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Abstract— We introduce a probabilistic version of the self-
organizing map (SOM) where we model the uncertainty of both
the model vectors and the data. While uncertainty informatbn
about the data is often not available, this property becomesery
useful when the method is combined in a hierarchical manner
with probabilistic principal component analysis (PCA), where
we do estimate uncertainty of the principal components and
the weights. We apply the hierarchical model to the domain
of collaborative filtering, where probabilistic PCA is a popular
approach due to its robustness for tackling many missing vales
in the data. The main focus in this paper is for recommendatia
systems about movies, where the movie rating data matrix of
size people times movies is available, but contains lots ofissing
values. The matrix is first decomposed into a matrix product

of people times features and features times movies by PCA.

Then we apply the probabilistic SOM to both of those matrices
separately. The uncertainty is large when a person (or a moej
has only a few ratings. The experiments with Movielens and
Netflix data show an improvement over traditional SOM.

I. INTRODUCTION

PCA has the advantage of returning the likelihoods of
the estimates, indicating their reliability. The secondpst
involves using two SOMs, one for the principal components
and the other for the weight matrix (transformation), inithe
standard form for possible improvement. An extension of the
SOM is also tested which uses likelihood information from
the probabilistic PCA. We call this new version Probaliiist
SOM, which has modified update rule for the weights of the
map that incorporates obtained likelihoods. There are also
many existing combinations of PCA and SOM. Typically
they work such (see e.g. [11], [12], [13]) that each map unit
of the SOM has a separate PCA model for the data vectors
that are associated to it. The combination proposed here is
of course rather different.

Modelling partially observed data often means that some
elements of the data are observed while the others are miss-
ing. We are studying the generalization to the case where we
know the uncertainty (e.g. variance) of each element in the

Collaborative filtering (CF) is the task of predicting pref-data. Pearl [14] suggested to use so called virtual evidiemce
erences or producing personal recommendations by usitlgs situation in Bayesian networks. Raiko [15] studied the
other people’s preferences. One such problem is the Netffsame issues in the context of variational Bayesian learning
prize [1] problem which involves ratings for movies given byReal applications where the uncertainty of each obsenvatio

people. The task is to predict the rating for a certaiaréon

is explicitly known are rare. llin and Kaplan [16] studied

movi@ pair for which the rating is unknown. All ratings are the reconstruction of historical sea surface temperafooes
integer numbers ranging from 1 to 5. The data is split intonostly ship data, where the uncertainty at each grid point is
training and validation sets for the same group of people ar$timated based on the number of measurements located in
a group of movies, with the training part having only 1.2% oft during each month.
observed or actual ratings, while the rest 98.8% are missing A method with the same name — probabilistic Self-
The collaborative filtering has recently become popula®rganizing Map — was used in [17] for facial recognition,
with announcement of the Netflix prize and a lot of methodbut in a different setting. The SOM in its standard form
have already been tried in this domain, for a list of methods first used for testing image similarity, and a probabdist
refer to websites [2], [3]. More recent methods in CF arenodel for the class distribution is associated with each map
employing large number of predictors and combining theranit. Thus, the uncertainty is modelled only for the class
into one big linear model which have proven to be the mostistribution and not for the model vectors or observations
effective. The earlier works are focused on improving o&s in our case. Another model with the same name was
boosting the accuracy of single models [4], [5], which igecently proposed in [18]. This model aims at preserving

the approach we adopt for this paper.

topological structure of the data clusters by optimizing

For this work, we use a combination of two widely knownlikelihood based criterion on the map neurons. To facd#itat
methods in machine learning: Principal Component Analysitkelihood optimization, neurons in SOM are modeled as
(PCA) [6] and Self-Organizing Maps (SOM) [7]. Severalmultivariate Gaussian distributions. In our method, tha ai
researchers have used PCA to estimate the missing valugsquite different. We still use Probabilistic SOM as the
in the data [8], [9], but none provide the reliability of tllos name of our model to explicitly state the connection to
estimates. For that purpose, we use PCA in its probabilisticcertainty modelling and to simplify shorthand notation i
variant [10] as the first step of our approach. Probabilistiturther sections.
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The Generative-Topographic Mapping (GTM) [19] can
also be considered to be a probabilistic version of the SOM.
The GTM is a generative model with latent variables which
are mapped nonlinearly to the original space. Compared



to the proposed method, the GTM can only model depen-In the case of missing values present in the dXta
dencies between the observation vectors, but not betweerethods for PCA can be extended to cope with such situation
the weights, whereas in the proposed method, the weighitee e.g. [6]). MatriceA and S are computed using only
and the latent variables are treated symmetrically. Inrothebserved values in the data. Missing values are estimated
words, our approach includes one map for movies and oseamply through reconstruction, i.e. Equation (1). If data
for people, whereas the GTM has only one latent spacmatrix has both large number of dimensions and lots of
Another difference is that in GTM, the nonlinear mappingnissing values, overfitting can easily arise in such situmati
is done directly to the high-dimensional observation spac®ne way to overcome overfitting is to penalize the model
whereas in the proposed method, the mapping between thih a proper term which will restrict values iA andS to
observation space and feature space is linear. This shousltall numbers. Even stronger approach against overfitting
make the proposed approach more robust against overfittirig to use Variational Bayesian (VB) Learning framework for
The paper is organized as follows. Section Il explains PCRCA. VB version of the PCA proposed in [22] approximates
and probabilistic variant, the standard SOM and discusges tthe joint posterior of the unknown quantities using a simple
probabilistic version with necessary equations. Sectibn Imultivariate distribution. The rows oA and the columns
shows the results of experiments performed on Movieleraf S are describe@ posterioriusing independent Gaussian
[20] and Netflix datasets. The first dataset has less ratingsstributions. The means of these distributions can be used
than Netflix, and allows for easier investigation of newas point estimates of the parameters, while the covariances
methods in the domain of CF. Final thoughts on the proposefive at least a crude estimate of the reliability of these
method are given in Section IV. points estimates. In [10], a version where all parameters
are assumed to be independent, was applied to the case of

missing values. In this paper, we caltliie probabilistic PCA
In this section, we briefly give the basics for two main

methods to be merged: PCA and SOM (first two subsectiong; Self—Orgahiging Map
and introduce the notation that is used in this work. Then, Self-Organizing Maps (SOM) [7] are neural networks
the combination of these two methods is explained in the lafr unsupervised learning schemes, in which output classes

Il. METHOD

two subsections. or responses are unknown. The neurons have a specified
o ) neighborhood structure in lower-dimensional space, gadn
A. Principal Component Analysis in alattice consisting of 2 or 3 dimensions. In addition, all of

Principal Component Analysis (PCA) is a widely usedhe neurons have a corresponding weight vector in the input
technique for data analysis. It can be derived from differenlata spacel) dimensions).
starting points and optimization criteria. The most impatt Main idea behind SOM is to move map neurons in patches
are: 1) minimization of sum-of-squares reconstructiort;costoward the current sample,, under consideration and this
2) finding mutually orthogonal directions in the data havings accomplished in two steps. First, for sampglg we find
maximal variance. Assuming there afé data vectors in the best-matching unit; among all map neurons. Secorg,

input space withD dimensions, i.e. @ x N matrix X = and its neighborsVe(b,,) in the lattice are moved towards
[x1, X2, ...,xn], PCA decomposes the matrX into the samplex,,. Best-matching unit (BMU) is the neuron
whose weight vector is closest to the samgle Finding
X ~ AS, (1) BMU involves a metric to measure the similarity between

points, and in SOM the Euclidean distance is widely used
as a similarity measure. The neighborhood functiéa(b)
considers a lattice in order to find neighbors, and possible
choices are a simple ball function or a Gaussian function.
||X—AS||2 @ After constructing the neighbor.hood, all .the neurons are
Fo moved toward the sample,,. This update is repeated for
is minimized, with ' denoting Frobenius norm. Before all samples in the dataset, and all these updates constitute
PCA is applied, row-wise mean is removed fraxh as a epoch. The algorithm then runs for certain number of epochs
preprocessing step. Without any further constraints,ethepr it can stop in case of convergence. The whole setting is
exist infinitely many ways to perform such a decompositiorget up in Robbins-Monro procedure with a parameter that
However, the subspace spanned by the column vectors afntrols the degree of movement for neurons. This paragneter
the matrix A is unique. This spanned subspace is calledenoteda € (0,1], is called a learning rate, and is a
principal subspace. In PCA, the column vectors are mutualionotonically decreasing function of epochs. Assume that
orthogonal and have unit length and by taking any first ~map hasP neurons arranged in a lattice, then the update of
g columns ak—dimensional principal subspace is formedthe weight vectors of all neurons in epoth- 1 is done in
There are many ways to determine the principal subspad@/o steps:
also called components, and the most common ones arel) Find the BMUc¢ for a samplex,,
Singular Value Decomposition, EM Algorithm and Subspace
Learning Algorithm. c=arg min, X, —m,|l, p=1,...P (3)

where A is a D x ¢ matrix, S is ag x N matrix andq <
D < N. Principal subspace methods [21] fiddandS such
that reconstruction error



2) Update the weights of each neuron set to the weights of the BMU in the input space domain. For
the covariance matriX g, we do not have any information,
and it has to be computed based on some heuristic. Instead
My (¢ +1) = my(t) + a(t)hep(t) xn — My (1) (4) of having covariance matrix for all neurons in SOM, which

In Equation (4),a(t) is the learning rate at time step would increase number of parameters drastically, we résort
hep(t) is neighboring kernel around winning neuronThis  having only one covariance matri¥p, that is shared across
kernel computes the influence of the winning neuram all  all map neurons. In our case, we compute jhi element
the neurons in the map and is a non-increasing function of the main diagonal 0E g, as
time ¢t and distance froma. Equations (3) and (4) constitute

one epoch or time step, which is repeated until stopping X
criterion is fulfilled. 012903' =5 Z [(MBM _ MOj)2 + U%j} , j=1,...,D.
C. Probabilistic Self-Organizing Map (PSOM) k=1 7)

The update rule given by Equation (4) moves the BMU The initial value fora?goj is computed from the values
toward the sampleg,,, which we can think of as the center of obtained with probabilistic PCA, taking into account aleth
mass, and thus the center of attraction. The SOM framewoskmples:
can be extended to have a probabilistic approach, where
the weights of neurons and samples are random variables. N
The simplest way is to assume Gaussian distribution ?n 01290]- = % Z(M%nj +U§nj)7 Jj=1....,D. (8)
both cases, that is, the weights are random variables with 1
N(ppr, Sar) for k =1,..., K, and each sampte,, has its

own distribution A (jz,, Siem) for n = 1,..., N where both With Equations (7) and (8), the algorithm for probabilistic

. trices g5 di | Th date rul SOM first finds the BMU of a sample,,, then computes
covariance matricesy. andzn, are dlagonal. The upaate ruie o, 4 jance (5) and mean (6), and finally uses the modified

in Equation (4) requires a vector which acts as an attraCKUpdate rule for the weights using following equation:
In the probabilistic framework this vector is computed by

applying Bayes rule on two mentioned Gaussian distribu-

tions. The distribution for the weight&/(p 5., ¥ p5r) could m,(t+1) = my(t) + at)hep(t) [uo — Mp()] . (9)

be considered asgrior, while the distributions over samples . . .

N, Ssn) are the likelihood estimates (as suggested Comparing Equations (4) and (9), the samplg is re-

in [14], [15]), and through the Bayes rule we obtain thPlaced with posterior mean of the weights (Equation (6)),

posterior distribution for weights. while the learning rate and neighboring function remain the
Since both of them have diagonal covariance matrice§2Me. Thus, we are moving the BMi,, of a sample toward

the product is a Gaussian distributio¥f(ss,,, o) where its most probable directiop, instead of moving it toward

each dimension is a product of one dimensional Gaussialt§ sample. o _

from N (ppy., Spr) and N (pg,, Sen). Let us denote di- The only parameter left to be_: updated is prior variance

agonal of Xp;, as a vector[o%,,,0%y, -, 0%.p], and for the yvelghts given by Equation (7). This is dor_le after

similarly for s, we have [02,,,02,, __.’U%HD]]_ The comp!etlng one epoch and when all samples contributed to

means of distributions ar@u;, = [wpk1, ..., uprp] and Updating weights of neurons. o _

Won = [ftsn1, - snp]. The product of two distributions ~ When a samplecn is processed_, that is, |t_contr|buted to

N (g, Spi) for somek =1, ..., K and N (pg,,, Sg,) for  nN€Urons’ weights, the BMU for this sample is remembered,

somen = 1,..,N is a Gaussian distributiol (p,, 2o) as well as the posterior meang). Denoting the BMU for

with meanpu, given by Equation (6) and covariance matrixsamplex,, asugén), Equation (7) becomes

Yo with diagonal elements given by Equation (5).

N
1 B(n n .
2 1 1 - 012903- =N E [(uBéj) — ;L(Oj))2 + 0(233} ,j=1,...,D.
= = j=1,....,D 5 n=1
90; U?Bkj + U%nj » ) y ( ) (10)

Thus, u{” is paired with the BMUp5(" at the time

LBk fsng , . when samplex,, was uged to up_dat_e the vv_eig_hts. In other
Hoj =\ 3 + o2 | 905 J= 1,...,D. (6) words, once the BMU is found it will remain fixed for the
Bkj Snj current epoch, even if there is closer neuron to the sample
Thus, we can compute thgosterior probability of the x, after completing the epoch.

weight vectors of neurons in SOM and we need parameter The batch version of the SOM can be easily extended
values that characterize the distributioh§u5;,, X 5x) and to the probabilistic version, since the only value needed is
N(pg,, Xsn). For pg, we take the samplg,, itself, while the mean of the posterior distributiqtgl). This is computed
the chan are likelihoods taken from probabilistic PCA. Forwith Equations (5) and (6) before partitioning the means int
N(pp, Xpr) we havepg, = my(t), that is, the mean is regions.
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Fig. 1. Graphical models for the PSOM: complete model (laftii separated models (right).

D. Combination of PCA and SOM feature vectora; in A has large uncertainty?. Same

The complete model is given in Figure 1. The PSOM acteasoning applies for a movie with few ratings (a column in
as a prior for a given datas&. In our case, datasets areX): whe_re the corresponding vector$i has large variance.
reconstruction matriceA andST obtained with probabilistic After this step, both standard SOM and PSOM are used to
PCA. In principle, the whole model can be learned togetheYisualize and quantifyA andS™. The parameters common
but in this paper it is done separately as displayed on tf@ both SOM types are initialized to the same values and
same Figure 1. include:

Note that the proposed method is not a generative model,- Learning rateo: = 0.85
since the best matching unit is not found based on a - Learning rate is decreasing linearly
probabilistic model, and because the SOM learning is not - Topology is a lattice represented as rectangular sheet
probabilistic. On the other hand, when the SOMs have been- Gaussian neighborhood function

learned and the best matching unit for eadndj is fixed, - Initial radius set to half the map size
the rest becomes a generative model. In this sense, the SOMs Final radius set to 0.1
can be seen here as priors. - Random initialization of the weights

- Map training done for 1500 epochs

Il EXPERIMENTS . A set of different values for learning rate was tested, but
The PSOM and standard_ SOM are first co_mpargd on tré‘?(periments showed that the larger values produced better
Movielens 100k dataset W't.h 100 000 movie ratings fOfesults in terms of RMSE. Other important parameter is the
943 persons and 1682 movies. When con5|dere_d as a f%'?&e of the map, and the tested values ranged from 100 to
matrix, the dataset has 93.7% of the values missing. TRgyy heyrons arranged into a lattice with equal width and

task_ Is to_predict the_ missing value for a g?ven (persomeight. After training the SOMs, each sampleAnand ST
movie) pair. The Movielens 100k dataset is first randoml 5 replaced with the weight of its best matching unit giving

spiit into training and validation parts, each having 9500 andST, and the initial dataset is then reconstructed with
and 5000 ratings respectively. The dataset is formed to" r

have more columns than rows, that is, final dataset has 943 X ~A,S, +M 1

rows (persons) and 1682 columns (movies). The probabilisti " 3L 1682

PCA is first applied to obtain the reconstruction matrices VectorM in the above equation is the sample mean of data

A andS using the training set only. The PCA is run with matrix, which is obtained as maximum likelihood solution of

10 components as the upper limit and for 1500 iteration$yg probability of the parameters [22], whilg 1652 iS just

where the number of components is decided by validating tteerow vector of ones. The reconstructed matrix contains the

reconstructed values on the validation set. After trainthg values for elements of the validation set, which is used to

final training and validation root mean-square errors (RyMSEneasure the performance of all three methods: probabilisti

were 0.7678 and 0.8878, respectively. PCA, SOM and PSOM. The RMSE for both SOM types
The result of probabilistic PCA are two matricAssx10 IS shown in Table I. Since SOM is used ¢x and S the

and S1gx 1652 With likelihood estimates for all elements of experiments are done by using the same map size for both

both matrices. Thé matrix contains feature vectors for eachmatrices and then reconstructing the matrix. For example,

personin the new principal space. Similarla” represents the first column in Table | shows the RMSE when bath

feature vectors for eachmovie of the full matrix X. The andST are given to a map of siz&) x 10.

advantage of probabilistic PCA is the information about the As can be seen from Table |, the RMSE decreases when

reliability of the values inside these two matrices. For #ghe number of neurons increases, as expected since more

personi with few ratings (a row inX), the corresponding neurons allow for a more refined quantization. One final



TABLE |

RMSEFORSOMAND PSOM 3
Map size| 10 x 10 15 x 15 20x 20 25 x 25 30 x 30
SOM 00302 00199 09123 09040  0.8995 251 1

PSOM 0.9216 0.9089 0.9013 0.8977 0.8992

G 15 1

experiment involved using map sizes that have more net 8
than samples. In this case, map sizes v#@re31 and51 x 51 1f 1
for matricesA andS" respectively. The RMSE on validati
data were 0.8918 for SOM and 0.8932 for PSOM. 05f .

Table | shows advantage of PSOM over SOM for smi
sizes maps. In order to see the differences in the BML h 500 1000 1500
two map types we compare quantization error (QE) ar Epochs

matrices. QE is the average distance between samples and

their respective BMU, which is computed for all samplesFig- 5. Evolution of the variance of one componen,(, ) for PSOM on
U matrix is another way of visualizing the arrangement o marix.

neurons of the trained map. The U matrix has double the

number of elements as there are neurons in the map. Eagfd the number of iterations set to 1500. The number of
element represents the average distance of a neufpto  components is chosen based on the probe RMSE, and the
its neighbors in the mapVe(m,), computed in the input final RMSE on the Netflix probe data is 0.9055. Then, both
D-dimensional space. SOM and PSOM are used to cluster new datagnd S™).
Comparing quantization error in Figure 2, we see that ifor A and ST, map sizes of’5 x 75 and 75 x 50 are used
PSOM it is always larger than in SOM, since the weightgespectively. The parameters for training the SOMs are same
updates are no longer in direction toward the sample itselis for the Movielens data, except that in the Netflix case, a
but towardsp,, which is likely not to be on the same patch version of SOM algorithm is used that does not require
direction between the BMU and the sample. The QE is ig |earning rate parameter
some cases larger by a factor of 3, but this eventually hasAfter the rows of both matrices have been replaced with
positive effect when reconstructing the data. their respective BMUs, the RMSE for the probe data is
Examining U matrices for both SOM types and different 9754 for the standard SOM and 0.9665 for the PSOM.
map sizes in Figure 3, the distribution of neurons for PSOMs s the case for Movielens data, PSOM is able to give
is more spread out, and neurons clearly form more clustetsetter reconstruction error than standard SOM. On the other
On the other hand, neurons become more equidistant as #ihd, there is evident degradation in performance since dat
their number increases which is shown in the same figurg replaced with their nearest approximations. The in@éas
Also worth mentioning are the actual distances in U matriceRMSE is quite higher for Netflix than for Movielens, as the
In all the experiments with different map sizes the averageumber of map units in the SOM is very small compared to
distance between neurons in PSOM is always less than e actual number of data vectors (®F its 75 - 50 = 3750
standard SOM. map units compared to roughly 480000 data samples). The
Figure 4 shows the number of 'empty’ neurons, that isguantization error of the two SOM types has the same trend
the neurons which are not the BMU for any of the samplegs in the Movielens case: for PSOM it is always higher

For all map sizes the number of empty neurons is larger f@han for SOM, since the change is not toward the samples
PSOM than for SOM, which would also explain the highefhemselves.

quantization error for PSOM, since less neurons are used to
explain the samples. IV. CONCLUSION

Finally, Figure 5 shows the evolution of the posterior In this paper, we presented an extended version of SOM
variance for only one component. The result is almost thesing the likelihoods from probabilistic PCA method. Com-
same for all other components (not shown), exhibiting thparing results of both the PSOM and SOM, the extended
same decreasing tendency towards very small values. Thesgsion with likelihood information finds better solution i
small values actually prevent the PSOM from moving théerms of neurons’ weight adjustments. The update rule of
neurons with a considerable degree, and can also increatendard SOM moves neurons towards samples themselves,
the convergence speed. This side effect remains to be furthvehile probabilistic SOM uses additional information and
explored. updates the center of attraction accordingly. New update

The experiments using Netflix data are done in the saneguations try to fit a map which has evenly spread out
manner, except that certain parameters have been alterairons in the input space. For maps of various sizes the
to more adequately represent the data. Probabilistic PCA psobabilistic approach always gives slightly better resul
first used to obtain the decomposition of the data into twahere the difference starts to diminish and eventuallygurn
matrices, with the number of principal components set to 5@egative (combination 031 x 31 SOM for A and51 x 51



] ‘ ‘ ~<SOM ‘ ‘ —< SOM

—+—PSOM | ——PSOM
0.03 ! i

o =
Q = N

quantization error
o
o
N
quantization error

o
D

10x10 15x15 20x20 25x25 30x30 %6x10 15x15 20x20 25x25 30x30
number of neurons number of neurons
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Fig. 3. U matrices for the trained two SOM types on #hematrix. In the top row, the map size i$) x 10, while in the bottom row, the map size is
30 x 30. Left column is standard SOM, and right column is ProbatiiliSOM.

SOM for ST) as the number of neurons increases. Sindenportant as their wide variety for the performance of the
PSOM has more empty neurons it can be effectively useshsemble.
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