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Problems of Traditional Learning Gradient

Sensitivity to Data Representation

e Dense data sets are more difficult to learn.

e [raining BMs is not invariant to representation.

Sensitivity to Learning Parameters
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e Learning parameters greatly affect learning:

— Weight scale A, learning rate 1. momentum, weight decay, CDk

Enhanced Gradient

Bit-flipping Transformation

e Update: Transform, update, and transform back.
o 2" well-founded ML updates exist.
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Enhanced Gradient
o Weighted sum of all updates:
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e Weight for each gradient prefers sparse representation:
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Improvements by Enhanced Gradient

Robustness to Learning Parameters
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e Inhanced Gradient + Adaptive Learning Rate

e Reasonable filters regardless of initializations and learning rates.
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Experimental Result: Caltech 101 Silhouettes

Log-probability Accuracy (%)
Hidden neurons| PT Ch (M) PT CD (M)

500 -127.40 -280.91 -125| 71.56 068.48 65.8
1000 -129.69 -190.80 72.61 70.39
2000 -131.19 -166.72 (1.82 71.39

e 'nhanced gradient works simply “out of the box” .

(M) Marlin et al. 2010




