
Parallel Tempering is Efficient
for Learning Restricted Boltzmann Machines

KyungHyun Cho, Tapani Raiko, Alexander Ilin

Abstract— A new interest towards restricted Boltzmann ma-
chines (RBMs) has risen due to their usefulness in greedy
learning of deep neural networks. While contrastive divergence
learning has been considered an efficient way to learn an RBM,
it has a drawback due to a biased approximation in the learning
gradient. We propose to use an advanced Monte Carlo method
called parallel tempering instead, and show experimentally that
it works efficiently.

I. I NTRODUCTION

Recently, deep neural networks such as a deep belief net-
work [1] and a deep Boltzmann machine [2] have become
widely applied to various machine learning tasks. These deep
neural networks are characterized and distinguished from the
conventional multi-layer perceptron and other shallow neural
networks by their large number of layers of neurons and
its adaptation by a layer-wise unsupervised greedy learning
method.

A deep neural network is typically constructed by stacking
multiple restricted Boltzmann machines (RBM) so that the
hidden layer of one RBM becomes the visible layer of
another RBM which is situated one level up. This way of
constructing deep neural networks allows for using layer-
wise training of RBMs, which facilitates finding a more
accurate model for the data. Such multi-stage learning has
been empirically shown to work better than conventional
learning methods such as the widely used back-propagation
[2]. It is thus important to have an efficient and well-behaving
learning method for RBM. In this paper, we explore some
advanced sampling procedures for that.

The paper starts by briefly discussing theoretical background
behind a general Boltzmann machine (BM). Then, we state
the difference between the general BM and RBM, and
introduce a learning algorithm specific to RBM. Contrastive
divergence learning which is a successful learning algorithm
for RBM is explained, and later a learning algorithm utilizing
parallel tempering is introduced. In the experimental part,
we demonstrate the capability of RBM to learn the data
distribution by drawing samples from a trained RBM. We
also compare the newly proposed learning algorithm with
contrastive divergence learning.

The authors are with the Department of Information and Computer
Science, School of Science and Technology, Aalto University, Finland
(email: firstname.lastname@tkk.fi)

II. B OLTZMANN MACHINE

Boltzmann machine (BM) is a stochastic recurrent neural
network consisting of binary neurons [3]. The network is
fully connected, and we use 0 or 1 as the state of each neuron
xi. The links between each pair of neurons are symmetric
(meaning that the effect of one neuron on the state of the
other one is symmetric for each pair) and it is assumed that
there are no edges going from the neurons to themselves.

The probability of a particular statex = [x1, x2, · · · , xd]
T

is defined by the energy of BM which is postulated as

E(x |W) = −
1

2

∑

i

∑

j>i

wijxixj ,

whereW is a weight matrix consisting of weightswij of the
synaptic connections between neuronsi and j. We assume
that wii = 0 and thatwij = wji. The bias terms can be
omitted by using an auxiliary component in the state vector
that always has the value1. The probability of a statex is

P (x |W) =
1

Z(W)
exp [−E(x |W)] (1)

where
Z(W) =

∑

x

exp [−E(x |W)]

is the normalizing constant.

It follows from (1) that the conditional probability of a single
neuron being either0 or 1 given the states of the other
neurons can be written in the following way:

P (xi = 1 | x\i,W) =
1

1 + exp
(

−
∑

j 6=i wijxj

) , (2)

wherex\i denotes a vector[x1, · · · , xi−1, xi+1, · · · , xd]
T . It

is obvious that this probability is expressed using the standard
nonlinear sigmoid function used in multi-layer perceptron
networks.

The neurons of BM are usually divided into visible and
hidden onesx = [vT ,hT]T , where the statesv of the visible
neurons are clamped to observed data, and the statesh of
the hidden neurons can change freely.

A. Learning Boltzmann machine

The parameters of BM can be learnt from the data using
standard maximum likelihood estimation. Given a data set

{v(t)}Nt=1, the log-likelihood of the parameters of BM is

L(W) =
N

∑

t=1

log P (v(t)|W) =
N

∑

t=1

log
∑

h

P (v(t),h |W),

where the statesh of the hidden neurons have to be marginal-
ized out. This yields

L(W) =

N
∑

t=1

log

∑

h
exp(1

2x
(t)T

Wx
(t))

∑

x
exp(1

2x
T Wx)

=

N
∑

t=1

[

log
∑

h

exp(
1

2
x

(t)T
Wx

(t))

− log
∑

x

exp(
1

2
x

T
Wx)

]

.

The gradient of the log-likelihood is obtained by taking
partial derivative with respect to parameterswij

∂L

∂wij

=
1

2

N
∑

t=1

[

∑

h
x

(t)
i x

(t)
j exp(1

2x
(t)T

Wx
(t))

∑

h
exp(1

2x
(t)T

Wx(t))

−

∑

x
xixj exp(1

2x
T
Wx)

∑

x
exp(1

2x
TWx)

]

=
N

2

[

1

N

N
∑

t=1

∑

h

x
(t)
i x

(t)
j P (h | v(t),W)

−
∑

x

xixjP (x |W)

]

=
N

2

[

〈xixj〉P (h|{v(t)},W) − 〈xixj〉P (x|W)

]

,

where we used a shorthand notation〈·〉P (·) which can be
understood as the expectation computed over the probability
distributionP (·).

The overall update formula for a parameterwij is

wij ← wij +η
[

〈xixj〉P (h|{v(t)},W) − 〈xixj〉P (x|W)

]

, (3)

whereη denotes the learning rate, and it has absorbed the
factor N

2 . Thus the direction of the gradient is the difference
between the correlations under two distinct probability distri-
butions. The first one〈xixj〉P (h|{v(t)},W) is the correlation
obtained while the visible nodes are clamped to the training
data, and it represents the target probability distribution to
which the trained BM is intended towards. The second term
〈xixj〉P (x|W) is the correlation obtained from the current
probability distribution represented by the BM. According
to the sign of each term, the computations of the two terms
can be called the positive phase and the negative phase,
respectively.

The learning algorithm can be seen as driving BM so that
the correlations between each pair of neurons in the two
phases coincide with each other. In other words, we want

the probability distribution represented by BM to be exactly
identical to the probability distribution defined by the training
data set. Although the analytical formulation of the exact
probability distribution of the training data set is unknown,
the positive phase mimics it by clamping the visible neurons
to the training data, and lets the hidden neurons freely have
their own states. It can then be compared to the probability
distribution represented by BM where both the visible and
hidden neurons can freely choose their states according to the
distribution determined by the weights. When the difference
between the distributions in the two phases becomes zero or
small enough, then learning effectively stops.

B. Practical limitation and approximate approach

Although the activation and learning rules of BM are both
clearly formulated, there are practical limitations in us-
ing BM. Especially, the gradient-based update formula is
computationally unfeasible, as the distributions required in
both phases can only be obtained by evaluating all possible
combinations of the states of the neurons in the machine.

There exist exponentially many possible combinations of
the states. For example, BM which was designed to handle
28 × 28 black-and-white image with 500 hidden nodes
has 228·28+500 possible combinations, and the number is
unimaginably huge. Evaluating all those states at every
gradient update step is simply unfeasible. In fact, even
the evaluation of a probability of a single combination is
almost impossible, as all combinations of the states must be
evaluated regardlessly to compute the normalizing constant
Z(W).

The obvious approach to overcome this difficulty is to use
Gibbs sampling (see e.g. [4]). Gibbs sampling can easily be
implemented because the conditional distribution of the state
of a single neuron in BM given the states of all the other
neurons is given by (2). This approach can greatly reduce the
computational burden of the gradient update rule. If we as-
sume that the number of samples required for explaining the
probability distribution of the whole state space is sufficiently
smaller than the size of the state space, that is the number
of all possible combinations of the states of the neurons, the
learning of BM is not anymore as computational unfeasible
as the exact computation of the probability masses.

However, there also exist other kinds of limitations in using
Gibbs sampling for training BM. The biggest problem is
due to the full-connectivity of BM. Since each neuron is
connected to and influenced by all the other neurons, it
takes as many steps as the number of neurons to get one
sample of the BM state. Even when the visible neurons
are clamped to the training data, the number of required
steps for a single fresh sample is still at least the number
of hidden neurons. This makes the successive samples in the
chain highly correlated with each other and this poor mixing
affects the performance of learning. Another limitation ofthis

approach is that multi-modal distributions are problematic
for Gibbs sampling [5]: Due to the nature of component-
wise sampling, the samples might miss some modes of the
distribution.

III. R ESTRICTEDBOLTZMANN MACHINE

To overcome these practical limitations imposed on the
general Boltzmann machine, a structurally restricted version
of Boltzmann machine called Restricted Boltzmann Ma-
chine (RBM) has been proposed [6]. RBM is constructed
by removing the lateral connections in-between the visible
neurons and the hidden neurons. Therefore, a visible neuron
would only have edges connected to the hidden neurons, and
a hidden neuron would only have edges connected to the
visible neurons. Now, the structure of RBM can be divided
into two layers with inter-connecting edges, and it resembles
the structure of the bi-partite graph.

The most important advantage over the general BM is on the
improved effectiveness in doing sampling. It follows from
the fact that all neurons in one layer are independent of
each other given the states of the neurons in the other layer.
Now Gibbs sampling can be done layer-wise rather than
component-wise. It can then greatly reduce the number of
sampling runs required to get enough samples to represent
the probability distribution.

Furthermore, in the view of computational efficiency, the
layer-wise sampling can fully utilize the modern parallelized
computing environment, as sampling of each neuron (or
component) in the same layer can be done independently
of each other and simultaneously, whereas Gibbs sampling
on the general BM requires that sampling of each neuron
must be done sequentially.

As the restriction has been imposed on the structure, the
energy, the state probability must be modified accordingly:

E(v,h | Θ) = −
1

2

(

v
T
Wh + b

T
v + c

T
h
)

P (v,h | Θ) =
1

Z(Θ)
exp {−E(v,h | Θ)} ,

where now parametersΘ = (W,b, c) include biasesb and
c. The learning rules then become

wij ← wij + ηw

[

〈vihj〉P (h|{v(t)},Θ) − 〈vihj〉P (v,h|Θ)

]

bi ← bi + ηb

[

〈vi〉P (h|{v(t)},Θ) − 〈vi〉P (v,h|Θ)

]

cj ← cj + ηc

[

〈hj〉P (h|{v(t)},Θ) − 〈hj〉P (v,h|Θ)

]

,

where we used the same shorthand notation〈·〉P (·) as before.

For computing the correlations during the positive phase, the
exact computation of the correlation between the clamped
neuronsv and the (free) hidden neuronsh is possible,
since all the hidden neurons are independent of each other

conditioned on the training data. For instance, the expectation
for updating the weights is

〈vihj〉P (h|{v(t)},Θ) =
1

N

N
∑

t=1

v
(t)
i P (h

(t)
j | v

(t),Θ), (4)

whereP (h
(t)
j | {v(t)},Θ) is computed using (2) with the

bias term included.

Although the difficulties in learning have partly been solved,
the practical limitations of the general Boltzmann machine
still remain. As the number of neurons in RBM increases,
a greater number of samples must be gathered by Gibbs
sampling in order to properly explain the probability dis-
tribution represented by RBM. The computational load has
been greatly reduced but it still remains large. Moreover, the
problem of the multi-modal probability distribution has not
at all been addressed.

A. Contrastive divergence learning

Contrastive divergence (CD) learning [7] does not follow
the gradient obtained by the maximum likelihood criterion.
Rather, CD learning approximates the true gradient by re-
placing the expectation overP (v,h | Θ) with an expectation
over a distributionPn that is obtained by runningn steps of
Gibbs sampling from the empirical distribution. In practice,
parallel chains of Gibbs sampling are run starting separately
from each observation in the data set. The samples at stepn

are used to compute the expectation.

The learning formula, then, becomes

wij ← wij + η
[

〈xihj〉P0
− 〈xihj〉Pn

]

.

It should be noted that the casen = 0 produces the
empirical distributionP (h | {v(t)},Θ) used in the positive
phase, whereas the casen =∞ produces the true distribution
of the negative phaseP (x | Θ).

As it can be anticipated from the fact that the direction
of the gradient is not identical to the exact gradient, CD
learning is known to be biased [8]. Nevertheless, CD learning
has been proven to work well in practice. A good property
of CD is that in case the data distribution is multimodal,
running the chains starting from each data sample guarantees,
that the samples approximating the negative phase have
representatives from different modes.

IV. RESTRICTEDBOLTZMANN MACHINE AND PARALLEL

TEMPERING

A problem that has not been addressed neither by Gibbs
sampling nor by CD learning is that the samples generated
during the negative phase do not tend to explain the whole
state space. This paper, therefore, proposes to use yet another,
improved variant of Markov-Chain Monte Carlo sampling

1) Create a sequence of RBMs(R0, R1, · · · , RK) such that parameters ofRk areΘk = (TkW,b, c), where
0 ≤ T0 < T1 < · · · < TK = 1.

2) Create an empty set of samplesX = {}.
3) Setx0 = (x0,0, · · · ,xK,0) such that everyxk,0 is a uniformly distributed random vector (or use old ones

from the previous epoch).
4) For m = 1 to M , repeat

a) Samplexm = (x0,m, · · · ,xK,m) from the sequence of RBMs such thatxk,m is sampled by one-step
Gibbs sampling starting fromxk,m−1.

b) For j = K to 1, repeat

• Swapxj,m andxj−1,m according toPswap(xj,m,xj−1,m) computed using (5).

c) Add xK,m to X.

5) X is the set of samples collected by parallel tempering sampling.

TABLE I: Sequence of steps for sampling from RBM using parallel tempering.
table

method calledparallel tempering(PT) [9]. PT sampling used
in this paper utilizes multiple Gibbs sampling chains with
varying levels of temperatures, where a termtemperature
denotes the level of the energy of the overall system, in this
case, RBM. The higher the temperature of the chain, the
more likely the samples collected by Gibbs sampling to move
freely.

The use of PT sampling in training RBM is simply to use it
instead of Gibbs sampling in the negative phase. Due to the
previously mentioned characteristics, it is expected thatthe
samples collected during the negative phase would explain
the model distribution better, and that the learning process
would be done well even with a smaller number of samples
than those required if Gibbs sampling is used.

The basic idea of PT sampling is that samples are collected
from multiple chains of Gibbs sampling with different tem-
peratures from the highest temperatureT = 0 to the current
temperatureT = 11. For every pair of collected samples from
two distinct chains, the swap probability is computed, and the
samples are swapped according to the probability. The swap
probability of a pair of samples is formulated according to
the Metropolis rule (see e.g. [4]) as

Pswap(xT1 ,xT2) = min

(

1,
PT1(xT2)PT2 (xT1)

PT1(xT1)PT2 (xT2)

)

, (5)

whereT1 andT2 denote the temperatures of the two chains,
and xT1 and xT2 denote samples collected from the two
chains.PT (·) is the probability function of the RBM with
parametersΘ = (TW,b, c), where the effect of different
temperatures is emulated by multiplying the current weights
W by the corresponding temperatureT .

After each round of sampling and the swaps, the sample at
the true temperatureT = 1 is gathered as the sample for

1Since the lower value denotes the higher temperature, a terminverse
temperaturesis frequently used, but in this paper,temperaturewill be used.

the iteration. The samples come from the true distribution
P (v,h | Θ) assuming that enough iterations are run to
diminish the effect of the initialization.

It must be noted that the Gibbs sampling chain with the
highest temperature (T = 0) is never multimodal. So, the
samples from the chain are less prone to missing some
modes that exist in RBM. From the chain with the highest
temperature to the lowest temperature, samples from each
chain become more and more likely to follow the target
model distribution.

This nature of swapping samples between the different
temperatures enables better mixing of samples from different
modes with much less number of samples than that would
have been required if Gibbs sampling was used. A brief
description of how PT sampling can be done for training
RBM is shown in Table I. This is the procedure that is run
between each parameter update during learning.

V. ESTIMATING LOG-L IKELIHOOD OF RESTRICTED

BOLTZMANN MACHINES

For estimating the normalizing constant, this paper adapts
the method utilizingannealed importance sampling(AIS)
[10] which has been successfully adapted for computing the
normalizing constant of RBM [11].

AIS is based onsimple importance sampling(SIS) method
that could estimate the ratio of two normalizing constants.
For two probability densitiesPA(x) =

P∗

A
(x)

ZA
andPB(x) =

P∗

B
(x)

ZB
, the ratio of two normalizing constantsZA andZB can

be estimated by a Monte Carlo sampling method without any
bias if it is possible to sample fromPA(·):

ZA

ZB

= EPA

[

P ∗
B(x)

P ∗
A(x)

]

≈
1

M

M
∑

i=1

P ∗
B(x)

P ∗
A(x)

.

1) Create a sequence of intermediate temperaturesTk such that0 ≤ T0 < T1 < · · · < TK = 1.
2) Create a base RBMR0 with parametersΘ0 = (W0,b, c), whereW0 = 0.
3) Create a sequence of intermediate RBMsRk such that

• It has twice as many hidden nodes as the target RBM has.
• Parameters areΘk = ([(1− Tk)W0 TkW] ,b,

[

c
T
c

T
]T

).

4) For m = 1 to M , repeat

a) Samplex1 from R0.
b) For k = 1 to K − 1, repeat

• Samplexk+1 from Rk by one-step Gibbs sampling starting fromxk.

c) Setum =
∏K

k=1
P∗

k
(xk)

P∗

k−1(xk) , whereP ∗
k (·) is an unnormalized marginal distribution function ofRk.

5) The estimate ofZK

Z0
is 1

M

∑M

m=1 um.

TABLE II: Sequence of estimating the normalizing constant by annealed importance sampling.
table

Based on SIS, AIS estimates the normalizing constant of the
model distribution by computing the ratio of the normalizing
constants of consecutive intermediate distributions ranging
from so-called base distribution and the target distribution.
The base distribution is chosen such that its normalizing
constantZ0 can be computed exactly and it is possible to
collect independent samples from it. A natural choice of the
base distribution for RBM is an RBM with zero weightsW.
This yields the normalizing constant

Z0 =
∏

i

(1 + exp {bi})
∏

j

(1 + exp {cj}),

where indicesi andj go through all the visible and hidden
neurons, respectively.

By computing the product of the estimated ratios of the
intermediate normalizing constants andZ0, the normalizing
constant of the target RBM can be estimated. The algorithm
implementing AIS is outlined in Table II.

To achieve an accurate estimate of the normalizing constant,
a large number of intermediate RBMs should be used, and
the normalizing constant must be estimated by as many
annealing runs as possible [11]. This means thatK andM

in the algorithm from Table II should be large. The runs of
AIS are independent from each other, so they can be fully
parallelized.

VI. EXPERIMENTS

Two different sets of experiments were done using MATLAB .
The goal of the first experiment was to test the capability of
RBMs to capture the data distribution. We generated samples
from RBM trained on the OptDigits data set. The data set was
acquired from the UCI Machine Learning Repository [12]
and it consisted of handwritten digits of the size8×8 pixels.
The samples were collected by parallel tempering sampling
starting from a randomly drawn state. Most of the samples

were observed to resemble the digits regardless of the initial
state.

The second experiment was conducted in order to compare
the performance of RBM depending on two different learning
methods: CD learning and learning using sampling with PT.
The performance was evaluated by the approximated likeli-
hood of the training data set and the approximated probability
of the test data set. We observed that the performance is
better when the gradient was estimated using PT sampling.

Furthermore, in the second experiment we computed the
probability of uniformly randomly generated data in the
current RBM model. The goal was to observe a potential
problem of CD learning that the samples generated during
the negative phase do not represent the state space as well
as the samples generated by PT sampling, but only repre-
sent the region centered around the training samples [13].
The probability of random data was computed for different
learning methods and compared.2

A. Generating samples from a trained restricted Boltzmann
machine

RBM was constructed such that there are 64 visible neurons
and 100 hidden neurons. Each neuron had a bias parameter.
RBM was trained with 3822 training samples of8 × 8
handwritten digits. The original OptDigits data set provides
17-level greyscale digits but for simplicity we rounded the
intensity of each pixel so that the intensity less than 8 became
0 (and 1 otherwise).

RBM was trained separately by CD learning withn = 1
and learning with PT sampling. PT sampling was done with
K = 20 and temperaturesT0 = 0, T1 = 0.05, . . . , T20 = 1.

2We assume that uniformly drawn samples do not lie close to thetraining
data because the size of the training data set is much smallerthan the size
of the state space which is264.

(a) Training data set

(b) Visualization of hidden nodes (CD1)

(c) Visualization of hidden nodes (PT)

Fig. 1: Training data set and visualization of hidden nodes. (a)
shows 10 training samples where for each digit one sam-
ple was randomly chosen. (b) and (c) shows the weights
connected to nine randomly chosen hidden neurons.

figure

(a) Model learned with CD1

(b) Model learned with PT

Fig. 2: Samples generated by parallel tempering sampling from
the RBM trained with (a) CD1 and (b) PT started from
the random sample. The first digits of both figures are the
random initial samples.

figure

The models represented by the RBMs are named CD1 and
PT, respectively. Each gradient update was done in the batch
style so that all the training samples were used. CD1 and PT
were trained for 2000 epochs, and the learning rateη started
from 0.05 and gradually decreased following the search-then-
converge strategy.3

Figure 1 shows the training data samples and the visual-
ization of the hidden nodes after training. The visualization
of the hidden node was done by displaying the weights
associated with the node as a grey-scale digit. It can be
observed that each hidden node represents a distinct feature.

To see the generative behavior of RBM, the samples were
gathered using PT sampling starting from a random initial
sample.K = 20 was used for PT sampling. Figure 2 shows
the activation probabilities for the visible neurons of the
generated samples from the models learned with CD1 and
PT. The digits in the figure are 19 samples chosen out of
2000 samples collected by PT sampling starting from the
random sample. Each consecutive samples are separated by
100 sampling steps, and the first digit in both figures of
Figure 2 represents the random initial sample. It is clear that
the trained RBM is able to generate digits which look similar
to the training data. The proposed method of learning with
PT sampling works as well as the conventional CD learning.

B. Comparison between contrastive divergence learning and
parallel tempering

For the second experiment, we trained RBMs with the same
100 hidden neurons using four learning algorithms: CD1,
CD5, CD25 and PT (where CDn is CD learning withn

sampling steps).

The parametersK andM of parallel tempering were chosen
so that the number of total Gibbs sampling steps during one
gradient update matches that of CD1 which uses as many
samples as the training data samples. PT was, therefore,
trained withK = 20 temperatures andM = 192 samples
per gradient update. This choice is reasonable in a sense that
the difference in CD learning and learning with PT sam-
pling only depends on the number of Gibbs sampling steps,
whereas the computational cost of additional operations may
vary largely depending on the implementation.

Each RBM was trained for 635 epochs and the probabilities
of both training and test data were estimated. The parameters
used in AIS wereM = 50 andK = 5000. All the models
were trained 30 times and the averaged performance indices
were calculated.

Figure 3 shows that the probability of the test data increases,
while the probability of the random data decreases over the
gradient updates. This is consistent with the fact that the

3
η(n) = η0

1+ n

n0

, whereη0 = 0.05 for both the weight and the bias, and

n0 = 300 for both CD1 and PT.

4s 16s 1m4s 4m16s 17m4s 1h8m16s 4h34m4s
−50

−45

−40

−35

−30

−25

−20

−15

−10

5 35

155

635

5
35

155
635

5
35

155

635

L

o
g

-p
ro

b
ab

ili
ty

CPU time

PT
CD1
CD25
Init.

4s 16s 1m4s 4m16s 17m4s 1h8m16s 4h34m4s
−180

−160

−140

−120

−100

−80

−60

−40

5

35

155

635

5
35

155

635

5
35

155

635

L
o

g
-p

ro
b

ab
ili

ty

CPU time

PT
CD1
CD25
Init.

Fig. 3: Left: Average probabilities of test data against the processor time. Right: Average probabilities of random data against the processor
time. The time scale is logarithmic. The dashed lines indicate the log-probability of the initial weights for both test and random
data. The numbers denote the number of epochs after which thevalue was measured.

figure

−18.5

−18

−17.5

−17

−16.5

−16

−15.5

−15

−14.5

−14

−13.5

L
o

g
-p

ro
b

ab
ili

ty

PT CD1 CD25

−170

−160

−150

−140

−130

−120

−110

−100

−90

−80
L

o
g

-p
ro

b
ab

ili
ty

PT CD1 CD25

Fig. 4: Left: Box plots of probabilities of test data after 635 epochs over 30 repeated runs. Right: Box plots of probabilities ofrandom
data over 30 repeated runs. For probability values, the red line inside the box denotes the median, the edges of the box are25-th
and 75-th percentiles, and the whiskers are extended to the extreme value not considering possible outliers.

figure

gradient maximizes the likelihood according to the distribu-
tion of the training data. It also confirms that the probability
of the unseen samples that are not close to any training
sample is decreased. However, the rate of the changes in the
likelihood and the probability of the test data over updates
differs from one model to another. PT achieves the highest
average likelihood and the highest average probability of the
test data, and at the same time achieves the lowest probability
of the random data at the fastest rate. It can be further
observed that PT learning is computationally more favorable
than CD25 and comparable to CD1.

Figure 4 which shows the average probability of the test data
set and the random data set by 30 independent trials, further,
confirms that PT indeed achieves the highest probability of

the test data set and the lowest probability of the random
data set. It should be, however, noted that the variance of PT
is greater than those of both CD1 and CD25.

The increase ofn in CD learning certainly boosts up the rate
of the increase in the likelihood as a function of learning
epochs, but even withn as large as25 CD learning cannot
achieve as large likelihood as PT does. CD learning with
n = 25 is much more computationally demanding than PT.
This result indicates that the use of the advanced sampling
technique can yield faster and better training of RBM.

VII. D ISCUSSION

As an alternative to Gibbs sampling, contrastive divergence
learning has been proposed and made learning of RBMs
faster. Despite its computationally favorability and the wide
acceptance, contrastive divergence learning is biased in the
sense that the computed gradient computed does not lead
exactly to the maximum of the likelihood. This paper,
therefore, proposed an alternative approach which utilizes
parallel tempering for training RBMs. This approach does
not sacrifice the optimality of the direction of the gradient
but reduces the computational cost by improving the quality
of the samples.

Two separate experiments were done: (1) to confirm the
capability of RBM to capture the data distribution and (2)
to show that RBM trained by the proposed PT approach is
superior to that trained by the conventional CD learning. The
former experiment confirmed that RBM trained by either CD
learning or learning with PT sampling is able to generate
samples resembling the training data. The second experiment
confirmed that the use of the proposed PT approach can result
in a more accurate RBM. As a performance measure, the
log-likelihood estimated using annealed importance sampling
was used.

Learning with PT sampling was superior in all aspects
of the experimental results. We observed higher likelihood
computed on the training data and higher probability of the
test data. The increase of the likelihood over the gradient
updates was also faster. The probability of random samples
by PT sampling was less than any other model trained with
CD learning. This confirmed the existence of the potential
problem of CD learning that the samples generated by CD
learning during the negative phase do not represent the state
space well and fail to decrease the probabilities over the
regions which are far from the training data. At the same
time, the computational complexity of the gradient update
by PT sampling was comparable to that of CD learning.

Recently, the use of PT learning for RBMs has been proposed
independently also in [14]. The work in [14] illustrates the
possible explanations why PT learning performs better than
CD learning, and presents the experimental results showing
the superiority of PT learning. It, however, lacks showing the
efficiency of PT learning compared to CD learning in terms
of the computational complexity, whereas we showed that
even in the terms of the computational load PT learning is
as efficient as CD learning.

A similar attempt at improving the learning by adapting an
advanced sampling method has been proposed in [5]. The
work also does sampling by considering multiple distribu-
tions of different temperatures, but the details of the proposed
algorithm (calledtempered transition) differ greatly from that
presented in this paper.

Findings of this paper raise further research issues related

to improving PT sampling for training RBM. The in-depth
study of how the parameters of PT sampling influence the
performance must be done, as the experiments in this report
were done only with one specific setting of PT sampling. The
adjustable parameters such as the learning rate, the numberof
temperatures and the number of samples, significantly affects
the performance of learning, and the relationship between the
choice of parameters and the performance must be further
studied in order for PT sampling to be widely used.

Acknowledgements

This work was supported by the honours programme of the
department, by the Academy of Finland and by the IST
Program of the European Community, under the PASCAL2
Network of Excellence. This publication only reflects the
authors’ views.

REFERENCES

[1] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality
of data with neural networks,”Science, vol. 313, no. 5786, pp. 504–
507, July 2006.

[2] R. Salakhutdinov and G. Hinton, “Deep Boltzmann machines,” in
Artificial Intelligence and Statistics, 2009.

[3] S. Haykin, Neural Networks: A Comprehensive Foundation (2nd
Edition), 2nd ed. Prentice Hall, July 1998.

[4] D. J. C. Mackay,Information Theory, Inference & Learning Algo-
rithms, 1st ed. Cambridge University Press, June 2002.

[5] R. Salakhutdinov, “Learning in Markov random fields using tempered
transitions,”NIPS 2009, 2009.

[6] P. Smolensky, “Information processing in dynamical systems: foun-
dations of harmony theory,” inParallel distributed processing: ex-
plorations in the microstructure of cognition, vol. 1: foundations.
Cambridge, MA, USA: MIT Press, 1986, pp. 194–281.

[7] G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,”Neural Comp., vol. 14, no. 8, pp. 1771–1800, August
2002.

[8] M. A. Carreira-Perpiñ and G. Hinton, “On contrastive divergence
learning,” in Proceedings of the Tenth International Workshop on
Artificial Intelligence and Statistics, Jan 6-8, 2005, Savannah Hotel,
Barbados, R. G. Cowell and Z. Ghahramani, Eds. Society for
Artificial Intelligence and Statistics, 2005, pp. 33–40.

[9] D. J. Earl and M. W. Deem, “Parallel tempering: Theory, applications,
and new perspectives,”Phys. Chem. Chem. Phys., vol. 7, no. 23, pp.
3910–3916, 2005.

[10] R. M. Neal, “Annealed importance sampling,”Statistics and Comput-
ing, vol. 11, pp. 125–139, 1998.

[11] R. Salakhutdinov, “Learning deep generative models,”Ph.D. disserta-
tion, Massachusetts Institute of Technology, 2009.

[12] A. Asuncion and D. Newman, “UCI ma-
chine learning repository,” 2007. [Online]. Available:
http://www.ics.uci.edu/∼mlearn/MLRepository.html

[13] Y. Bengio, “Learning deep architectures for ai,” Dept.IRO, Universite
de Montreal, Tech. Rep., 2007.

[14] G. Desjardins, A. Courville, Y. Bengio, P. Vincent, andO. Delalleau,
“Tempered Markov chain Monte Carlo for training of restricted
Boltzmann machines,” Dept. IRO, Universite de Montreal, Tech. Rep.
1345, 2009.

