Next: About this document ...
Up: State Inference in Variational
Previous: Acknowledgements
- 1
-
H. Valpola and J. Karhunen, ``An unsupervised ensemble learning method for
nonlinear dynamic state-space models,'' Neural Computation, vol. 14,
no. 11, pp. 2647-2692, 2002.
- 2
-
A. Cichocki, L. Zhang, S. Choi, and S.-I. Amari, ``Nonlinear dynamic
independent component analysis using state-space and neural network models,''
in Proc. of the 1st Int. Workshop on Independent Component Analysis
and Signal Separation (ICA'99), (Aussois, France, January 11-15),
pp. 99-104, 1999.
- 3
-
B. Anderson and J. Moore, Optimal Filtering.
Englewood Cliffs, NJ: Prentice-Hall, 1979.
- 4
-
V. Koivunen, M. Enescu, and E. Oja, ``Adaptive algorithm for blind separation
from noisy time-varying mixtures,'' Neural Computation, vol. 13,
pp. 2339-2357, 2001.
- 5
-
S. Julier and J. Uhlmann, ``A new extension of the Kalman filter to nonlinear
systems,'' in Int. Symp. Aerospace/Defense Sensing, Simul. and
Controls, 1997.
- 6
-
E. A. Wan and R. van der Merwe, ``The unscented Kalman filter,'' in Kalman Filtering and Neural Networks (S. Haykin, ed.), pp. 221-280, New
York: Wiley, 2001.
- 7
-
A. Honkela and H. Valpola, ``Unsupervised variational Bayesian learning of
nonlinear models,'' in Advances in Neural Information Processing Systems
17 (L. Saul, Y. Weiss, and L. Bottou, eds.), pp. 593-600, Cambridge, MA,
USA: MIT Press, 2005.
- 8
-
M. Psiaki, ``Backward-smoothing extended Kalman filter,'' Journal of
Guidance, Control, and Dynamics, vol. 28, Sep-Oct 2005.
- 9
-
A. Doucet, N. de Freitas, and N. J. Gordon, Sequential Monte Carlo
Methods in Practice.
Springer Verlag, 2001.
- 10
-
R. Everson and S. Roberts, ``Particle filters for non-stationary ICA,'' in
Advances in Independent Component Analysis (M. Girolami, ed.),
pp. 23-41, Springer-Verlag, 2000.
- 11
-
R. Fletcher and C. M. Reeves, ``Function minimization by conjugate gradients,''
The Computer Journal, vol. 7, pp. 149-154, 1964.
- 12
-
T. Raiko and M. Tornio, ``Learning nonlinear state-space models for control,''
in Proc. Int. Joint Conf. on Neural Networks (IJCNN'05), (Montreal,
Canada), pp. 815-820, 2005.
Tapani Raiko
2005-12-08