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Abstract—We study a novel type of a semi-supervised anomaly
detection problem where the anomalies occur collectively among
a background of normal data. Such problem arises in experimen-
tal high energy physics when one is trying to discover deviations
from known Standard Model physics. We solve the problem by
first fitting a mixture of Gaussians to a labeled background
sample. We then fit a mixture of this background model and
a number of additional Gaussians to an unlabeled sample
containing both background and anomalies. This way we not only
detect but also perform pattern recognition of anomalies. Such
mixture model allows us to perform classification of anomalies
vs. background, estimate the proportion of anomalies in the
sample and study the statistical significance of the anomalous
contribution. We first verify the performance of the method using
artificial data and then demonstrate its real-life applicability
using a data set related to the search of the Higgs boson at
the Tevatron collider.

Index Terms—Anomaly detection, semi-supervised learning,
EM algorithm, Gaussian mixture models, high energy physics

I. INTRODUCTION

Anomaly detection (outlier detection, novelty detection)
refers to the problem of detecting patterns in the data that
deviate from the expected, normal behavior so much that
they arouse suspicion of having been generated by a different
mechanism [1]–[4]. Such methods have applications in, e.g.,
credit card fraud detection [5], network intrusion detection [6]
and aircraft engine fault detection [7].

Since in many application domains it is impractical or even
impossible to obtain a representative sample of anomalous
data, most work on anomaly detection is focused on the
unsupervised problem setting where one does not assume the
existence of a labeled sample of training data. Anomalies
can be detected within an unlabeled sample by making the
implicit assumption that they are produced by rare, infrequent
processes.

One can introduce a lot more structure to the problem
by assuming the existence of a labeled sample of normal
data patterns in which case the problem translates into a
semi-supervised anomaly detection problem. In the anomaly
detection literature, such training sample is usually called the
normal data. However, in order to conform to the terminology
used in our application domain and to avoid confusion with a
sample generated by a Gaussian distribution, we will be using
throughout this paper the term background sample to denote
a labeled sample of normal observations.

Most semi-supervised anomaly detection techniques use the
background sample to produce a model for the normal behav-
ior. In what follows, we call this model the background model.
These methods then look at individual observations of an
unlabeled test sample one-by-one and classify an observation
as an anomaly if it seems unlikely to have been produced by
the process corresponding to the background model. One could
for example produce a density estimate for the background
data and then classify observations as anomalies should they
fall in the low probability density regions of the data space
[3].

A common limitation of existing anomaly detection tech-
niques is that they are unable to detect anomalies which lie
within the domain of the background data. This is because a
single such observation looks as if it could have been produced
by the background process. This paper overcomes such a
limitation in the semi-supervised problem setting in situations
where anomalies occur as a cluster among the background
data. We call such observations collective anomalies in accor-
dance with the definition given by Chandola et al. [2]: “The
individual data instances in a collective anomaly may not be
anomalies by themselves, but their occurrence together as a
collection is anomalous.”

Existing work on collective anomaly detection requires
auxiliary relationships to connect the observations, such as
sequential, spatial or graph information [2]. However, to the
best of our knowledge, detection of collective anomalies where
collections are characterized by distance in the data space has
not been studied before. This is perhaps because of the fact that
in the unsupervised setting it does not make sense to talk about
collections in the data space. Indeed, in the absence of labeled
observations of normal behavior, the more the observations
cluster together, the less anomalous they become. But in the
semi-supervised setting, a cluster or a “bump” of data which
is not seen in the background sample is certainly anomalous
even if it lay among the background.

Our considerations are motivated by a real data analysis
problem arising in experimental high energy physics where
one is trying to look for signs of new physical phenomena not
described by the Standard Model of particle physics. Tradition-
ally, such analyses are conducted in a model-dependent mode
[8], where one trains a supervised classifier to search for phe-
nomena expected to be seen under some hypothetical model
of new physics, such as supersymmetry, extra dimensions, etc.



However, such analyses could completely miss deviations not
described by any of the proposed new theories. Because of
this, it would be important to complement such searches with
model-independent techniques which are sensitive to various
types of deviations – or anomalies – with respect to known
physics [9]. Although the motivation for the use of such
techniques is clear, they have been employed very little in
practice because of the apparent lack of existing computational
techniques for solving such problems. The work presented in
this paper aims at providing one such technique to be used in
future model-independent searches of new physics.

In addition to requiring a labeled sample of background
observations, our algorithm works under the assumption that:
(1) the anomalies occur collectively as an excess over the
distribution of the background, (2) there is a large enough
number of anomalies in order to enable collective inferences,
(3) the dimensionality of the data is or can be reduced to be
small enough to allow density estimation with mixture models
and (4) the background has a stationary distribution.

Mixture models have been studied in the context of anomaly
detection in the earlier literature, but not in our semi-
supervised problem setting. For example, Eskin [10] employs
a similar mixture model for unsupervised anomaly detection
under the assumption that anomalies can be modeled using a
uniform distribution with a small mixture proportion, while
Lauer [11] fits a Gaussian mixture model to an unlabeled
data set by setting the anomalous component of the model
to consist of a widespread Gaussian. Ritter and Gallegos [12]
identify outliers based on a mixture model in the context of
a chromosome classification problem. The common limitation
in all of these algorithms is that they are unable to identify
anomalies within the domain of the background data, which
is an essential requirement in our application domain.

This paper is organized as follows. In Section II, we
introduce a model for semi-supervised anomaly detection,
which we call the fixed-background model. We then discuss
the training of the model using the expectation-maximization
algorithm in Section III. We verify the performance of the
method using artificial data in Section IV. In particular, we
show that the algorithm is able to achieve nearly optimal
classification performance and gives accurate estimates for the
proportion of anomalies given that there is a large enough
number of them in the sample. We then demonstrate the real-
life applicability of the method in model-independent searches
of new physics by applying it to a data sample related to the
search of the Higgs boson at the Tevatron collider. We discuss
the proposed framework in Section VI before concluding in
Section VII.

II. FIXED-BACKGROUND MODEL FOR ANOMALY
DETECTION

To detect collective anomalies among the background, we
proceed in two steps. First, we use parametric density estima-
tion to learn a background model, pB(x), using the labeled
background data. The next step is to model the unlabeled data
with a fixed-background model, pFB(x), which is a mixture of

the background model and a new anomaly model pA(x):

pFB(x) = (1− λ)pB(x) + λpA(x). (1)

The fixed-background model is fitted to the unlabeled data by
maximizing its likelihood under the constraint of keeping the
background model pB(x) fixed. Hence, the anomaly model,
pA(x), captures any unexpected deviations from the distribu-
tion of the background.

As a simple illustration of the fixed-background model,
Figure 1(a) shows a univariate data set of background data
generated from a Gaussian distribution and a maximum like-
lihood Gaussian density pB(x) estimated using the data set.
Figure 1(b) shows a very simple anomalous pattern that can be
modeled with a single additional univariate Gaussian. Given
a sample contaminated with these anomalies, our goal is to
find an optimal combination of the parameters of the anomaly
model (µA, σA) and the mixing coefficient λ in Eq. (1). The
resulting model pFB(x) is shown with a black line and the
anomaly model pA(x) with a gray line in Figure 1(b).

The fixed-background model enables a variety of data
analysis tasks:

1) Classification: Observations can be classified as anoma-
lies using the posterior probability as a discriminant
function

p(anomaly|x) = λpA(x)

(1− λ)pB(x) + λpA(x)
≡ D(x).

(2)
The decision rule is then

D(x) =

{
≥ T ⇒ x is an anomaly,
< T ⇒ x is background, (3)

where the constant T ∈ [0, 1] is a threshold which is
used to control the sensitivity of the classifier.

2) Proportion of anomalies: The mixing proportion of the
anomaly model λ directly gives us an estimate for the
proportion of anomalies in the unlabeled sample.

3) Significance of the anomaly: The statistical significance
of the anomaly model can be evaluated by performing
a statistical test for the background-only null hypothesis
λ = 0. This enables us to discriminate between statis-
tical fluctuations of the background and real collective
anomalies. The test is performed using the likelihood
ratio test statistic [13], [14]

Λ =
supθ∈Θ0

L(θ)
supθ∈Θ L(θ)

, (4)

where Θ0 refers to the set of parameters allowed by
the null hypothesis and L(θ) is the likelihood of pa-
rameters θ. In our case, the nominator is simply the
likelihood of the background model and the denominator
the likelihood of the fixed-background model. Following
Wang et al. [15], we obtain the distribution of the test
statistic under the null hypothesis using nonparametric
bootstrapping [16]. That is, we sample with replacement
observations from the background data, fit pFB(x) to this
new sample and compute the corresponding value of Λ.
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Fig. 1. (a) A histogram of background data from a univariate Gaussian distribution and an estimated background model pB(x). (b) An illustration of the
fixed-background model in a univariate case. The histogram shows the unlabeled data (the gray excess in the histogram denotes the anomalous observations).
The estimated fixed-background model pFB(x) is shown with a black line and the anomaly model pA(x) with a gray line.

A large enough number of such resamplings allows us
to recover the distribution of Λ under the background-
only null hypothesis and hence to compute the p-value
of the observed collective anomaly.

III. METHODS

In this section, we describe the methods used in our exper-
iments. We first review the expectation-maximization (EM)
algorithm for multivariate mixtures of Gaussians (MoG) and
then describe in detail how to use the algorithm for learning
the fixed-background model in Eq. (1).

A. Mixture of Multivariate Gaussian Distributions

Finite mixtures of distributions are a flexible method for
modeling complex data sets [17]. In this work, we use mul-
tivariate MoGs to represent the distribution of the data. The
mixture of J multivariate Gaussian distributions is defined as

p(x|θ) =
J∑

j=1

πjN (x|µj ,Σj), (5)

where N (x|µj ,Σj) denotes the probability density function
of a multivariate Gaussian with mean µj and covariance
matrix Σj at x. The πj are mixture proportions (or mixing
coefficients) which satisfy πj ≥ 0 and

∑J
j=1 πj = 1, and

θ = {πj ,µj ,Σj}Jj=1 represents the parameters of the mixture
model with J components.

B. EM Algorithm for the Background Model

Let us first consider the case of fitting a MoG model with
J components to the background data with N observations
xi, i = 1, . . . , N . The log-likelihood of the parameters θ is

l(θ) = log(L(θ)) =
N∑
i=1

log

 J∑
j=1

πjN (xi|µj ,Σj)

 . (6)

Here we have assumed that the observations are independent
and identically distributed (i.i.d.).

The maximum likelihood (ML) estimate of the parameters
can be obtained by maximizing (6), which is carried out by
using the EM algorithm [18], [19]. The algorithm proceeds
in two steps. In the expectation step (E-step), one computes

the posterior probabilities for each data point xi to have been
generated by the jth Gaussian component

p(zij = 1|xi,θ
k) =

πk
jN (xi|µk

j ,Σ
k
j )∑J

j′=1 π
k
j′N (xi|µk

j′Σ
k
j′)

≡ γk
ij . (7)

Here, θk contains the parameter estimates at the kth iteration
and zi indicates which component generated the ith observa-
tion.

In the subsequent maximization step (M-step), the parameter
values are updated according to the following equations

πk+1
j =

1

N

N∑
i=1

γk
ij , (8)

µk+1
j =

∑N
i=1 γ

k
ijxi∑N

i=1 γ
k
ij

, (9)

Σk+1
j =

∑N
i=1 γ

k
ij(xi − µk+1

j )(xi − µk+1
j )T∑N

i=1 γ
k
ij

. (10)

A detailed derivation of the EM algorithm for mixtures of
Gaussians can be found in [19] where it is also shown that
each iteration of the EM algorithm increases the log-likelihood
until a local maximum is found.

C. EM Algorithm for the Fixed-Background Model

In this section, we elaborate how to use the EM algorithm to
estimate models of the form of Eq. (1). The goal is to search
for unmodeled anomalies in the unlabeled data set. Now, the
background model pB(x) in Eq. (1) is fixed and both λ and
the parameters of pA(x) need to be optimized to maximize the
log-likelihood. Here, pA(x) can either be a single Gaussian or
more generally a MoG with Q components. We can now write
Eq. (1) as follows

pFB(x) = (1− λ)pB(x) + λ

J+Q∑
q=J+1

π̃qN (x|µq,Σq)

= πBpB(x) +

J+Q∑
q=J+1

πqN (x|µq,Σq), (11)

where we have defined πB = 1 − λ and πq = λπ̃q, q =
J + 1, . . . , J + Q. The mixture proportions satisfy πB +



background model pB(x) with J components︷ ︸︸ ︷
π1 · · · πJ

N (x|µ1,Σ1) · · · N (x|µJ ,ΣJ)
⇓

πB
pB(x)

anomaly model pA(x) with Q components︷ ︸︸ ︷
πJ+1 · · · πJ+Q

N (x|µJ+1,ΣJ+1) · · · N (x|µJ+Q,ΣJ+Q)

︸ ︷︷ ︸
fixed-background model pFB(x) with J + Q components

Fig. 2. Illustration of the proposed anomaly detection model. The background model pB(x) and the anomaly model pA(x) are mixtures of Gaussians
with J and Q components, respectively. The background model is combined with the anomaly model with an additional mixture proportion πB to give the
fixed-background model pFB(x).

∑J+Q
q=J+1 πq = 1 and

∑J+Q
q=J+1 πq =

∑J+Q
q=J+1 λπ̃q = λ. This

anomaly detection model and its components are illustrated in
Figure 2.

The EM updates for the model in Eq. (11) are easily found
by straightforward analogy to the standard mixture model.
In the E-step, the posterior probabilities of the background
model and the components of the anomaly MoG are updated
as follows

p(ziB = 1|xi,θ
k) (12)

=
πk

BpB(xi)

πk
BpB(xi) +

∑J+Q
q′=J+1 π

k
q′N (xi|µk

q′ ,Σ
k
q′)

≡ γk
iB,

p(ziq = 1|xi,θ
k) (13)

=
πk
qN (xi|µk

q ,Σ
k
q )

πk
BpB(xi) +

∑J+Q
q′=J+1 π

k
q′N (xi|µk

q′ ,Σ
k
q′)

≡ γk
iq.

In the first equation, ziB = 1 denotes that the ith observation
was generated by the background model pB(x). In the second
equation q = J +1, . . . , J +Q. In the subsequent M-step, the
means and the covariances of the anomaly model are updated
using Eqs. (9) and (10) for indices j = J + 1, . . . , J + Q.
The mixture proportions for these indices are also updated
with Eq. (8), while the mixture proportion of the background
model follows from the normalization constraint

πk+1
B = 1−

J+Q∑
q=J+1

πk+1
q

(
=

1

N

N∑
i=1

γk
iB

)
. (14)

D. Additional Remarks

Assessing the number of components in mixture models
is a hard problem which has not been completely resolved
[17]. We use the cross-validation-based information criterion
(CVIC) [20] for model selection in the Higgs experiments
of Section V, but take the correct number of components as
given in our artificial data experiments. Naturally, any known
information criterion can be used to perform model selection
for the background model. Further discussion about model
selection can be found in, e.g, [17].

The maximization of the log-likelihood function of a Gaus-
sian mixture model is not a well-posed problem due to the

singularities corresponding to one of the Gaussian components
“collapsing” onto a single data point, i.e., σj → 0 in the one-
dimensional case. With multivariate data, this corresponds to
the case where the smallest eigenvalue of the covariance matrix
Σ tends to zero. In this work, we avoid this problem by reset-
ting the mean of a collapsing component to a randomly chosen
data point while also resetting its variance or covariance matrix
to some large value. We also reset the components with a
very small mixture proportion to avoid unnecessary nuisance
components.

We assess the “goodness” of the components in the anomaly
model using a simple likelihood comparison. Using the like-
lihood of the background model as a reference, we take
components of the anomaly model one at a time and combine
them with the background model. Components that have
learned some anomalous patterns in the unlabeled data should
increase the likelihood compared to the background model. On
the other hand, if the component under investigation decreases
the likelihood, it is most probably useless. Again, components
that do not appear to capture any anomalies in the data are
reset to a random data point.

We also exploit the resetting heuristics above in order to
remove excess components from the anomaly model. We as-
sume that a component can be removed if it has been reset too
many times and, consequently, hinders the convergence of the
EM algorithm. Finally, while estimating the fixed-background
model, the convergence of the algorithm is denied if the fixed-
background model decreases the log-likelihood compared to
the background model. Instead, poor components are reset and
the EM iteration continues until a model that increases the log-
likelihood is found or all anomalous components have been
removed.

IV. EXPERIMENTS WITH ARTIFICIAL DATA

We tested the fixed-background model with artificial data
sets generated using univariate mixtures of Gaussians. Each
data set consisted of 100 000 background samples and 100 000
unlabeled test samples containing some anomalies. The data
sets were generated using five components for the background
data and three additional anomalous components for the un-
labeled test data. All tests were ran using specifically imple-



mented scripts in MATLAB environment in order to exploit the
heuristics described above.

We ran the tests using 10 different generative models. The
means and variances of the components in each model were
chosen randomly in such a way that the anomalies appear
as clusters among the background data. For each model, we
varied the proportion of anomalies from 1 % to 20 % and
generated 10 data sets with each proportion and model. This
resulted in 100 tests for each anomaly proportion. Figure 3
shows histograms of two artificial data sets with 10 % and
3 % of anomalies, respectively. Gray excess in the histogram
bars denotes the anomalous data.

For each data set, we trained a fixed-background model as
described in Sections II and III. The model was then used
to classify the data in the unlabeled test data as background
or anomalies with different thresholds according to Eqs. (2)
and (3). This allowed us to construct the receiver operating
characteristic (ROC) curves for each experiment, and use the
area under the ROC curve (AUC) as a measure for classifier
performance, 0 < AUC ≤ 1. We used the original generative
model as an optimal model to obtain a gold standard AUC
for each test data set. Due to our novel problem setting, we
were unable to perform a comparison of our method with
respect to existing collective anomaly detection algorithms.
Instead, we show how a traditional anomaly detection model,
where data points at low density areas of the background
model are considered anomalies, fails when anomalies lie
within the background. The traditional anomaly detection
model estimates the density of the background data using
a mixture of Gaussians and then labels new instances that
fall below a given density threshold as anomalies. By varying
the density threshold, we construct the ROC curves for the
traditional model.

Figure 4(a) shows the median of the AUC values obtained
using the fixed-background model (FBM). The dashed line
(Opt) denotes the median AUC obtained using the generative
model itself as a classifier and the gray line at the bottom of the
figure (Trad) shows the median AUC obtained using traditional
anomaly detection (described above). Given that the test data
contains a sufficient amount of anomalies, the resulting AUC
values for the fixed-background model are practically identical
to the optimal results. However, the robustness of the approach
starts to suffer when the test data contains less than 3 % of
anomalies. The figure also shows that the results obtained
using traditional anomaly detection are significantly worse.
The reason for the worse performance is that the anomalies
appear within the background, that is, at the high density

−20 0 20 −20 0 20

Fig. 3. Two example histograms of the artificial data sets. The gray excess
on top of the histogram bars denotes the anomalous data.

areas of the background model. Hence, the traditional anomaly
detection method regards them as normal data by definition.
Figure 4(b) shows a box plot of the estimated anomaly
proportions λ. The small boxes on the diagonal show the
interquartile range of the estimated λs which are in a good
agreement with the correct results. The whiskers show the full
range of the estimates. The wide downward range results from
the algorithm occasionally being able to find only a portion
of the anomalous data.

V. DEMONSTRATION: SEARCH FOR THE HIGGS BOSON

We applied the proposed anomaly detection framework to
searches of new physical phenomena in particle physics. Such
signals usually manifest themselves as tiny excesses of certain
types of collision events in particle detectors and the data
analysis challenge is to detect and extract these minute signals
among a vast background of known physics. The problem can
be tackled with the help of machine learning techniques which
are an essential tool in improving the signal-to-background
ratio in many modern physics analysis scenarios [8].

A. Description of the Data Set

We applied our method to a data set containing a simulated
signal produced by the Higgs boson. This is a particle pre-
dicted by the Standard Model of particle physics to explain
the mass of the other particles in the model but which has yet
to be detected experimentally. More precisely, we considered
a data set produced by the CDF collaboration [21] containing
background events and Monte Carlo simulated Higgs events
where the Higgs is produced in association with the W boson
and decays into two bottom quarks, qq̄ → WH → lνbb̄. This
signal looks slightly different for different Higgs masses mH,
which is an unknown free parameter in the Standard Model.
The goal is to show that semi-supervised anomaly detection
is able to identify such a signal without a priori knowledge of
mH. More generally, this could be any set of free parameters
in the physical theory under consideration.

Each observation in the data set corresponds to a single
simulated collision event in the CDF detector at the Tevatron
proton-antiproton collider. As such, the data vectors are sta-
tistically independent and consist of 8 variables corresponding
to different characteristics of the topology of a collision event.
To facilitate density estimation with MoGs, the data were
normalized logarithmically and the dimensionality of the data
was reduced to 2 using PCA on the background data. The
dimensionality reduction also allows better visualization of the
results. Dimensionality reduction for the test data was carried
out with the same principal components obtained using the
background data.

We used 3406 data points to train the background model
which was then used to detect signals of 400 data points
for masses mH = 100, 115, 135, 150 GeV among another
sample of 3406 observations of background data. Hence, the
unlabeled sample contained 10.5 % of signal events. In reality,
the expected signal is roughly 5 to 50 times weaker than this,
but due to the limited number of background events available,
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the signal had to be amplified for this demonstration. As shown
by the experiments with artificial data, we expect to be able to
find also weaker signals should more background observations
be available. All in all, these experiments should merely be
regarded as a demonstration of the potential of the method
in physics data analysis and not as a realistic Higgs analysis
scenario which remains as one of the greatest experimental
challenges of modern particle physics.

B. Modeling the Higgs Data

We used cross-validation-based information criterion
(CVIC) [20] in order to select a suitable number of com-
ponents J for the background model. When a 5-fold cross-
validation was performed, the evaluation log-likelihood was
maximized with J = 5. Figure 5(a) shows contours of the
resulting background model in the two-dimensional principal
subspace.

We then learned the fixed-background models for the sig-
nals with different masses starting with Q = 3 anomalous
components and allowed for heuristic removal of unnecessary

components as described in Section III-D. The algorithm
converged with one anomalous component for mH = 100 GeV
and two components for the rest of the masses. The resulting
anomaly model for mH = 150 GeV is shown in Figure 5(b).

C. Anomaly Detection Results

The statistical significances of the anomaly models were
evaluated using the bootstrap technique with 50 000 resam-
plings. It was found out that at 5 % significance level the
background-only null hypothesis was rejected for all of the
considered mass points. Figure 6 shows the distribution of the
test statistic and the p-values of the models. It turns out that the
higher the mass, the more significant the model becomes. The
peak of the test statistic distribution at the origin results from
situations where all the components of the anomaly model are
correctly removed by the removal heuristics.

Figure 7(a) shows the ROC curves for anomaly detection
with different Higgs masses. One can see that regardless of the
mass of the Higgs, the algorithm is able to identify the signal
with a relatively constant accuracy. The classification results
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are slightly better with the higher masses because the high-
mass signal lies on a region of the data space with a lower
background density compared to the low-mass signal. Starting
from the lowest mass, the estimated anomaly proportions are
λ = 0.100, 0.121, 0.118, 0.122, which are all in agreement
with the real proportion of 0.105. These estimates could be
used to compute the cross section of the anomalous physics
process.

We also used supervised multi-layer perceptron neural net-
works (MLPNN) for each of the mass points to act as a
reference classifier and compared the ROC curves to the
ones obtained with anomaly detection. MLPNNs with two
hidden layers containing 10 and 5 neurons and trained using
MATLAB’s Neural Network Toolbox were used. Figure 7(b)
shows the ROC curves for an MLPNN trained using the
Higgs signal at mH = 150 GeV. The resulting ROC curve
for a test signal at the same mass is similar to the one
obtained using FBM. However, when the mass mH of the test
signal is varied, the classification performance of the MLPNN
decreases. Figure 7(c) shows the ROC curves for 4 separate
MLPNNs trained and tested using the same mass. The results
are comparable with FBM, which shows that semi-supervised
anomaly detection is able to achieve similar performance as
supervised classification when the mass is known a priori. It
should be noted that in this application domain, one does not
expect to see perfect classification results as signals are often
buried among an irreducible physics background. Instead, the
key advantage of anomaly detection is that it is able to identify
the signal without the need to specify the mass of the Higgs,
while a supervised classifier is able to efficiently identify only
the mass it has been trained for.

VI. DISCUSSION

The proposed semi-supervised anomaly detection method
is applicable to problems where anomalies lie collectively
among the background data, or put in other words, to problems
where we want to find an unexpected, unknown or uncertain

signal that does not appear in the known background data. We
showed that the method can be applied to model-independent
searches of new phenomena in particle physics, but other
potential application domains could include, e.g., astrophysics,
bioinformatics and electronic surveillance, as long as the stated
assumptions on the general problem setting are satisfied.

The general idea of semi-supervised anomaly detection
with the fixed-background model can be implemented in a
number of different ways. In order not to divert the reader’s
attention from the novel problem setting and its application
potential, we have deliberately chosen to use simple, well-
understood algorithmic techniques with their known limita-
tions related to the curse of dimensionality, model complexity
and convergence. We show that even such a simple approach
provides useful results in our application domain. However,
it is likely that some of these limitations could be alleviated
by using state-of-the-art techniques. For example, variational
Bayes [22] could provide a natural way of learning the
model complexity and incorporating prior information into
the problem, while parsimonious mixtures of Gaussians [23]
might be a worthwhile alternative to dimensionality reduction
with PCA. The framework is also not dependent on the use
of Gaussian mixture models. Indeed, other problem-specific
parametric models can easily by accommodated. Also non-
parametric density estimates of the background model can be
implemented in a straightforward manner.

VII. CONCLUSIONS

We have presented a semi-supervised anomaly detection
framework based on the fixed-background mixture model. The
proposed model assumes that the background data follow a
fixed distribution, thus providing the means to detect and per-
form pattern recognition of collective anomalies that lie within
the domain of the background data and manifest themselves as
deviations from this distribution. We showed that the algorithm
is robust enough to consistently model anomalous patterns that
make up only a few percent of an unlabeled data set. We
demonstrated that such an algorithm can be succesfully used in
model-independent searches of new phenomena in high energy
particle physics. In particular, the method could be used to
find new particles without exact a priori knowledge of their
properties. Given the generality of the framework, it should
be possible to find future applications also on other fields of
science and technology.
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