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Abstract

This paper studies the learning of nonlinear state-space models for a con-
trol task. 'This has some advantages over traditional methods. Varia-

tional Bayesian learning provides a framework where uncertainty is explic-
itly taken into account and system identification can be combined with
model-predictive control. Three different control schemes are used. One of
them, optimistic inference control, is a novel method based directly on the
probabilistic modelling. Simulations with a cart-pole swing-up task confirm
that the latent state space provides a representation that is easier to predict
and control than the original observation space.

Nonlinear State-Space Models

e Modelling the dynamics of an unknown noisy system

e The dynamics g between hidden states s(¢) and the observation mapping
f from states are modelled as multi-layer perceptron (MLP) networks

s(t) = g(s(t — 1), 08g) + noise (1)
x(t) = f(s(t), O¢) + noise (2)

e The states s(t) and mappings f and g are learned from data

e Variational Bayesian learning avoids overfitting
A parametric distribution over states and parameters is fitted to the true
posterior

e H. Valpola and J. Karhunen. An unsupervised ensemble learning

method for nonlinear dynamic state-space models. Neural Computa-
tion, 14(11):2647-2692, 2002.

Introducing Control Signals

e T'wo ways to introduce control signals (or actions) u(t) into the model
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e We chose the one on the right for three reasons

— allows three different control schemes
— opportunity to find a task-oriented state space

— biologically motivated (different parts of the cerebellum can be used
for motor control and cognitive processing depending on where their
outputs are directed)

e Equation (1) is replaced with

u)] _, <'u(t— L) ,9g> + noise (3)

e Control schemes work at every time step:

— Input: learned model, the history of observations and control signals

— Output: control signal u(tg) for the current time %

Direct Control (DC)

e ['he neural network acts as a controller

e Infer s(¢) and use Eq. (3) to get u(ty)
Optimistic Inference Control (OIC)
e Assume that the goal is reached after a fixed delay

e [nfer what has happened in between (probabilistic smoothing)
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Nonlinear Model Predictive Control (NMPC)

e Define a cost (or negated utility) function J over the future

e ['ind such a sequence of us that the expected cost E{.J} is minimised

Cart-Pole Swing-Up Task
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e Observations: position y, the angle of the pole 6. and their velocities
e Control input: Force F
e System is unknown (learned from data)

e (Goal is to swing the pole to an upward position and stabilise it without
hitting the walls

e A comparison model f = I does not have a hidden state:
Equation (2) is replaced with x(t) = s(t) + noise

e Another comparison: Only y and 6 observed (no velocities)

e Percentage of successful and partially successtul swingups:

Setting Little noise | Much noise
Direct Control 14 48 |4 31
Optimistic Inference Control| 97 100 (94 98
NMPC 100 100 (94 95
NMPC (no velocities) 14 66 |1 21
NMPC (f =1) 100 100 |70 70
NMPC (f =1, no velocities) | 0 0 |0 0
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Conclusion
e Nonlinear state-space models & three different control schemes

e Optimistic inference control reduces control into inference

e State-space models are resistant to noise

e Modelling the policy leads to task-oriented state representation

e Future work: faster algorithms, probing, exploration. . .

e [mplementation and data: www.cis.hut.fi/projects/bayes/software




