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Abstract

This paper studies the learning of nonlinear state-space models for a con-
trol task. This has some advantages over traditional methods. Varia-
tional Bayesian learning provides a framework where uncertainty is explic-
itly taken into account and system identification can be combined with
model-predictive control. Three different control schemes are used. One of
them, optimistic inference control, is a novel method based directly on the
probabilistic modelling. Simulations with a cart-pole swing-up task confirm
that the latent state space provides a representation that is easier to predict
and control than the original observation space.

Nonlinear State-Space Models

• Modelling the dynamics of an unknown noisy system

• The dynamics g between hidden states s(t) and the observation mapping
f from states are modelled as multi-layer perceptron (MLP) networks

s(t) = g(s(t − 1),θg) + noise (1)

x(t) = f(s(t),θf ) + noise (2)

• The states s(t) and mappings f and g are learned from data

• Variational Bayesian learning avoids overfitting
A parametric distribution over states and parameters is fitted to the true
posterior

• H. Valpola and J. Karhunen. An unsupervised ensemble learning
method for nonlinear dynamic state-space models. Neural Computa-

tion, 14(11):2647–2692, 2002.

Introducing Control Signals

• Two ways to introduce control signals (or actions) u(t) into the model
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• We chose the one on the right for three reasons

– allows three different control schemes

– opportunity to find a task-oriented state space

– biologically motivated (different parts of the cerebellum can be used
for motor control and cognitive processing depending on where their
outputs are directed)

• Equation (1) is replaced with

[

u(t)
s(t)

]

= g

([

u(t − 1)
s(t − 1)

]

,θg

)

+ noise (3)

• Control schemes work at every time step:

– Input: learned model, the history of observations and control signals

– Output: control signal u(t0) for the current time t0

Direct Control (DC)

•The neural network acts as a controller

• Infer s(t) and use Eq. (3) to get u(t0)

Optimistic Inference Control (OIC)

•Assume that the goal is reached after a fixed delay

• Infer what has happened in between (probabilistic smoothing)
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Nonlinear Model Predictive Control (NMPC)

•Define a cost (or negated utility) function J over the future

• Find such a sequence of us that the expected cost E{J} is minimised

Cart-Pole Swing-Up Task
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•Observations: position y, the angle of the pole θ, and their velocities

•Control input: Force F

• System is unknown (learned from data)

•Goal is to swing the pole to an upward position and stabilise it without
hitting the walls

•A comparison model f = I does not have a hidden state:
Equation (2) is replaced with x(t) = s(t) + noise

•Another comparison: Only y and θ observed (no velocities)

• Percentage of successful and partially successful swingups:

Setting Little noise Much noise
Direct Control 14 48 4 31
Optimistic Inference Control 97 100 94 98
NMPC 100 100 94 95
NMPC (no velocities) 14 66 1 21
NMPC (f = I) 100 100 70 70
NMPC (f = I, no velocities) 0 0 0 0

Conclusion
• Nonlinear state-space models & three different control schemes

• Optimistic inference control reduces control into inference

• State-space models are resistant to noise

• Modelling the policy leads to task-oriented state representation

• Future work: faster algorithms, probing, exploration. . .

• Implementation and data: www.cis.hut.fi/projects/bayes/software


