0 is made inci)

.

The best move is the one that lead to wins when used
at any point in the continuation. Often, play out is
done using a semi-random move selection with the
heuristicha itself.

Higher order heuristichh evaluates the movem0

after movesm1, m2, . . . , ml (and possibly others) are
made in any order.

hh(m0 | {mj}
l
j=1

) =
∑k

i=1
χ(ci is a win)χ(m0 after{mj}

l
j=1

in ci)
∑k

i=1
χ(m0 after{mj}l

j=1
in ci)

.

The sets of moves{mj}
l
j=1

are called patterns. Many
different patterns apply in a future state when sam-
pling a play out, and one must decide how to com-
bine evaluations corresponding to different patterns.
Higher order heuristic is useful only if it is applied in
the semi-random move selection of the playout.

The UCT approach used by Gelly et al. (2006) can
be seen as a higher order heuristic that takes the or-
der of moves into account. Also, their pattern applies
only if the included moves are the only ones made.
This specificity simplifies things, since only one pat-
tern may apply at a time, but generalisation to other
similar board states cannot be made.

2.1 Combining the evaluations by differ-
ent patterns

Many patterns can apply to the same state, that is,
the moves of more than one pattern have been made.
It would be possible to construct complicated rules
for combining their evaluations; e.g. the average of
the evaluations of applying patterns weighted with a
function of the pattern size. One should note that play
out is the most time intensive part of the algorithm
and combining happens at every play-out move so it
has to be fast. The proposed combining rule is:

• The maximum of evaluations given by each pat-
tern that applies but is not a subpattern of an-
other applying pattern.

The motivation is that the more specific pattern gives
more accurate information about a move than its sub-
pattern. Using the maximum helps in computational
complexity. One can take the maximum first within
a pattern and then over different patterns. The eval-
uations of a pattern can be stored in a heap to make
the time complexity logarithmic with respect to the
number of available moves.

2.2 Selection of patterns

An algorithm based on inductive logic programming
is used to select patterns. The process starts with just
the empty pattern (for whichl = 0). Repeatedly, after
a certain number of play outs, new patterns are added.
An existing pattern generates candidates where each
possiblem0 is added to the pattern, one at a time. The
heuristic criterion for accepting candidates is given in
(Raiko, 2006). When new patterns are added, statis-
tics are copied from its parent with a small weight.
Also, the statistics of the first play-outs are slowly
forgotten by exponential decay.

Baum and Smith (1997) propose a well-founded
measure of relevance of expanding a leaf in a search



tree when evaluations are probabilistic. Gelly et al.
(2006) uses the UCT (Upper bound Confidence for
Tree) algorithm for choosing which leaf to expand.
Either of these two measures could be applied here,
which would be the most important direction for fu-
ture work.

2.3 Final move selection

To select the best move after play-out analysis is
done, it is possible to simply pick the movem0 with
the highest heuristic value:

m∗

0
= arg max

m0

hh(m0 | {}). (1)

This is the only option with first-order heuristics, but
higher order heuristics allow for more. One can make
a min-max tree search in the tree formed by known
patterns. For instance, using the second-order heuris-
tics, one selects the movem1, for which the best an-
swerm0 by the opponent is the worst:

m∗

1
= argmin

m1

max
m0

hh(m0 | {m1}). (2)

A summary of the algorithm and more details are
given in (Raiko, 2006).

3 Experiments

The proposed method was applied to the game Y. An
implementation is available at2. A tournament be-
tween 8 different computer players was held such that
each player met every opponent 10 times as black and
10 times as white, 640 games in total. The first player
A made just random moves chosen uniformly from
all the available moves. Three playersB, C, andD

used the all-moves-as-first heuristic with 100, 1000,
and 10000 fully random play-outs per move, accord-
ingly. PlayersE andF used second-order heuristics
that is, considering all patterns where a single move
is made by the player in turn. The final two playersG

andH used selective patterns, whose number varied
from 0 to 99 and size from 0 to 7. The playersE–H

used the second-order move selection in Equation (2)
and the number of playouts was 1000 forE andG

and 10000 forF andH .
Black won 53% of the matches because of first

player’s advantage. PlayerA lost all games againt
other players. PlayerB was also clearly worse than
the others. The differences between the playersC–H

were not clear. Details are given in (Raiko, 2006).

2http://www.cis.hut.fi/praiko/hex/

References
Bruce Abramson. Expected-outcome: A general model of

static evaluation.IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(2):182–193, 1990.

Eric B. Baum and Warren D. Smith. A Bayesian approach
to relevance in game playing.Artificial Intelligence, 97
(1–2):195–242, 1997.

Bruno Bouzy. Associating shallow and selective global tree
search with monte carlo for 9x9 go. InProceedings of
the 4th Computer and Games Conference (CG04), pages
67–80, Ramat-Gan, Israel, 2004.

Timothy B. Brecht and Charles J. Colbourn. Lower bounds
on two-terminal network reliability. DAMATH: Dis-
crete Applied Mathematics and Combinatorial Oper-
ations Research and Computer Science, 21:185–198,
1988.

Bernd Brügmann. Monte Carlo Go, 1993. Available at
http://www.cgl.ucsf.edu/go/Programs/.

Sylvain Gelly, Yizao Wang, Rémi Munos, and Olivier Tey-
taud. Modification of UCT with patterns in Monte-
Carlo Go. Technical Report RR-6062, 2006.http:
//hal.inria.fr/inria-00117266.

Stephen Muggleton and Luc De Raedt. Inductive logic pro-
gramming: Theory and methods.Journal of Logic Pro-
gramming, 19/20:629–679, 1994.

Martin Müller. Decomposition search: A combinatorial
games approach to game tree search, with applications
to solving Go endgames. InProceedings of the Interna-
tional Joined Conference on Articial Intelligence (IJCAI
1999), volume 1, pages 578–583, 1999.

Tapani Raiko. Higher order statistics in play-out analysis.
In T. Honkela, T. Raiko, J. Kortela, and H. Valpola, edi-
tors,Proceedings of the Ninth Scandinavian Conference
on Artificial Intelligence (SCAI 2006), Espoo, Finland,
2006.

Jack van Rijswijck. Search and evaluation in Hex. Tech-
nical report, Department of Computing Science, Univer-
sity of Alberta, 2002.


