
Extending Self-Organizing Maps with Uncertainty Information of
Probabilistic PCA

Dušan Sovilj, Tapani Raiko, Erkki Oja

Abstract— We introduce a probabilistic version of the self-
organizing map (SOM) where we model the uncertainty of both
the model vectors and the data. While uncertainty information
about the data is often not available, this property becomesvery
useful when the method is combined in a hierarchical manner
with probabilistic principal component analysis (PCA), where
we do estimate uncertainty of the principal components and
the weights. We apply the hierarchical model to the domain
of collaborative filtering, where probabilistic PCA is a popular
approach due to its robustness for tackling many missing values
in the data. The main focus in this paper is for recommendation
systems about movies, where the movie rating data matrix of
size people times movies is available, but contains lots of missing
values. The matrix is first decomposed into a matrix product
of people times features and features times movies by PCA.
Then we apply the probabilistic SOM to both of those matrices
separately. The uncertainty is large when a person (or a movie)
has only a few ratings. The experiments with Movielens and
Netflix data show an improvement over traditional SOM.

I. I NTRODUCTION

Collaborative filtering (CF) is the task of predicting pref-
erences or producing personal recommendations by using
other people’s preferences. One such problem is the Netflix
prize [1] problem which involves ratings for movies given by
people. The task is to predict the rating for a certain (person,
movie) pair for which the rating is unknown. All ratings are
integer numbers ranging from 1 to 5. The data is split into
training and validation sets for the same group of people and
a group of movies, with the training part having only 1.2% of
observed or actual ratings, while the rest 98.8% are missing.

The collaborative filtering has recently become popular
with announcement of the Netflix prize and a lot of methods
have already been tried in this domain, for a list of methods
refer to websites [2], [3]. More recent methods in CF are
employing large number of predictors and combining them
into one big linear model which have proven to be the most
effective. The earlier works are focused on improving or
boosting the accuracy of single models [4], [5], which is
the approach we adopt for this paper.

For this work, we use a combination of two widely known
methods in machine learning: Principal Component Analysis
(PCA) [6] and Self-Organizing Maps (SOM) [7]. Several
researchers have used PCA to estimate the missing values
in the data [8], [9], but none provide the reliability of those
estimates. For that purpose, we use PCA in its probabilistic
variant [10] as the first step of our approach. Probabilistic

Authors are from Aalto University School of Science and Technology,
Department of Information and Computer Science, Konemiehentie 2, Es-
poo, Finland. Emails: dusans@cis.hut.fi (Dušan Sovilj), tapani.raiko@tkk.fi
(Tapani Raiko), erkki.oja@hut.fi (Erkki Oja).

PCA has the advantage of returning the likelihoods of
the estimates, indicating their reliability. The second step
involves using two SOMs, one for the principal components
and the other for the weight matrix (transformation), in their
standard form for possible improvement. An extension of the
SOM is also tested which uses likelihood information from
the probabilistic PCA. We call this new version Probabilistic
SOM, which has modified update rule for the weights of the
map that incorporates obtained likelihoods. There are also
many existing combinations of PCA and SOM. Typically
they work such (see e.g. [11], [12], [13]) that each map unit
of the SOM has a separate PCA model for the data vectors
that are associated to it. The combination proposed here is
of course rather different.

Modelling partially observed data often means that some
elements of the data are observed while the others are miss-
ing. We are studying the generalization to the case where we
know the uncertainty (e.g. variance) of each element in the
data. Pearl [14] suggested to use so called virtual evidencefor
this situation in Bayesian networks. Raiko [15] studied the
same issues in the context of variational Bayesian learning.
Real applications where the uncertainty of each observation
is explicitly known are rare. Ilin and Kaplan [16] studied
the reconstruction of historical sea surface temperaturesfrom
mostly ship data, where the uncertainty at each grid point is
estimated based on the number of measurements located in
it during each month.

A method with the same name – probabilistic Self-
Organizing Map – was used in [17] for facial recognition,
but in a different setting. The SOM in its standard form
is first used for testing image similarity, and a probabilistic
model for the class distribution is associated with each map
unit. Thus, the uncertainty is modelled only for the class
distribution and not for the model vectors or observations
as in our case. Another model with the same name was
recently proposed in [18]. This model aims at preserving
topological structure of the data clusters by optimizing
likelihood based criterion on the map neurons. To facilitate
likelihood optimization, neurons in SOM are modeled as
multivariate Gaussian distributions. In our method, the aim
is quite different. We still use Probabilistic SOM as the
name of our model to explicitly state the connection to
uncertainty modelling and to simplify shorthand notation in
further sections.

The Generative-Topographic Mapping (GTM) [19] can
also be considered to be a probabilistic version of the SOM.
The GTM is a generative model with latent variables which
are mapped nonlinearly to the original space. Compared

to the proposed method, the GTM can only model depen-
dencies between the observation vectors, but not between
the weights, whereas in the proposed method, the weights
and the latent variables are treated symmetrically. In other
words, our approach includes one map for movies and one
for people, whereas the GTM has only one latent space.
Another difference is that in GTM, the nonlinear mapping
is done directly to the high-dimensional observation space,
whereas in the proposed method, the mapping between the
observation space and feature space is linear. This should
make the proposed approach more robust against overfitting.

The paper is organized as follows. Section II explains PCA
and probabilistic variant, the standard SOM and discusses the
probabilistic version with necessary equations. Section III
shows the results of experiments performed on Movielens
[20] and Netflix datasets. The first dataset has less ratings
than Netflix, and allows for easier investigation of new
methods in the domain of CF. Final thoughts on the proposed
method are given in Section IV.

II. M ETHOD

In this section, we briefly give the basics for two main
methods to be merged: PCA and SOM (first two subsections),
and introduce the notation that is used in this work. Then,
the combination of these two methods is explained in the last
two subsections.

A. Principal Component Analysis

Principal Component Analysis (PCA) is a widely used
technique for data analysis. It can be derived from different
starting points and optimization criteria. The most important
are: 1) minimization of sum-of-squares reconstruction cost;
2) finding mutually orthogonal directions in the data having
maximal variance. Assuming there areN data vectors in
input space withD dimensions, i.e. aD × N matrix X =
[x1,x2, ...,xN], PCA decomposes the matrixX into

X ≈ AS, (1)

whereA is a D × q matrix, S is a q × N matrix andq ≤
D ≤ N . Principal subspace methods [21] findA andS such
that reconstruction error

‖X− AS‖2
F , (2)

is minimized, with F denoting Frobenius norm. Before
PCA is applied, row-wise mean is removed fromX as a
preprocessing step. Without any further constraints, there
exist infinitely many ways to perform such a decomposition.
However, the subspace spanned by the column vectors of
the matrix A is unique. This spanned subspace is called
principal subspace. In PCA, the column vectors are mutually
orthogonal and have unit length and by taking any firstk ≤
q columns ak–dimensional principal subspace is formed.
There are many ways to determine the principal subspace,
also called components, and the most common ones are
Singular Value Decomposition, EM Algorithm and Subspace
Learning Algorithm.

In the case of missing values present in the dataX,
methods for PCA can be extended to cope with such situation
(see e.g. [6]). MatricesA and S are computed using only
observed values in the data. Missing values are estimated
simply through reconstruction, i.e. Equation (1). If data
matrix has both large number of dimensions and lots of
missing values, overfitting can easily arise in such situation.
One way to overcome overfitting is to penalize the model
with a proper term which will restrict values inA andS to
small numbers. Even stronger approach against overfitting
is to use Variational Bayesian (VB) Learning framework for
PCA. VB version of the PCA proposed in [22] approximates
the joint posterior of the unknown quantities using a simple
multivariate distribution. The rows ofA and the columns
of S are describeda posterioriusing independent Gaussian
distributions. The means of these distributions can be used
as point estimates of the parameters, while the covariances
give at least a crude estimate of the reliability of these
points estimates. In [10], a version where all parameters
are assumed to be independent, was applied to the case of
missing values. In this paper, we call itthe probabilistic PCA.

B. Self-Organizing Map

Self-Organizing Maps (SOM) [7] are neural networks
for unsupervised learning schemes, in which output classes
or responses are unknown. The neurons have a specified
neighborhood structure in lower-dimensional space, arranged
in a lattice consisting of 2 or 3 dimensions. In addition, all of
the neurons have a corresponding weight vector in the input
data space (D dimensions).

Main idea behind SOM is to move map neurons in patches
toward the current samplexn under consideration and this
is accomplished in two steps. First, for samplexn we find
the best-matching unitbi among all map neurons. Second,bi

and its neighborsNe(bn) in the lattice are moved towards
the samplexn. Best-matching unit (BMU) is the neuron
whose weight vector is closest to the samplexn. Finding
BMU involves a metric to measure the similarity between
points, and in SOM the Euclidean distance is widely used
as a similarity measure. The neighborhood functionNe(b)
considers a lattice in order to find neighbors, and possible
choices are a simple ball function or a Gaussian function.
After constructing the neighborhood, all the neurons are
moved toward the samplexn. This update is repeated for
all samples in the dataset, and all these updates constitute1
epoch. The algorithm then runs for certain number of epochs
or it can stop in case of convergence. The whole setting is
set up in Robbins-Monro procedure with a parameter that
controls the degree of movement for neurons. This parameter,
denotedα ∈ (0, 1], is called a learning rate, and is a
monotonically decreasing function of epochs. Assume that
map hasP neurons arranged in a lattice, then the update of
the weight vectors of all neurons in epocht + 1 is done in
two steps:

1) Find the BMUc for a samplexn

c = arg minp ‖xn − mp‖ , p = 1, ..., P (3)

2) Update the weights of each neuronmp

mp(t + 1) = mp(t) + α(t)hcp(t) [xn − mp(t)] (4)

In Equation (4),α(t) is the learning rate at time stept,
hcp(t) is neighboring kernel around winning neuronc. This
kernel computes the influence of the winning neuronc on all
the neurons in the map and is a non-increasing function of
time t and distance fromc. Equations (3) and (4) constitute
one epoch or time step, which is repeated until stopping
criterion is fulfilled.

C. Probabilistic Self-Organizing Map (PSOM)

The update rule given by Equation (4) moves the BMU
toward the samplexn, which we can think of as the center of
mass, and thus the center of attraction. The SOM framework
can be extended to have a probabilistic approach, where
the weights of neurons and samples are random variables.
The simplest way is to assume Gaussian distribution in
both cases, that is, the weights are random variables with
N (µBk, ΣBk) for k = 1, ..., K, and each samplexn has its
own distributionN (µSn, ΣSn) for n = 1, ..., N where both
covariance matricesΣk andΣn are diagonal. The update rule
in Equation (4) requires a vector which acts as an attractor.
In the probabilistic framework this vector is computed by
applying Bayes rule on two mentioned Gaussian distribu-
tions. The distribution for the weightsN (µBk, ΣBk) could
be considered as aprior, while the distributions over samples
N (µSn, ΣSn) are the likelihood estimates (as suggested
in [14], [15]), and through the Bayes rule we obtain the
posterior distribution for weights.

Since both of them have diagonal covariance matrices,
the product is a Gaussian distributionN (µO, ΣO) where
each dimension is a product of one dimensional Gaussians
from N (µBk, ΣBk) and N (µSn, ΣSn). Let us denote di-
agonal of ΣBk as a vector

[

σ2
Bk1, σ

2
Bk2, ..., σ

2
BkD

]

, and
similarly for ΣSn we have

[

σ2
Sn1, σ

2
Sn2, ..., σ

2
SnD

]

. The
means of distributions areµBk = [µBk1, ..., µBkD] and
µSn = [µSn1, ..., µSnD]. The product of two distributions
N (µBk, ΣBk) for somek = 1, ..., K andN (µSn, ΣSn) for
somen = 1, ..., N is a Gaussian distributionN (µO, ΣO)
with meanµO given by Equation (6) and covariance matrix
ΣO with diagonal elements given by Equation (5).

σ2
Oj =

(

1

σ2
Bkj

+
1

σ2
Snj

)

−1

, j = 1, . . . , D, (5)

µOj =

(

µBkj

σ2
Bkj

+
µSnj

σ2
Snj

)

σ2
Oj , j = 1, . . . , D. (6)

Thus, we can compute theposterior probability of the
weight vectors of neurons in SOM and we need parameter
values that characterize the distributionsN (µBk, ΣBk) and
N (µSn, ΣSn). For µSn we take the samplexn itself, while
the σ2

Bnj are likelihoods taken from probabilistic PCA. For
N (µBk, ΣBk) we haveµBk = mp(t), that is, the mean is

set to the weights of the BMU in the input space domain. For
the covariance matrixΣBk we do not have any information,
and it has to be computed based on some heuristic. Instead
of having covariance matrix for all neurons in SOM, which
would increase number of parameters drastically, we resortto
having only one covariance matrixΣB0 that is shared across
all map neurons. In our case, we compute thej-th element
on the main diagonal ofΣB0 as

σ2
B0j =

1

N

N
∑

k=1

[

(µBkj − µOj)
2 + σ2

Oj

]

, j = 1, . . . , D.

(7)
The initial value forσ2

B0j is computed from the values
obtained with probabilistic PCA, taking into account all the
samples:

σ2
B0j =

1

N

N
∑

n=1

(µ2
Snj + σ2

Snj), j = 1, . . . , D. (8)

With Equations (7) and (8), the algorithm for probabilistic
SOM first finds the BMU of a samplexn, then computes
new variance (5) and mean (6), and finally uses the modified
update rule for the weights using following equation:

mp(t + 1) = mp(t) + α(t)hcp(t) [µO − mp(t)] . (9)

Comparing Equations (4) and (9), the samplexn is re-
placed with posterior mean of the weights (Equation (6)),
while the learning rate and neighboring function remain the
same. Thus, we are moving the BMUmp of a sample toward
its most probable directionµO, instead of moving it toward
the sample.

The only parameter left to be updated is prior variance
for the weights given by Equation (7). This is done after
completing one epoch and when all samples contributed to
updating weights of neurons.

When a samplexn is processed, that is, it contributed to
neurons’ weights, the BMU for this sample is remembered,
as well as the posterior meanµ(i)

O . Denoting the BMU for
samplexn asµ

B(n)
Bk , Equation (7) becomes

σ2
B0j =

1

N

N
∑

n=1

[

(µ
B(n)
Bkj − µ

(n)
Oj)2 + σ2

Oj

]

, j = 1, . . . , D.

(10)
Thus, µ

(n)
O is paired with the BMUµ

B(n)
Bk at the time

when samplexn was used to update the weights. In other
words, once the BMU is found it will remain fixed for the
current epoch, even if there is closer neuron to the sample
xn after completing the epoch.

The batch version of the SOM can be easily extended
to the probabilistic version, since the only value needed is
the mean of the posterior distributionµ(n)

O . This is computed
with Equations (5) and (6) before partitioning the means into
regions.

Fig. 1. Graphical models for the PSOM: complete model (left)and separated models (right).

D. Combination of PCA and SOM

The complete model is given in Figure 1. The PSOM acts
as a prior for a given datasetX. In our case, datasets are
reconstruction matricesA andS

T obtained with probabilistic
PCA. In principle, the whole model can be learned together,
but in this paper it is done separately as displayed on the
same Figure 1.

Note that the proposed method is not a generative model,
since the best matching unit is not found based on a
probabilistic model, and because the SOM learning is not
probabilistic. On the other hand, when the SOMs have been
learned and the best matching unit for eachi andj is fixed,
the rest becomes a generative model. In this sense, the SOMs
can be seen here as priors.

III. E XPERIMENTS

The PSOM and standard SOM are first compared on the
Movielens 100k dataset with 100 000 movie ratings for
943 persons and 1682 movies. When considered as a full
matrix, the dataset has 93.7% of the values missing. The
task is to predict the missing value for a given (person,
movie) pair. The Movielens 100k dataset is first randomly
split into training and validation parts, each having 95000
and 5000 ratings respectively. The dataset is formed to
have more columns than rows, that is, final dataset has 943
rows (persons) and 1682 columns (movies). The probabilistic
PCA is first applied to obtain the reconstruction matrices
A and S using the training set only. The PCA is run with
10 components as the upper limit and for 1500 iterations,
where the number of components is decided by validating the
reconstructed values on the validation set. After training, the
final training and validation root mean-square errors (RMSE)
were 0.7678 and 0.8878, respectively.

The result of probabilistic PCA are two matricesA943×10

and S10×1682 with likelihood estimates for all elements of
both matrices. TheA matrix contains feature vectors for each
personin the new principal space. Similarly,ST represents
feature vectors for eachmovie of the full matrix X. The
advantage of probabilistic PCA is the information about the
reliability of the values inside these two matrices. For a
personi with few ratings (a row inX), the corresponding

feature vectorai in A has large uncertaintyσ2
i . Same

reasoning applies for a movie with few ratings (a column in
X), where the corresponding vector inST has large variance.
After this step, both standard SOM and PSOM are used to
visualize and quantifyA and S

T. The parameters common
to both SOM types are initialized to the same values and
include:

- Learning rateα = 0.85
- Learning rate is decreasing linearly
- Topology is a lattice represented as rectangular sheet
- Gaussian neighborhood function
- Initial radius set to half the map size
- Final radius set to 0.1
- Random initialization of the weights
- Map training done for 1500 epochs

A set of different values for learning rate was tested, but
experiments showed that the larger values produced better
results in terms of RMSE. Other important parameter is the
size of the map, and the tested values ranged from 100 to
900 neurons arranged into a lattice with equal width and
height. After training the SOMs, each sample inA andS

T

is replaced with the weight of its best matching unit giving
Ar andS

T
r , and the initial dataset is then reconstructed with

X ≈ ArSr + M943×111×1682

VectorM in the above equation is the sample mean of data
matrix, which is obtained as maximum likelihood solution of
log probability of the parameters [22], while11×1682 is just
a row vector of ones. The reconstructed matrix contains the
values for elements of the validation set, which is used to
measure the performance of all three methods: probabilistic
PCA, SOM and PSOM. The RMSE for both SOM types
is shown in Table I. Since SOM is used onA and S the
experiments are done by using the same map size for both
matrices and then reconstructing the matrix. For example,
the first column in Table I shows the RMSE when bothA

andS
T are given to a map of size10 × 10.

As can be seen from Table I, the RMSE decreases when
the number of neurons increases, as expected since more
neurons allow for a more refined quantization. One final

TABLE I

RMSEFOR SOM AND PSOM

Map size 10 × 10 15 × 15 20 × 20 25 × 25 30 × 30

SOM 0.9302 0.9199 0.9123 0.9040 0.8995
PSOM 0.9216 0.9089 0.9013 0.8977 0.8992

experiment involved using map sizes that have more neurons
than samples. In this case, map sizes were31×31 and51×51
for matricesA andS

T respectively. The RMSE on validation
data were 0.8918 for SOM and 0.8932 for PSOM.

Table I shows advantage of PSOM over SOM for smaller
sizes maps. In order to see the differences in the BMUs of
two map types we compare quantization error (QE) and U
matrices. QE is the average distance between samples and
their respective BMU, which is computed for all samples.
U matrix is another way of visualizing the arrangement of
neurons of the trained map. The U matrix has double the
number of elements as there are neurons in the map. Each
element represents the average distance of a neuronmp to
its neighbors in the mapNe(mp), computed in the input
D-dimensional space.

Comparing quantization error in Figure 2, we see that in
PSOM it is always larger than in SOM, since the weights
updates are no longer in direction toward the sample itself,
but towardsµO, which is likely not to be on the same
direction between the BMU and the sample. The QE is in
some cases larger by a factor of 3, but this eventually has
positive effect when reconstructing the data.

Examining U matrices for both SOM types and different
map sizes in Figure 3, the distribution of neurons for PSOM
is more spread out, and neurons clearly form more clusters.
On the other hand, neurons become more equidistant as the
their number increases which is shown in the same figure.
Also worth mentioning are the actual distances in U matrices.
In all the experiments with different map sizes the average
distance between neurons in PSOM is always less than in
standard SOM.

Figure 4 shows the number of ’empty’ neurons, that is,
the neurons which are not the BMU for any of the samples.
For all map sizes the number of empty neurons is larger for
PSOM than for SOM, which would also explain the higher
quantization error for PSOM, since less neurons are used to
explain the samples.

Finally, Figure 5 shows the evolution of the posterior
variance for only one component. The result is almost the
same for all other components (not shown), exhibiting the
same decreasing tendency towards very small values. These
small values actually prevent the PSOM from moving the
neurons with a considerable degree, and can also increase
the convergence speed. This side effect remains to be further
explored.

The experiments using Netflix data are done in the same
manner, except that certain parameters have been altered
to more adequately represent the data. Probabilistic PCA is
first used to obtain the decomposition of the data into two
matrices, with the number of principal components set to 50

0 500 1000 1500
0

0.5

1

1.5

2

2.5

3

Epochs

V
ar

ia
nc

e

Fig. 5. Evolution of the variance of one component (σ
2

B01
) for PSOM on

ST matrix.

and the number of iterations set to 1500. The number of
components is chosen based on the probe RMSE, and the
final RMSE on the Netflix probe data is 0.9055. Then, both
SOM and PSOM are used to cluster new data (A andS

T).
For A andS

T, map sizes of75 × 75 and75 × 50 are used
respectively. The parameters for training the SOMs are same
as for the Movielens data, except that in the Netflix case, a
batch version of SOM algorithm is used that does not require
a learning rate parameterα.

After the rows of both matrices have been replaced with
their respective BMUs, the RMSE for the probe data is
0.9754 for the standard SOM and 0.9665 for the PSOM.
As is the case for Movielens data, PSOM is able to give
better reconstruction error than standard SOM. On the other
hand, there is evident degradation in performance since data
is replaced with their nearest approximations. The increase in
RMSE is quite higher for Netflix than for Movielens, as the
number of map units in the SOM is very small compared to
the actual number of data vectors (forS

T its 75 · 50 = 3750
map units compared to roughly 480000 data samples). The
quantization error of the two SOM types has the same trend
as in the Movielens case: for PSOM it is always higher
than for SOM, since the change is not toward the samples
themselves.

IV. CONCLUSION

In this paper, we presented an extended version of SOM
using the likelihoods from probabilistic PCA method. Com-
paring results of both the PSOM and SOM, the extended
version with likelihood information finds better solution in
terms of neurons’ weight adjustments. The update rule of
standard SOM moves neurons towards samples themselves,
while probabilistic SOM uses additional information and
updates the center of attraction accordingly. New update
equations try to fit a map which has evenly spread out
neurons in the input space. For maps of various sizes the
probabilistic approach always gives slightly better results,
where the difference starts to diminish and eventually turns
negative (combination of31 × 31 SOM for A and51 × 51

10x10 15x15 20x20 25x25 30x30

0.01

0.02

0.03

0.04

number of neurons

qu
an

tiz
at

io
n

er
ro

r

SOM
PSOM

10x10 15x15 20x20 25x25 30x30
0.4

0.6

0.8

1

1.2

number of neurons

qu
an

tiz
at

io
n

er
ro

r

SOM
PSOM

Fig. 2. Quantization error for two SOM types onA matrix (left) andST matrix (right).

0.13

0.444

0.759

0.109

0.338

0.567

0.0471

0.254

0.46

0.0142

0.159

0.303

Fig. 3. U matrices for the trained two SOM types on theA matrix. In the top row, the map size is10 × 10, while in the bottom row, the map size is
30 × 30. Left column is standard SOM, and right column is Probabilistic SOM.

SOM for S
T) as the number of neurons increases. Since

PSOM has more empty neurons it can be effectively used
for data compression, while retaining the good spread of
neurons over SOM. The drawback of the proposed extension
are small values for the variances in the later stage of the
algorithm, preventing significant updates to the weights of
the map. One possible way of preventing this effect is to use
validation data to determine this parameter.

Even though the proposed extension of the SOM has
negative impact on the final performance, it still can be used
in an ensemble with other models. This is the approach of
many top teams in the Netflix competition. With ensemble
approach, the performance of each separate method is not as

important as their wide variety for the performance of the
ensemble.

REFERENCES

[1] “Netflix prize webpage,” http://www.netflixprize.com.
[2] “List of datasets, software and articles maintained by Jun Wang,” 2007,

http://ict.ewi.tudelft.nl/∼jun/CollaborativeFiltering.html.
[3] “List of research articles maintained by James Thornton,” 2005,

http://jamesthornton.com/cf/.
[4] S. Ding, S. Zhao, Q. Yuan, X. Zhang, R. Fu, and L. Bergman,

“Boosting collaborative filtering based on statistical prediction errors,”
in RecSys ’08: Proceedings of the 2008 ACM conference on Recom-
mender systems. New York, NY, USA: ACM, 2008, pp. 3–10.

[5] R. J. Melville., Melville M. and R. Nagarajan, “Content-boosted
collaborative filtering for improved recommendations,” inEighteenth
national conference on Artificial Intelligence. Menlo Park, CA, USA:
American Association for Artificial Intelligence, 2002, pp. 187–192.

10x10 15x15 20x20 25x25 30x30
0

100

200

300

400

number of neurons

em
pt

y
ne

ur
on

s

SOM
PSOM

10x10 15x15 20x20 25x25 30x30
0

50

100

150

200

250

number of neurons

em
pt

y
ne

ur
on

s

SOM
PSOM

Fig. 4. Number of empty neurons when training SOMs forA matrix (left) andST matrix (right).

[6] I. T. Jolliffe, “Principal component analysis,” inPrincipal Component
Analysis. New York: Springer Verlag, 1986.

[7] T. Kohonen,Self-Organizing Maps, 2nd ed., ser. Springer Series in
Information Sciences, 30. Springer, 1997.

[8] K. Honda, N. Sugiura, H. Ichihashi, and S. Araki, “Collaborative
filtering using principal component analysis and fuzzy clustering,”
in WI ’01: Proceedings of the First Asia-Pacific Conference on Web
Intelligence: Research and Development. London, UK: Springer-
Verlag, 2001, pp. 394–402.

[9] D. Kim and B.-J. Yum, “Collaborative filtering based on iterative
principal component analysis,”Expert Systems with Applications,
vol. 28, no. 4, pp. 823–830, May 2005. [Online]. Available:
http://dx.doi.org/10.1016/j.eswa.2004.12.037

[10] T. Raiko, A. Ilin, and J. Karhunen, “Principal Component Analysis for
Large Scale Problems with Lots of Missing Values,” inProceedings of
the 18th European Conference on Machine Learning (ECML 2007),
ser. Lecture Notes in Artificial Intelligence, vol. 4701. Warsaw,
Poland: Springer-Verlag, Berlin, September 2007, pp. 691–698.

[11] J. L. Alba Castro, A. Pujol, and J. J. Villanueva, “NovelSOM-PCA
network for face identification,” inApplications and Science of Neural
Networks, Fuzzy Systems, and Evolutionary Computation IV, 2001, pp.
186–194.

[12] E. López-Rubio, J. M. Ortiz-de Lazcano-Lobato, and D.López-
Rodrı́guez, “Probabilistic pca self-organizing maps,”IEEE Transac-
tions on Neural Networks, vol. 20, no. 9, pp. 1474–1489, 2009.

[13] E. Lopez-Rubio, J. Munoz-Perez, and J. A. Gomez-Ruiz, “A principal
components analysis self-organizing map,”Neural Networks, vol. 17,
pp. 261–270, 2004.

[14] J. Pearl,Probabilistic Reasoning in Intelligent Systems: Networksof
Plausible Inference. Morgan Kaufmann, 1988.

[15] T. Raiko, “Partially observed values,” inProc. Int. Joint Conf. on
Neural Networks (IJCNN 2004), Budapest, Hungary, 2004, pp. 2825–
2830.

[16] A. Ilin and A. Kaplan, “Bayesian pca for reconstructionof historical
sea surface temperatures,” inProc. of the Int. Joint Conf. on Neural
Networks (IJCNN 2009), Atlanta, USA, 2009, pp. 1322–1327.

[17] G. Lefebvre and C. Garcia, “A probabilistic self-organizing map for
facial recognition,” inICPR, 2008, pp. 1–4.

[18] S.-S. Cheng, H.-C. Fu, and H.-M. Wang, “Model-based clustering
by probabilistic self-organizing maps,”IEEE Transactions on Neural
Networks, vol. 20, no. 5, pp. 805–826, 2009.

[19] C. M. Bishop and C. K. I. Williams, “GTM: The generative topo-
graphic mapping,”Neural Computation, vol. 10, pp. 215–234, 1998.

[20] “Movielens database webpage,” http://www.movielens.org/.
[21] A. S. Cichocki, A., Adaptive Blind Signal and Image Processing -

Learning Algorithms and Applications. Wiley, 2002.
[22] C. M. Bishop, “Variational principal components,” inIn Proceedings

of Ninth International Conference on Artificial Neural Networks,
ICANN99, 1999, pp. 509–514.

