Learning Nonlinear State-Space Models for Control Tapani Raiko and Matti Tornio

Helsinki University of Technology, Neural Networks Research Centre

Abstract

This paper studies the learning of nonlinear state-space models for a control task. This has some advantages over traditional methods. Variational Bayesian learning provides a framework where uncertainty is explicitly taken into account and system identification can be combined with model-predictive control. Three different control schemes are used. One of them, optimistic inference control, is a novel method based directly on the probabilistic modelling. Simulations with a cart-pole swing-up task confirm that the latent state space provides a representation that is easier to predict and control than the original observation space.

Direct Control (DC)

• The neural network acts as a controller • Infer $\mathbf{s}(t)$ and use Eq. (3) to get $\mathbf{u}(t_0)$ **Optimistic Inference Control (OIC)** • Assume that the goal is reached after a fixed delay

• Infer what has happened in between (probabilistic smoothing)

Nonlinear State-Space Models

- Modelling the dynamics of an unknown noisy system
- The dynamics **g** between hidden states $\mathbf{s}(t)$ and the observation mapping **f** from states are modelled as multi-layer perceptron (MLP) networks

$$\mathbf{s}(t) = \mathbf{g}(\mathbf{s}(t-1), \boldsymbol{\theta}_{\mathbf{g}}) + \text{noise}$$
(1)
$$\mathbf{x}(t) = \mathbf{f}(\mathbf{s}(t), \boldsymbol{\theta}_{\mathbf{f}}) + \text{noise}$$
(2)

- The states $\mathbf{s}(t)$ and mappings \mathbf{f} and \mathbf{g} are learned from data
- Variational Bayesian learning avoids overfitting A parametric distribution over states and parameters is fitted to the true posterior
- H. Valpola and J. Karhunen. An unsupervised ensemble learning method for nonlinear dynamic state-space models. Neural Computation, 14(11):2647–2692, 2002.

Nonlinear Model Predictive Control (NMPC)

- Define a cost (or negated utility) function J over the future
- Find such a sequence of **u**s that the expected cost $E\{J\}$ is minimised

Cart-Pole Swing-Up Task

Introducing Control Signals

• Two ways to introduce control signals (or actions) $\mathbf{u}(t)$ into the model PSfrag replacements

- We chose the one on the right for three reasons
 - allows three different control schemes
 - -opportunity to find a task-oriented state space
 - -biologically motivated (different parts of the cerebellum can be used for motor control and cognitive processing depending on where their outputs are directed)
- Equation (1) is replaced with

(3)

- Observations: position y, the angle of the pole θ , and their velocities
- Control input: Force F
- System is unknown (learned from data)
- Goal is to swing the pole to an upward position and stabilise it without hitting the walls
- A comparison model $\mathbf{f} = \mathbf{I}$ does not have a hidden state: Equation (2) is replaced with $\mathbf{x}(t) = \mathbf{s}(t) + \text{noise}$
- Another comparison: Only y and θ observed (no velocities)
- Percentage of successful and partially successful swingups:

Setting	Little noise		Much noise	
Direct Control	14	48	4	31
Optimistic Inference Control	97	100	94	98
NMPC	100	100	94	95
NMPC (no velocities)	14	66	1	21
NMPC $(\mathbf{f} - \mathbf{I})$	100	100	70	70

$\begin{bmatrix} \mathbf{u}(t) \\ \mathbf{s}(t) \end{bmatrix} = \mathbf{g} \left(\begin{bmatrix} \mathbf{u}(t-1) \\ \mathbf{s}(t-1) \end{bmatrix}, \boldsymbol{\theta}_{\mathbf{g}} \right) + \text{noise}$

- Control schemes work at every time step:
 - -Input: learned model, the history of observations and control signals
 - -Output: control signal $\mathbf{u}(t_0)$ for the current time t_0

Conclusion

- Nonlinear state-space models & three different control schemes
- Optimistic inference control reduces control into inference
- State-space models are resistant to noise

- Modelling the policy leads to task-oriented state representation
- Future work: faster algorithms, probing, exploration...
- Implementation and data: www.cis.hut.fi/projects/bayes/software