next up previous
Next: About this document ... Up: State Inference in Variational Previous: Acknowledgements

Bibliography

1
H. Valpola and J. Karhunen, ``An unsupervised ensemble learning method for nonlinear dynamic state-space models,'' Neural Computation, vol. 14, no. 11, pp. 2647-2692, 2002.

2
A. Cichocki, L. Zhang, S. Choi, and S.-I. Amari, ``Nonlinear dynamic independent component analysis using state-space and neural network models,'' in Proc. of the 1st Int. Workshop on Independent Component Analysis and Signal Separation (ICA'99), (Aussois, France, January 11-15), pp. 99-104, 1999.

3
B. Anderson and J. Moore, Optimal Filtering.
Englewood Cliffs, NJ: Prentice-Hall, 1979.

4
V. Koivunen, M. Enescu, and E. Oja, ``Adaptive algorithm for blind separation from noisy time-varying mixtures,'' Neural Computation, vol. 13, pp. 2339-2357, 2001.

5
S. Julier and J. Uhlmann, ``A new extension of the Kalman filter to nonlinear systems,'' in Int. Symp. Aerospace/Defense Sensing, Simul. and Controls, 1997.

6
E. A. Wan and R. van der Merwe, ``The unscented Kalman filter,'' in Kalman Filtering and Neural Networks (S. Haykin, ed.), pp. 221-280, New York: Wiley, 2001.

7
A. Honkela and H. Valpola, ``Unsupervised variational Bayesian learning of nonlinear models,'' in Advances in Neural Information Processing Systems 17 (L. Saul, Y. Weiss, and L. Bottou, eds.), pp. 593-600, Cambridge, MA, USA: MIT Press, 2005.

8
M. Psiaki, ``Backward-smoothing extended Kalman filter,'' Journal of Guidance, Control, and Dynamics, vol. 28, Sep-Oct 2005.

9
A. Doucet, N. de Freitas, and N. J. Gordon, Sequential Monte Carlo Methods in Practice.
Springer Verlag, 2001.

10
R. Everson and S. Roberts, ``Particle filters for non-stationary ICA,'' in Advances in Independent Component Analysis (M. Girolami, ed.), pp. 23-41, Springer-Verlag, 2000.

11
R. Fletcher and C. M. Reeves, ``Function minimization by conjugate gradients,'' The Computer Journal, vol. 7, pp. 149-154, 1964.

12
T. Raiko and M. Tornio, ``Learning nonlinear state-space models for control,'' in Proc. Int. Joint Conf. on Neural Networks (IJCNN'05), (Montreal, Canada), pp. 815-820, 2005.



Tapani Raiko 2005-12-08